Building Extensible Workflow Systems
Using an Event-Based Infrastructure

Dimitrios Tombros and Andreas Geppert

Department of Information Technology, University of Zurich
{tombros, geppert}@ifi.unizh.ch

Abstract. This paper describes an approach towards the systematic
composition of workflow systems using an event-based approach. The
complex nature of workflow systems and the heterogeneity of the ap-
plication systems which are integrated require powerful general purpose
composition mechanisms. Furthermore, it is advantageous if the function-
ality of the underlying workflow management system can be adapted to
the type of workflow applications for which a system is intended. We
propose an extensible event-based architectural framework for workflow
systems which allows the composition of workflow systems by reuse and
customization of reactive components representing workflow system pro-
cessing entities. We also consider the structure of a build-time repository
to support this architectural framework.

1 Introduction

Traditional software development methods do not meet the evolving require-
ments of heterogeneous and process-oriented systems. A principal open problem
remains the systematic development of workflow systems (WFS) based on ap-
propriate abstractions. The current state of WFS technology has not yet reached
consensus on the proper component abstractions for the workflow domain. In-
stead, there is a proliferation of research proposing the benefits of particular
workflow management concepts. Some efforts, such as those of the Workflow
Management Coalition and the OMG Workflow Workgroup [I6], attempt to
converge various ideas in the workflow management community. Still, however,
WES development remains a largely ad hoc effort done on a case-by-case basis.

A methodical approach to WFS development utilizes component-based en-
gineering, in which new WFS are composed out of already existing, reusable
artifacts. Component-based WFS development is however in a very early stage.
This is not only an inherent problem of workflow management technology but
can also be explained in the general context of system composition research.
Based on general observations concerning software composition [12], we consider
the following facts as especially relevant for WFS development:

— It is not clear how domain knowledge should be captured and formalized
to support component-oriented development. Especially in the domain of
workflow management, there has been little or no research in this issue. The
definition of reuse-oriented domain-specific models is still an ongoing process.

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 325-339] 2000.
© Springer-Verlag Berlin Heidelberg 2000

326 D. Tombros and A. Geppert

— There is no synergy between analysis and design. The relation between work-
flow specification and workflow implementation has not been considered un-
der the perspective of reusability. For example, most workflow specification
languages provide reuse mechanisms for workflow artifacts, but do not con-
sider the reuse of processing entity (PE) implementations. The mapping of
workflow specifications to WFS implementation is ad hoc.

— There are no generally accepted methods for the design of frameworks sup-
porting component-based WFS development. In the domain of workflow
management an architectural perspective and the resulting framework-based
development approach is in a very early stage.

— There are no software tools which facilitate component-oriented WFS devel-
opment. The support provided by workflow management systems (WFMS)
in this respect is limited to mere workflow specification.

We follow a composition-based approach for WFS built around an appro-
priate architectural framework. The approach supports the architecture-centric
development and extension of WFS. It consists of the following elements:

— a lightweight but extensible generic event-based workflow execution and ap-
plication integration platform:;

— an approach for the analysis of the WFS architecture and the classification
of WFS components. We consider components as self-contained units of ab-
straction, with defined connection interfaces, and an individual life cycle (see,
e.g., [I2[T9] for more elaborate discussions of the nature of components);

— a domain-specific metamodel for the description of the architecture and func-
tionality of the intended WFS;

— a framework for the composition of WFS out of pre-existing parameterized

component templates; and

support for the reuse-based composition of WFS through an architecture ar-

tifact repository and the event-based execution platform. This infrastructure

provides a workflow specification execution system.

In this paper, we concentrate on the domain-specific metamodel and the
compositional framework for WFS. Due to space considerations, we describe
only briefly the underlying analytical approach and the repository-based reuse
of WFS components.

The remainder of this paper is organized as follows. The next section intro-
duces the WFS development life cycle. Sections Bl and [discuss PE as reusable
components. Section[d presents repository support for WES construction, section
discusses relevant related work, and section [7 concludes the paper.

2 Workflow System Development Life Cycle

In this section, we introduce a WFS development life cycle based on composi-
tion of reusable components. A WFS consists of heterogeneous real-world PE
each of which contributes to the tasks of the WFS in some way. Typical PE

Building Extensible Workflow Systems Using an Event-Based Infrastructure 327

business
process
technical constraints K modeling

technical constraints N N business
processing entity process
analysis models
connotations
v
organizational
workflow modeling
mode!
repositor organization
modeling
[v aspects
connotations workflow
\ modeling ¢
workflow
specification
aspects

component specifications 7/~ workflow
architecture
\ definition

A 4
/" workflow

system
instantiation

component specifications

\1/ workflow system components

workflow
run-time E—
repository oTKIIow data flow
run-time information
system
operation —>
control flow

Fig. 1. Workflow system development lifecycle

include application software, WFS interface software (e.g., worklist interfaces,
or administration tools such as a workflow execution monitor and visualization
tool used as an example in this paper), and human entities. Depending on the
specific workflow application, a different set of PE may be required. These are
represented by appropriate WES components as described below.

In a nutshell, the aim of the WF'S construction process is to compose reusable
representations of the PE together into a coherent system. Any WFS provides
minimal functionality for workflow management. This core WFMS comprises an
event composition, routing and notification subsystem (described in more detail
in [8]), a subsystem for executing event-condition-action rules (ECA rules) [22],
buildtime and runtime repositories, as well as a set of component design and
instantiation tools. Additional components can be added to the WFES as required,
organizational aspects of the PE can be defined, workflow specifications can be
designed, and eventually, workflow instances can be created and enacted. The
lifecycle consists of the following groups of activities (see Fig.).

328 D. Tombros and A. Geppert

We assume that a project initiation phase precedes the entire lifecycle. In
this phase, the goals with respect to the developed WFS are set. The project
management team determines which business processes will be automated by
the WFS. An appropriate business process modeling (BPM) formalism should
be selected at this point. It is important however, that a mapping is provided
by the BPM environment to the target workflow specification language.

Processing Entity Analysis and Integration. PE are integrated in a WF'S; they
either extend the functionality of the core WFS or are the resources that carry
out the business-related workflow tasks. For example, in the course of our work
we were able to augment the core WFS with workflow monitoring and event
auditing components. The analysis and integration of PE includes the compo-
sition of a reactive component template which represents the PE based on the
analysis of its characteristics. These characteristics determine the properties of
the component that represents the PE. For each PE it is defined which workflow
tasks (services) it provides to its clients, which are in general other PE.

Organizational Modeling. Once new PE (i.e., their representing component
templates) have been added to the WFS, organizational aspects such as specific
attributes (e.g. costs per execution time unit) and relationships between PE
(e.g. is-supervisor-of relationships among human PE) may have to be modeled to
support the definition of task assignment rules refering to organizational aspects.

Workflow Modeling. New workflow specifications can be constructed by ref-
erencing and using information available about PE and other workflow specifica-
tions. The use of an appropriate workflow specification language which supports
the reuse of process definition artifacts is required. For the monitoring compo-
nent mentioned above, its behavior was specified such that it should be notified
of the occurrence of the events which the WFS administrator wanted to monitor.

Workflow Architecture Definition. The next phase involves the development
of a homogeneous event-based architecture model of the WFS. The architectural
elements are summarized in Table[I] where the correspondence between relevant
facts from the real world, their respective aspect in workflow specification, and
finally the provided architectural abstraction is depicted.

Workflow System Instantiation and Enactment. New instances of the defined
workflow component templates can be created. These create and enact the de-
fined workflow models.

Multiple iterations of these above steps may be required to compose a WFS.

3 Analysis of Workflow System Architecture

Successful composition-based construction of WFS requires appropriate abstrac-
tions as well as the maintenance of sufficient information about their function-
ality and semantics To that end, we represent explicitly the integration-related
properties characterizing a PE type with respect to the WFS under construc-
tion. These properties are termed processing entity connotations (see Fig.).
Components and connectors [I] are implementation level constructs defining the
structure and communication paths of a WFS. PE connotations associate the

Building Extensible Workflow Systems Using an Event-Based Infrastructure 329

Table 1. Workflow system architecture definition elements

Business process model aspect [Workflow modeling aspect [Architectural abstraction
information system components workflow system reactive component templates,
and connectors architectural structure event type registrations
organizational constraints under | organizational model organizational relations
which the workflow is executed

PE functionality workflow tasks services

used in business process

activity execution sequence control flow ECA-rules

activity data dependencies data flow event parameters
business rules task assignment suitability, dispatching
human role, PE behavior ECA-rules, rule packages

application functionality

properties of the PE type with the characteristics of the components and con-
nectors needed to adequately represent PE in the WFS.

- - characterizes
Processing Entity Type — Connotation
(. consfrains
cons‘tralns ‘
instance_of
Connector | | Component
instance_of
; - integrates ‘
Processing Entity Type Component Instance (EOB)

0

‘ Workflow System ‘

Fig. 2. Relationships between workflow system composition elements (in UML)

The definition of PE connotations is based on a faceted classification scheme
[15] and consists of so-called traits (properties of PE). Unlike the pure faceted
classification, leafs of the classification trait trees may be either simple terms or
expressions. Simple terms are chosen from the standard vocabulary of the do-
main, while expressions describe a dependency to other elements of the WFS
architecture—elements which are not necessarily components. Such elements
may be defined outside the scope of the classification scheme (e.g., in the work-
flow model). The classification serves three main purposes: (i) determination of
the required properties of the components used for PE representation, (ii) analy-
sis of the integration issues facing the composer of a WFS, and (iii) architecture-
centric based development and reuse [3].

330 D. Tombros and A. Geppert

Table 2. Connotation of the EVE monitoring interface component

Participation Optionality |optional

Multiplicity |max(num_of(EVE_server))
Dependency |local EVE_server, defined(MonitorWF)
Functionality |user interaction, display, notification

Implementation||Automation |interactive

State yes

Server type |concurrent

Guarantee |none

Access point |in, out: implicit-triggering (EVE messages)

Participation traits characterize a PE’s role in a particular WFS. They define
architectural constraints on the WFS:

— Optionality refers to the requirements concerning the existence of the PE.
The implications of the trait concern the existential properties of component
instances representing the PE in the WFS.

— Multiplicity refers to the number of instances of the PE type which may be
concurrently active. This affects the required task assignment protocols.

— Dependency refers to the assumptions made by the PE for its operation with
respect to the existence of other PE and provided services.

— Functionality provides an implementation-independent characterization of
the PE’s role in the WFS.

Implementation traits constrain the components of the WFS which repre-
sent /implement the PE. They include its degree of automation, its ability to
maintain information about its process execution context and across workflows,
server-related properties, execution guarantees and transaction support, and ac-
cess points, i.e., the mechanisms of interaction that the PE supports (the incom-
ing interface) and the mechanisms of interaction it uses (the outgoing interface).

Additional traits may be required and even within traits which seem com-
plete, i.e., all except those concerning interface and service, additional terms may
be required. Such modifications and additions are not excluded by the classifica-
tion scheme. However, the implications and effects they have on the architectural
framework will have to be considered.

An example of a connotation for a monitoring interface component is pre-
sented in Table [The participation traits define that the component is not
required for system operation and may be instantiated at most once for each
server in the system. Its operation depends on the operation of the server for
which it is instantiated and on the definition of a monitoring workflow type
defining monitoring services. The component provides user interaction, display,
and notification functionality.

Building Extensible Workflow Systems Using an Event-Based Infrastructure 331

4 Reusable Workflow System Components

Processing entities are represented on the architectural level by instances of
composite reactive components called event occurrence brokers (EOB). They
execute workflow tasks as a reaction to workflow-relevant situations in their
environment. The occurrence of these situations is manifested by events. EOB
generate and react to WFS events, and map their meaning to concepts present in
the vocabulary of the respective PE. In other words, they provide a homogeneous
representation of heterogeneous real-world PE and provide the PE functionality
to the WFS-internal miniworld.

4.1 Events and Services in Workflow Systems

The most flexible and loose model of integration is asynchronous interaction
based on events. An event-based approach to data, control, and process integra-
tion in a WFS architecture has many advantages [2]. Hence, in our approach
events are the sole component integration and interaction mechanism, i.e, they
are the only available type of connectors between EOB in a WFS. Events are
used for the following purposes:

— signaling of relevant workflow situations and definition of control flow,
— invocation of functionality provided by PE, and
— exchange of data between PE.

The event typology is a tree subdivided into primitive and composite events.
Primitive events belong to the following types: time events, interaction events,
and EOB internal events. EOB internal events are relevant only for the imple-
mentation of EOB-internal communication.

Time events can be absolute, relative, or periodic. Absolute time events ex-
press real-time points and are defined in terms of a time specification expressing
a date and time recorded by a local clock site.

The exchange of coordination information between EOB takes place by the
signaling and reaction to EOB interaction events. Thus the semantics of EOB
interaction events are associated with execution states of workflows. The manifes-
tation of these events are event messages which are forwarded by the underlying
communication infrastructure to EOB which have a registered interest in these
events, called the event listeners. Interaction events are service requests, confir-
mations, replies, and exceptions. These events contain system-provided (implicit)
and user-provided parameters. Through the use of service request events the exe-
cution of services by EOB can be triggered. The initiation of service execution is
signalled by request confirmation events. Finally, the results of service execution
can be communicated to other EOB by service reply events.

The special meaning of exception event types with respect to the other event
types consist in the fact that for each such type defined, a corresponding excep-
tion handling component must be defined, i.e., an EOB which has some prede-
fined reaction on the event occurrence.

332 D. Tombros and A. Geppert

Composite events are used to express complex workflow situations. As with
primitive events, we distinguish between event types and occurrences of these
types. Composite event types are defined by applying unary and binary event
operators to event types. The event operators include conjunction, sequence,
exclusive-or and inclusive-or disjunction, repetition, iteration, and negation. The
main extension is the concurrency operator which is meaningful only in the con-
text of distributed systems. Composite events have formal semantics described
in detail in [20]. It is important to mention that workflow execution based on
events produces an event history.

Services are defined based on the function traits of PE. A service is pro-
vided by one or more EOB in the WFS called the server(s) in the context of
a service execution. It can be requested by other EOB which are the clients in
the context of that execution. Services define the PE capabilities assumed for
a given WFS, independent of the EOB defined in the system. They represent
the interface between workflow specification and WFS architecture and can be
leveraged to workflow task types declared in a workflow schema. In other words,
workflow specification makes use of the service abstraction in order to define the
functionality of desired processing steps.

A service identifies an operational interface with a predefined set of parame-
ters which are provided by the client EOB during service request. It also identifies
a set of replies which express the possible outcomes of a service execution. These
replies may have various parameters provided by the server EOB.

4.2 Event Occurrence Brokers

An EOB is an instance of a composite component template built from reusable
subcomponents which implement parts of the EOB functionality and commu-
nicate through an internal message bus. The type of the EOB determines its
subcomponents, their properties, and the events they understand. Every EOB
includes at least the following subcomponents: an event delivery (EDI) and an
event posting (EPI) interface, a persistent state management subcomponent, an
ECA rule management subcomponent, and a PE management subcomponent.
This structure is depicted in Fig. Bl

The component instances composing a WFS communicate by broadcasting
event messages over a reliable shared message bus which provides a single mes-
sage broadcast operation. Thus, all component instances connected to the mes-
sage bus are notified of an event message and react accordingly. The set of
messages each component understands is fixed for each subcomponent type.
The general EOB-internal message structure is the following: (message_name,
message_origin, message_parameters). The message parameters are typed using
the OMG Interface Definition Language [13]. Messages can be sent either in a
synchronous or asynchronous mode; in the first case the message sender expects
a response message with the output parameters, in the second case the message
sender can continue processing.

An EOB contains a state manager (STATEMAN) implemented over some
storage system not further specified. The STATEMAN is responsible for the

Building Extensible Workflow Systems Using an Event-Based Infrastructure 333

EOB

(2) State i
Manager N
N

~ _ MessageService
(6) PE L N
Manager RN (1) EOB message
bus
_ 7
(3) ECA -7 EventPosting
Manager
- - - - > (5) EPI

~ o EventDelivery

Fig. 3. General structure of an EOB and its subcomponents

persistent storage of the EOB state objects. Persistence is achieved by a system-
provided persistent root whose constituents, i.e., composite objects declared in
the EOB state persist automatically.

Every EOB contains a rule management (ECAMAN) subsystem responsible
for management and execution of ECA rules expressing the behavior of EOB.
ECA rules are used to implement the following functionality:

Initiation of service execution by PE. Workflow service specification does not
always correspond directly to the operations or services provided by PE. For
example, a workflow service may be implemented by a series of database queries
and the subsequent evaluation of the results. This processing logic is described
in ECA rules which bridge the semantic gap between application operations and
services provided (by EOB) in the WFS.

Enforcement of task execution ordering and guarding of task execution con-
ditions. The workflow schema expresses various dependencies among workflow
tasks. These dependencies are expressed by composite events and by the rule ac-
tions which generate new events which eventually trigger the subsequent tasks.
ECA rule conditions can be used to express task execution constraints which can
be evaluated against task execution results available through event parameters.

Ezxception and failure handling. ECA rules are used to specify failure han-
dling. They can also express recovery policies.

Rule execution by the ECAMAN is performed as follows:

1. An event arrives at the delivery interface of the ECAMAN.

2. At some point in time, the ECAMAN process examines the oldest event in
the delivery queue by sending EDI the message peek(), and determines the
set of active rules that are fired by this event.

334 D. Tombros and A. Geppert

3. All fired rules are inserted into a persistent pending evaluation queue, where
the relative order of the rules depends on the defined rule priorities. If no
rule priorities are defined, the queueing order depends on the specification
order or rule creation timestamp (starting from the oldest rule first).

4. The conditions of the rules in the queue are evaluated sequentially. For each
rule whose condition is true, the action will have to be executed.

5. A reference to such rules is inserted into a persistent pending execution
queue. Rules whose conditions are evaluated to false are removed from the
pending evaluation queue.

6. The event is removed from the EDI by sending it a consume() message. Each
rule in the pending execution queue is then examined as follows: if the event
is a request and the rule action produces a reply event, then a confirmation
event is posted to the WFS through the EPI with the message put(). This
actually guarantees that a reply or exception must be generated by the EOB
at some later time. Although only a single rule can generate a reply, multiple
rules may be triggered by the same request, without however producing a
subsequent reply.

7. The rule actions in the pending execution queue are executed sequentially.
After action execution is completed, each rule is removed from the pending
execution queue. If an action produces a reply event, this is posted to the
WFEFS through the EPI.

8. When the pending execution queue is empty, the next event can be examined
from the delivery interface.

Interaction with PE is implemented by the PE management (PEMAN) sub-
system. In general, the PEMAN implements the access to the functionality of
PE by using some wrapping technique to access the external systems; it may
alternatively implement the desired functionality itself in some programming
language without aceesing other software. The PEMAN however understands
a set of operations which are called in ECA rule actions. It implements the
automation and access point traits of the PE connotation (see above).

As already mentioned, the PEMAN may wrap an external system (e.g., a
database application), implement system functionality (e.g., store an event log),
or provide a user interface (e.g., the monitoring interface). When the PEMAN
directly implements desired functionality, the WFS infrastructure plays the role
of a white-box PE for a workflow task. The implementation of different wrapping
techniques is a problem which has been addressed by a large body of research;
in our work we concentrate on the issues relevant to the use of these wrapping
techniques within a reactive component-based WFS architecture.

In the case of the monitoring EOB, the component has to be registered as a
listener to all events which denote workflow situations to be monitored (e.g. all
service request events). It reacts to occurrences of these events by changing its
internal state to visualize the execution state in a defined way (e.g. change the
color of a graphical screen element).

Table 3. The EOB typology based on the ECAMAN and PEMAN properties

Building Extensible Workflow Systems Using an Event-Based Infrastructure

EOB type ECAMAN rule |PEMAN functionality
action execution
caller single-threaded |execution of envelope
uni-server single-threaded |implementation of a wrapping method for

an external server system

multi-server

multi-threaded

implementation of a wrapping method for
an external server system

user single-threaded |user worklist management and interaction
group single-threaded |-

uni-extender |single-threaded |implementation
multi-extender|multi-threaded |implementation

335

Depending on the properties of EOB subcomponents, different types of EOB
can be composed. The typology—as determined from the properties of partici-
pating ECAMAN and PEMAN—is presented in Table [3l

A complete WF'S assumes the existence of a specialized EOB called an event
engine (EVE). EVE is a distributed glue system which—among other functions—
provides event composition and notification functionality to EOB according to
the interest they have registered. EVE is described in more detail in [§] and
enforces the semantics described in [20]. EOB in a WFS consume and produce
events. The correctness of their behavior and thus the correctness of the oper-
ation of PE in the WFS can be examined over the resulting event history. An
EOB has behaved correctly iff:

— it has reacted to all requests it is responsible for;

— it has reacted to all situations for which it defines workflow-specific rules and
it is responsible for; and

— it has produced a reply or an exception for each request it has confirmed.

Finally, we note at this point that the correctness of the composed WFS
depends on the maintenance of certain invariants which can be derived from
participation traits of the involved PE. For example, dependency traits describe
completeness constraints on the WE'S architecture which can be examined at the
EOB-implementation level. A detailed discussion of such invariants is omitted
due to space considerations.

5 Repository-Based Composition

The abstractions previously described support the composition of WFS. The
main abstractions—EOB types and their services—can be most closely compared
to software schema abstractions [I0]. Software schemas are formal extensions to
reusable components which, however, emphasize the reuse of abstract algorithms
and data structures. The abstraction specification of the software schema is the

336 D. Tombros and A. Geppert

Opuonahty Optional %\ PE1)@(EOBl)

)@(EOB2)
Requnred

X\
QogManage)@(EOB3)
Multiplicity
<—> object reference
Multiple (D saticobject

Fig. 4. Example of participation traits and PE in the buildtime repository

formal exposition of the algorithms and data structures, in service definitions,
behavior and state of the EOB types. The abstraction realization corresponds
to the source code produced when EOB types are instantiated.

The development of effective and usable repositories for software artifacts
represent an active field of research (e.g., [5]9]). In our work we have attempted to
utilize the experience and results gained from this research within the context of
WEFS composition. The object-oriented build-time repository schema represents
a complete mapping of WFS artifacts as discussed next.

For each participation trait an object of type Participation_Trait exists in the
build-time repository. Its attributes are the terms—which can be composite ob-
jects in themselves—defined for the trait. A term contains a collection of ref-
erences to objects of the type Processing_Entity, each of which can be associated
with an EOB object. This structure is exemplified for two traits in Fig. @

Organizational units defined in the organizational schema are represented by
Organizational_Unit objects. Organizational relationship types are represented as
OrgRel_Type interface types.

Each EOB is represented by a composite EOB object, whose structure and im-
plementation depends on the EOB type. An appropriate interface type is defined
for each EOB type. Subcomponents of an EOB are instances of STATEMAN, PE-
MAN, and ECAMAN types. These are collections of references to State_Variable_Type
objects, Operation_Type objects, and ECA_rule objects. Implementations of PE-
MAN subcomponents are stored as symbolic links to object files.

Services are represented by Service_Interface objects. For each service definition
a corresponding Request and Confirmation event type object is created. For each
reply and exception event type a corresponding Reply and Exception event type
object is created. Confirmation, reply, and exception event type objects have bi-
directional references to their request event type object. Event type parameter
objects are created for each parameter based on corresponding interface types.

An interface type ECA_Rule for ECA rules is defined. It contains references
to the event type objects in its event clause. Composite event types implicitly
defined in the rule event clause are represented by objects of the appropriate
interface type. These are created when the rule object is stored in the repository.
An ECA_Rule also contains references to conditions. Conditions are sequences of
clauses containing object references of the form ({AND|OR|NOT?%}, name, type,

Building Extensible Workflow Systems Using an Event-Based Infrastructure 337

logical_operator) where name and type are references to corresponding objects
defined in the repository, the logical operator must be defined for the type, and
the boolean operators determine the relationship to the previous element. The
precedence order of the expression determines the order of sequence elements.
Actions are sequences of operation_name clauses where operation_name is a name of
an operation type defined for the EOB, or a raise-operation for an event type. The
corresponding objects can be retrieved through predefined queries. Additionally,
actions of extender rules can contain symbolic links to source and object code
files.

During the creation of objects in the build-time repository, some objects
can be in the in-development state (e.g., because they reference names of as
yet undefined objects). This is allowed during the composition phase of a new
WFS. However, when the WFS is instantiated, every participating object must
be in the in-production state. This is ensured by the transactions which create
objects in the runtime system and ensure that the WF'S invariants are respected.
Additional states can be defined if required by the development process.

6 Related Work

The systematic development of workflow management applications has been re-
cently identified as an important research issue. Consequently, some relevant
publications have appeared which advance the issue beyond initial attempts fo-
cussing primarily on the expressiveness of workflow modeling.

In [14], an object-oriented environment for the development of transaction-
based workflow applications is provided whose emphasis lies on the reuse of pro-
cess objects with predefined scheduling and transactional behavior. The—rather
strong—assumption of the existence of a mapping between external operations
and native operations is made.

A stronger emphasis on application integration and the definition of a work-
flow application system architecture is presented in [I7] where a type library for
wrapping different applications is provided which are subsequently implemented
by different execution objects. The provided support is focused on the implemen-
tation aspect and does not consider in depth the systematic reuse of software
components. Similarly, in [21] a framework for the systematic integration of
software tools in process-centered environments by using specialized wrappers is
described. Although the authors only consider software development tools, their
work is applicable to WFS. Compared to our work however, the emphasis lies
on the implementation of the integration mechanisms and not on the definition
of a reusable component-based system architecture.

APEL [7] is a platform-independent environment for the development of
process-oriented systems. It provides modeling abstractions for various aspects
of such systems and maps them to low-level executable formalisms. The initial
emphasis has been in covering a large spectrum of design activities; the authors
state that support for systematic reuse is part of their intended future work.

338 D. Tombros and A. Geppert

Event-based approaches have been advocated by several authors [4J6l11] for
workflow execution and cooperative information systems. In contrast to these ef-
forts, events in our approach are conceptual and architectural constructs (instead
of execution level constructs). In contrast to CoopWARE [11] (which considers
services as the major abstraction), PE and their representation as EOBs are the
most important abstractions on which the composition of WFS is based.

Finally, we refer at this point to emerging component standards and espe-
cially to Enterprise JavaBeans [I8] which proposes a generic component model
for server-side components. This model is bound to a particular programming
language and considers application-neutral implementation aspects. Our ap-
proach, in contrast, adresses domain-specific issues, attempts to provide sup-
port for the development of a specific class of applications, and is explicitly kept
independent from a particular implementation language.

7 Conclusions and Evaluation

The systematic composition of WFS provides an efficient way to construct the
large complex application systems that are typical in the workflow management
domain. In this paper we described an approach for the reuse-based development
of such applications:
— we implement WFS by extending the functionality of a core event-based
integration platform;
— we provide mechanisms for the characterization and classification of PE;
— we provide a component-based architectural framework for WFS; and
— we support a repository-based development process which can benefit from
extensive large-grain component reuse.

Despite the promising initial experiences we have made with our system, it
still remains to be seen if a reuse-based WF'S development approach can become
part of an industrial environment. As the main problems during the introduction
of the approach we anticipate the initial population of the repository with process
entities which actually have a reuse potential and the implementation of PEMAN
components for various applications. Especially the second task is complex and
requires the use of developer resources without an immediately visible return-
on-investment. Furthermore, in our future work we plan to extend the system
to support WFS evolution through workflow component versioning and a set of
well-defined modification operations on EOB. These operations should respect
the invariants defined in the WFS framework.

References

1. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Trans. on Software Engineering and Methodology, 6(3), July 1997.

2. D.J. Barrett, L.A. Clarke, P.L. Tarr, and A.E. Wise. A Framework for Event-
based Software Integration. ACM Trans. on Software Engineering and Methodol-
ogy, 5(4):378-421, October 1996.

Building Extensible Workflow Systems Using an Event-Based Infrastructure 339

3

4.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

. B. Boehm and W. Sherlis. Megaprogramming. In Proc. DARPA Software Tech-
nology Conference, Arlington, VA, April 1992.

F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Deriving Active Rules for Workflow
Management. In Proc. " DEXA, Zurich, Switzerland, September 1996.

P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou. The Software
Information Base: A Server for Reuse. VLDB Journal, 4(1):1-43, 1995.

G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI Event-based Infrastructure
and its Application to the Development of the OPSS WFMS. Technical report,
CEFRIEL, Politecnico di Milano, 1998.

S. Dami, J. Estublier, and M. Amiour. APEL: a Graphical yet Executable For-
malism for Process Modeling. In E. Di Nitto and A. Fugetta, editors, Process
Technology. Kluwer Academic Publishers, 1997.

A. Geppert and D. Tombros. Event-Based Distributed Workflow Execution with
EVE. In Proc. IFIP Int’l Conf. on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware '98), Lake District, England, September 1998.

S. Henninger. An Evolutionary Approach to Constructing Effective Software Reuse
Repositories. ACM Trans. on Software Engineering and Methodology, 6(2), April
1997.

C.W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131-183, 1992.
J. Mylopoulos, A. Gal, K. Kontogiannis, and M. Stanley. A Generic Integration
Architecture for Cooperative Information Systems. In Proc. 15° CooplS, Brussels,
Belgium, June 1996.

O. Nierstrasz and L. Dami. Component-Oriented Software Technology. In O. Nier-
strasz and D. Tsichritzis, editors, Object-Oriented Software Composition, pages
3-28. Prentice Hall, London, 1995.

The Common Object Request Broker: Architecture and Specification. Revision 2.0.
Object Management Group, July 1995.

M. Papazoglou, A. Delis, A. Bouguettaya, and M. Haghjoo. Class Library Support
for Workflow Environments and Applications. IEEE Transactions on Computers,
46(6), June 1997.

R. Prieto-Diaz and P. Freeman. Classifying Software for Reusability. IEEE Soft-
ware, 4(1), 1987.

M.T. Schmidt. The Evolution of Workflow Standards. IEEE Concurrency, June
1999.

H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A General Framework for the
Execution of Heterogenous Programs in Workflow Management Systems. In Proc.
1st CooplS, Brussels, Belgium, June 1996.

Sun Microsystems. Enterprise JavaBeans Specification Version 1.0, March 1998.
C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1997.

D. Tombros, A. Geppert, and K.R. Dittrich. Semantics of Reactive Components in
Event-Driven Workflow Execution. In Proc. CAiSE, Barcelona, Spain, June 1997.
G. Valetto and G. Kaiser. Enveloping Sophisticated Tools into Computer Aided
Software Engineering Environments. Journal of Automated Software Engineering,
3(3-4), 1996.

. J. Widom and S. Ceri. Active Database Systems. Morgan Kaufmann, 1996.

	Introduction
	Workflow System Development Life Cycle
	Analysis of Workflow System Architecture
	Reusable Workflow System Components
	Events and Services in Workflow Systems
	Event Occurrence Brokers

	Repository-Based Composition
	Related Work
	Conclusions and Evaluation

