
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 355-368, 2000
© Springer-Verlag Berlin Heidelberg 2000

Tracing All Around

Gerald Ebner 1 and Hermann Kaindl 2

1 Significant Software, Zeltgasse 14/11, A-1080 Vienna, Austria
ebner@significantsoftware.com

2 Siemens AG Österreich, Geusaugasse 17, A-1030 Vienna, Austria
hermann.kaindl@siemens.at

Abstract. Many information systems are reengineered and redeveloped in
practice, since they are legacy software. Typically, no requirements and design
specifications exist and, therefore, also no traceability information. While es-
pecially the long-term utility of such information is well known, an important
question in reengineering is whether installing it can have immediate benefits
in the course of the reengineering effort. Are there even special benefits of
traceability for reengineering?

In this paper, we argue for completely tracing all around from code over
specifications to code in the course of reverse engineering an existing software
system and its subsequent redesign and redevelopment. Experience from a real-
world project indicates that it can indeed be useful in practice to provide trace-
ability all around also for the developers and in terms of short-term benefits al-
ready during the development. We found several cases where traceability pro-
vided benefits that appear to be specific for reengineering. As a consequence,
we recommend special emphasis on traceability during reengineering legacy
software.

1 Introduction

Given a legacy information system, a usual task in software development is to come
up with a new system that can substitute the old one. Most legacy software in prac-
tice does not have its requirements or design documented. Consequently, no trace-
ability information is available either.

First of all, the requirements and the design of the old information system are to be
reverse-engineered [1], in order to understand what the new software should be all
about. Is it also useful to spend the extra effort for installing traceability information
from the old implementation to the reverse-engineered design and to the require-
ments? What could be gained from that already in the course of the redevelopment?
Shall traceability information be installed also between the requirements and the new
design and the new implementation?

The thesis of this paper is that it is indeed useful to trace “all around”, i.e., to trace
from existing code to design to requirements during reverse engineering, and from
the modified requirements to the new design and the new code during development of

G. Ebner and H. Kaindl356

the successor system. In effect, this means an integration of traceability during re-
verse engineering with (more standard) traceability during forward engineering. In
addition, we argue for having design rationale integrated, where the old and the new
design decisions can be traced as well.

In support of this thesis, we present a case study from a real-world project of re-
engineering a legacy information system in the context of stock trading. The experi-
ence from this case study suggests that in the course of developing new software
based on the code of an existing predecessor system, it provides benefits for the de-
velopers even in the short term to establish traces “all around”. We found several
examples of such benefits from traceability that appear to be specific for
reengineering.

This paper is organized in the following manner. First, we present both our high-
level view and our realization of traceability in reengineering legacy software. Then
we show several cases of how it was useful in the course of a real-world case study.
Finally, we discuss our approach more generally and relate it to previous work on
traceability.

2 Traceability in Reengineering Legacy Software

Since for legacy software little or no documentation exists on the requirements, de-
sign and design rationale, usually also no traceability information is available. This
makes reengineering such software systems particularly hard. Because reengineering
efforts under those conditions are common-place in the software industry, it is im-
portant to investigate how to improve them, e.g., by installing traceability in the
course of reengineering.

Unfortunately, there are severe time and resource constraints in real-world proj-
ects, and establishing traceability takes time and may be costly (unless it can be
automated). So, from a practitioner's perspective an important question is, whether
and how traceability can immediately help in the course of such a reengineering ef-
fort. The trade-off between cost and short-term benefits of traceability seems not to
be well understood yet. We argue in favor of the usefulness of traceability in the
course of both reverse engineering the old software and developing the new software,
since we found empirical evidence for short-term benefits.

2.1 High-Level View

Our high-level view of traceability in reengineering is illustrated in Fig. 1 in a UML
(Unified Modeling Language) class diagram that is enhanced by arrows.1 Tracing all
around in reengineering means to trace from the implementation of the old system to
design and to requirements during reverse engineering, and from the modified re-

1 For the standardized specification of UML see http://www.omg.org.

Tracing All Around 357

quirements to the new design and the implementation of the new system during de-
velopment of the successor system.

Fig. 1. An illustration of tracing all around

Once traceability is explicitly established from the old to the new implementation
via design and requirements specifications, it is indirectly available between those
implementations, as illustrated by the arrow with the broken line. From a theoretical
perspective, these relations are included in the transitive closure of explicitly repre-
sented traceability relations. In practice, this means that no explicit relation between
the implementations needs to be represented, since it can be derived.

In our view, there is only one definition of the requirements necessary, if the old
and the new software are supposed to satisfy more or less the same requirements.
Reverse engineering projects in practice will typically have to deal with at least mi-
nor changes or additions to the requirements [1]. Still, there can be a single require-
ments specification in the course of the reengineering effort, defining both the old and
the new requirements.

2.2 Our Realization

In the case study reported below, the tool RETH (Requirements Engineering Through
Hypertext) was used (for the RETH method and its supporting tool see, e.g., [7]). It
was not only used there for capturing the requirements, but also the software design
(both old and new) and traces. Hyperlinks in the RETH tool served as a means for

Design T raceability Tag

Im plem entation of the O ld S ys tem Im plem entation of the New S ys tem

Design of the N ew System

Requ irem ents Defin it ion

Design of the O ld System

RET H H ypertext L ink

Indirect T raceability

Explic itly Assigned Traceability Inform ation D uring R everse or Forw ard E ngineering

G. Ebner and H. Kaindl358

installing traceability information in our realization, linking various artifacts in the
specification of the requirements with artifacts in the two software designs (also il-
lustrated in Fig. 1). Installing hyperlinks in the RETH tool is inexpensive due to its
semi-automatic support for link generation [9]. The mechanism for generating glos-
sary links can also be utilized, e.g., for generating traceability links, based on textual
references. An immediate advantage of such links is that they can be easily navigated
for following traceability paths.

For technical reasons, however, the source code of the old and the new implemen-
tations had to be kept outside this tool. So, hyperlinks of that sort were infeasible to
install, and we chose to use traceability tags in our realization of traceability among
design artifacts and source code (see also Fig. 1). Installing traceability tags just
means to insert a text string. For generating unique names of tags, we provided rudi-
mentary tool support.

Fig. 2 illustrates in a more detailed UML class diagram the metamodel used, i.e.,
the model of how the models look like during reengineering and forward engineering.
Since the traceability metamodels in the literature as discussed below are not suffi-
ciently specific, we developed one ourselves. The top part (showing the object classes
in white) is the previously published metamodel of RETH for requirements engi-
neering [7, 8] (aggregated here by Requirements Definition). The other object classes
(shown in grey) extend it for covering also design (shown lighter) and implementa-
tion artifacts (shown darker), including a simple representation of design rationale
(Design Decision, which is part of Design). As indicated by Fig. 1 above, for
reengineering those parts of the metamodel are instantiated twice: for the old and the
new design and implementation.

Associations named Trace in the metamodel represent between which object
classes traces are to be installed:
• between Requirements Definition and Design;2

• between several parts of Design and Implementation.
Especially for the latter, the granularity of traceability information is of practical

importance. According to our experience, it should not be too coarse, e.g., to a
source code module as a whole. But if it is too fine-grained, e.g., to each statement in
the source code, then it becomes too expensive to install. As a balance, we chose to
have a traceability tag assigned to each procedure of the source code as well as to
each table definition, database trigger and stored procedure of the database script.
This can be done with reasonable effort by the developers, and it can still be useful
(see the experience from the case study reported below).

The representation of design rationale is also a practical compromise. Each Design

Decision just describes the Design Chosen and the Alternatives Considered, since more
elaborate structures like those in [12] would probably not have been maintained under
the given time constraints of the given project. It was important, however, that the
design decisions are traceable.

2 In order not to clutter this diagram, we abstract here from the details of where exactly hyper-

links are installed.

Tracing All Around 359

Fig. 2. The metamodel

Quality Requirement
<<stereotype>>

Functional Requirement
<<stereotype>>

+constrains

Scenario
<<stereotype>>

+constrains

+makes possible

+fulfills

Implementation
<<stereotype>>

Database Script
<<stereotype>>

Source Code File
<<stereotype>>

Goal

Statement

<<stereotype>>

+is achieved by

+achieves

Domain Object

Description

<<stereotype>>

Requirement

Statement
Further Explanation
Source
Priority
Reason(s)

<<stereotype>>

+conflicts with

+is similar to

Design Goal

Statement

<<stereotype>>
Design Object

Description

<<stereotype>>

Correspondence

Trace

Trace

Design Scenario
Statement
Alternatives Considered

<<stereotype>>

+justifies

+considers

Trace

Trace

Design Decision
Design Chosen
Alternatives Considered

<<stereotype>>

+affects

+justifies

+considers

Trace

Trace

Design
<<stereotype>>

Requirements Definition
<<stereotype>>

Trace

G. Ebner and H. Kaindl360

3 A Case Study

The case study reported here was a real-world reengineering effort of legacy software
in the context of stock trading. The installation and use of traceability happened in
“real-time” during the project. We describe the given task, the various roles in the
case study and, in more detail, examples of concrete project experience. However,
we focus exclusively on traceability and in particular its benefits for the developers of
the new software.

3.1 The Given Task

More precisely, the given task was reengineering of the Trade Bridge software, which
primarily makes continuous checks for consistency of received stock data and distrib-
utes those data to other software involved. Fig. 3 illustrates on an abstract level how
the Trade Bridge software interfaces with those other software systems. The Front
Office System delivers trade data, position data, etc. to Trade Bridge, where they are
stored in a repository (implemented as a relational database). Trade Bridge checks
those data for consistency and delivers the resulting data to the Mid Office System,
the Risk Management System, the Ticket Printer and the Back Office System.

Fig. 3. Trade Bridge and its collaborations with other software

While for the other collaborations this short sketch should be sufficient in the con-
text of this paper, we need to provide a few details of the collaboration between the
Front Office System and Trade Bridge. As shown in the UML collaboration diagram
in Fig. 3, the control flow happens from Trade Bridge to the Front Office System,
while the data flow is the other way round. In fact, Trade Bridge is polling with que-
ries for trade data, where both the queries and the data are transferred in ASCII text.
The queries and the data transfer are asynchronous and, the response is on average in

System

Mid Office
System

System

Ticket
Printer

Back Office
System

Bridge

1: Query

2: Front Off ice Data

Shows a Control Flow

Shows a Data Flow

Front Off ice Trade

Risk Management

Tracing All Around 361

the order of minutes. It is also important to note, that transferring too much becomes
a performance issue.

Fig. 4 illustrates the main part of the information model of the Trade Bridge soft-
ware, i.e., an implementation-independent model of the data as viewed from outside
the boundary of this software. The concrete data model is based on it, but optimized
for its implementation in a relational database, that serves as a repository. The most
important part of this model for the purpose of understanding the case study is the
association between Trade Data and Additional Trade Data, where the former reference
the latter. The Front Office System delivers those data asynchronously.

Fig. 4. Part of the Information Model of Trade Bridge

3.2 Various Roles in This Case Study

As usual in a software development project, several people participated in various
roles. Since we describe our case study in terms of these roles, let us define them
here:
• users:

brokers and risk managers use the overall system, where Trade Bridge is an im-
portant part;

• developers of the old Trade Bridge software:
they left the company and the project one month after its start;

• project leader for the reengineering effort:
she was not involved in the development of the old Trade Bridge software;

• requirements engineer for the reengineering effort:
the first author of this paper, who was also not involved originally;

• chief designer for the reengineering effort:
same as the requirements engineer;

F ront O ffic e D a ta

P os ition D a ta

S ettlem ent D a taIns trum ent D ataC ounterpart D a ta P or tfo lio D a ta

Additiona l T rade D ataT rade D ata

+ refe renc es

G. Ebner and H. Kaindl362

• developers of the new Trade Bridge software:
including the first author of this paper; no single developer of the new software
was involved in the development of the old Trade Bridge software.

3.3 Concrete Project Experience

In order to make the concrete project experience understandable, let us shortly sketch
first the major approach taken in the course of reengineering Trade Bridge. Immedi-
ately after the start of the project, the requirements engineer acquired information
about the requirements on the old software from its developers, rather than starting
with design recovery based on the given implementation (and its source code). How-
ever, after the developers of the old software were not available anymore, everything
(including requirements) had to be recovered.

The requirements engineer represented the requirements in the RETH tool and, in
his role as the chief designer, he tried to figure out the connection of those require-
ments acquired from the developers with the implementation of the old software. He
represented the resulting design information and the design rationale in the RETH
tool (according to the metamodel illustrated above). The design rationale was partly
acquired from the developers of the old software and partly hypothesized by the chief
designer. He also installed traceability information immediately in the form of hy-
pertext links and traceability tags, both during reverse engineering and forward engi-
neering. In the following, we demonstrate immediate benefits of having this trace-
ability information available through concrete examples.

Traceability in the Context of Additional Requirements
First we present an example, where traceability helped in the context of additional
requirements. For the new Trade Bridge software, the users required additional func-
tionality, which was captured, e.g., in the following requirement.

Functional Requirement Synchronization of Referenced Counterpart Data:

• Statement:
Trade Bridge shall transfer trade data to the Mid Office System only together with
the corresponding counterpart data as delivered from the Front Office System, i.e.,
Trade Bridge must synchronize those data delivered asynchronously from the
Front Office System.

As an immediate reaction to this additional requirement, the project leader thought
about a rather straight-forward solution, to request all those data in one query that
belong together. Instead of having to study this approach in detail, it was sufficient to
consider the design rationale that was already reverse-engineered before with the help
of the developers of the old software. In order to do so, however, it was necessary to
locate this information.

 First of all, the existing functionality related to the additional one was located eas-
ily in the hierarchically ordered requirements on the old software:

Tracing All Around 363

Automatically Transferring Trades
Transferring Referenced Additional Trade Data

Then, through the traceability links in the form of hyperlinks, it was easy and effi-
cient to locate the related design information and design rationale:

Design Decision Determine which Additional Trade Data to Request:

• Design Chosen
- Triggers that fire after the insert of new trades into the Trade Bridge database fill
special Get tables with the key information of the given data.
- After all trades have been stored in the database, the Trade Reader subsystem
asks the Get tables which additional trade data it shall request from the Front Of-
fice System (the number of tries is configurable) and processes these transfers.
- The number of tries in the appropriate record of the corresponding Get table is
incremented.
- The count of additional trade data items that will be requested from the Front Of-
fice System at once is configurable.
- When additional trade data is actually inserted in the Trade Bridge database, trig-
gers delete the corresponding entries in the Get table.

• Alternatives Considered
1. Request trade data and all associated additional trade data at once from the Front
Office System by using a join query:
(+) No inconsistent data of the Front Office System is ever stored in the Trade
Bridge database.
(-) Inefficient: A given instrument or portfolio is referenced by many trades so that
the same data will be requested from the Front Office System many times.
(-) Unreliable: During the day time (when the Front Office System suffers from
heavy work load) it is likely that huge join queries cannot be processed by the
Front Office System.
2. Request all trade data and all additional trade data that was altered or inserted in
the Front Office System during a given time frame. A prerequisite is that first all
„old” front office data must be stored in the Trade Bridge database.
(+) A consistent state of the Trade Bridge database can be easily maintained with-
out any effort of maintaining Get tables.
(-) Too much data would be transferred to the Trade Bridge system because a lot
of the instrument and portfolio data of the Front Office System is not of interest.
(-) The performance of the resulting queries that have to be executed by the Front
Office System would be very poor (in the current installation of the Front Office
System TOO poor) because the information of the update time of each record is
not indexed in the database of the Front Office System.

In fact, the alternative 1 already stored here corresponds to the design solution in
question. Due to its main disadvantage given here as well (poor performance), it was
easily and quickly rejected, based on this rationale previously acquired from the de-
velopers of the old Trade Bridge software.

G. Ebner and H. Kaindl364

Still, another solution had to be found for the new software. Rethinking the chosen
design of the old software as given here led to a change and enhancement of the de-
sign for the new software, fitting the additional requirement:

Design Decision Synchronizing Counterpart Data:

• Design Chosen
- Triggers that fire after the insert of new trades into the Trade Bridge database fill
a special Trade Sync Table with the ID of the given trade and the counterpart syn-
chronization flag set to „N”.
- The needed counterpart data is retrieved from the Front Office System via the
Get mechanism.
- When counterpart data is actually inserted into the Trade Bridge database, trig-
gers set the counterpart synchronization flag of the Trade Sync Table of all trades
referencing the given counterpart data to “Y”.
- Trade Bridge applications that need synchronized counterpart data must query
the Counterpart Sync Flag of the Trade Sync Table before using the data of a cer-
tain trade.

While in the RETH tool there are many similar links, we show here just an exam-
ple. The underlined string “Trade Sync Table” is in the RETH tool the source of a
hyperlink from such a description to a referenced design object:

Design Object Trade Sync Table:

• Description:
The Trade Sync Table contains synchronization flags for all kinds of additional
trade data (i.e., a counterpart, an instrument, a portfolio and a settlement synchro-
nization flag) while only the first of the four is actually used. Flags may contain
“Y” (synchronized) or “N” (not synchronized). The primary key of the table is the
trade ID field and it is also a foreign key on the trades table.

Finally, it was also easy to locate the related parts of the implementation with the
help of the traceability tags.

Traceability for Improving Completeness
The next example highlights the utility of traceability for improving completeness in
the sense, whether the new source code covers everything covered by the old code.
The criterion for coverage of the old code was defined in such a way, that traceability
tags must be installed at least according to the granularity described above. That is,
there must be a traceability tag in each procedure of the source code as well as in each
table definition, database trigger and stored procedure of the database script (con-
taining some 20,000 lines of code).

After the reverse engineering effort, developers of the new software made a code
inspection which revealed, e.g., that out of hundreds of database triggers, slightly
more than a dozen did not yet have traceability tags attached. One of those (for fill-
ing a table of instrument data) was particularly important, since its absence in the new
software could have lead to recommendations of the risk management based on
wrong data.

Tracing All Around 365

In more detail, the requirement originally reverse-engineered from the incomplete
view of the code was the following:

Functional Requirement Transferring Referenced Additional Trade Data:

• Statement:
Trade Bridge shall request Additional Trade Data from the Front Office System
when Trade Data was captured from the Front Office System which references
portfolios, instruments, etc. which are not yet stored in the Trade Bridge reposi-
tory.

The over-generalized assumption was that for all kinds of additional trade data the
data transfer from the Front Office System to Trade Bridge can be reduced, whenever
data are already in the repository of Trade Bridge. For instrument data, however, the
corresponding check was commented out in the code of the old software. This was
found in the course of the focused code inspections of those database triggers that had
not yet a traceability tag assigned. The rationale for this implementation was recov-
ered from risk managers: during the period since the instrument data were stored in
the Trade Bridge repository, they may have changed!

After the traceability tags have helped to find that out, the wrong requirement was
corrected so that it takes this exception into account. So, also the design of the new
software and its implementation take it into account and, a major error in the new
Trade Bridge software was avoided.

Traceability for Diagnosing Errors
As a final example, let us illustrate the usefulness of traceability for diagnosing errors.
While the granularity of installed traceability tags was useful in the above example, it
turned out to be insufficient in another case.

After the implementation of the new software, tests revealed a performance prob-
lem. The Front Office System interfacing with it was unable to deliver the amount of
data requested by the new Trade Bridge software. Why does that not happen with the
old Trade Bridge software?

The traceability installed all around made it easy to answer that question quickly,
since it allowed finding immediately the corresponding parts in the old and the new
implementation. In order to avoid this performance problem, the old software re-
quested only five data records each per request, which is well hidden in the code of
the following old procedure:

function MakeInstrumentQuery(): string;
// determine which instrument data to request from the
// Front Office System and build the “where” part of
// the query string °41°
begin
...
SqlExecute(’select distinct ID into strID from
Instrument_Get where tries < 10 order by tries’);
while SqlFetch() and (nLines < 5) do begin

G. Ebner and H. Kaindl366

strQuery = strQuery + strID + ’, ’;
nLines = nLines + 1;

end;
if (nLines > 0) then
...

end;

The critical condition is “and (nLines < 5)”. This is clearly below the
granularity of the tags, where “°41°” is the traceability tag for this procedure.

Still, finding the correct diagnosis for this problem making use of the traceability
information was possible within one hour, while it might otherwise have taken days.
So, while the granularity of traceability information was insufficient to guarantee
sufficient completeness, this information was still very helpful to solve a problem
caused by an incomplete re-implementation.

4 Discussion

So, there is a trade-off in the granularity of traceability information. It relates to the
more general trade-off between cost of installing and maintaining traceability infor-
mation vs. benefits from having it available. Common wisdom suggests that trace-
ability should pay off at least in the long run, including maintenance.

Unfortunately, the success or failure of a software development or reengineering
project is not usually determined in practice from whether it provides, e.g., traces in
order to facilitate maintenance later. The budget often just covers the cost to deliver a
running system and, cost arising later from missing traces are outside the scope. This
looks very short-sighted and it is regrettable from a higher perspective. However,
many software systems developed are never deployed for several reasons. So, the
focus is on delivering a running system on time so that it will be deployed, rather than
on preparing for an uncertain future where other people will have to take care of the
cost during maintenance, if at all.

That is why we argue for a distinction between immediate and long-term benefits.
While we cannot provide quantitative data from our case study that would show al-
ready that traceability paid off within the reengineering effort, we observed and de-
scribed cases where it provided benefits already in its course. In fact, we found also
additional cases where traceability was useful in the short term. These were particu-
larly related to changes in the requirements and the software design. In all those
cases, the developers got more or less immediate reward for their effort of installing
traces. Due to this reward, the motivation of the developers was increased to do this
„extra” work, and this may finally result also in long-term benefits during mainte-
nance.

Tracing All Around 367

5 Related Work

Within the last years, there was increasing focus on pre-requirements traceability and
extended requirements traceability, i.e., on where the requirements come from in the
first place [5, 6]. While the RETH tool can also support this aspect of traceability
through hypermedia, it was not a major focus in the course of this case study.

Traceability among requirements, primarily from higher level to lower level re-
quirements, is considered already for a long time and much better supported by tools
[4, 10]. The tracing tool TOOR presented in [10] shares with our approach that it
treats requirements and relations among them as objects and, that it can be applied to
any other artifacts produced in a software project as well.

In [11], a requirements traceability metamodel is presented that also covers design
and implementation. It is more comprehensive than ours presented here, since it
includes also stakeholders, etc. However, our metamodel as illustrated in Fig. 2 is
more concrete in specifying specialized meta-classes and their relationships for the
various artifacts used to represent requirements, design and implementation. For the
case study presented in [11], installing all those traces according to their metamodel
was reported to be very expensive. They did not report, however, on short-term
benefits or specific utility of traceability in reengineering.

There is much literature available on design rationale (see, e.g., [11, 12]), that pre-
sents quite elaborate argumentation structures. While such structures could be easily
represented using hypertext in the RETH tool, according to our experience it would
be too expensive to maintain them under the conditions of this real-world project. So,
we found a practical compromise with the inclusion of a simple representation for
design rationale and its integration with the overall traceability supported.

Recently, a special section in CACM (edited by Jarke) included several articles
dedicated to more advanced proposals for traceability. In [3], it is argued for project-
specific trace definitions and guidance of stakeholders in trace capture and usage
(including enforcement). Our tool support for installing traces through the automatic
link-generation facility of the RETH tool is a small but important step towards mak-
ing life easier for those who are supposed to install traces in practice. In [2], it is
argued for improving requirements traceability beyond the systems facet to the group
collaboration facet and to the organizational facet of information systems.

So, this sketch of important work shows many aspects and a rather comprehensive
view of traceability. Still, we could not find much in the literature about the trade-off
between cost and utility of traceability, and especially not about short-term benefits.
In current practice, however, it is very important to show the developers certain re-
wards to be gained immediately from installing traces. Also, we found no mention of
specific utility of tracing during reverse engineering or even of tracing all around.

6 Conclusion

We observed special benefits of traceability for reengineering that we could not find
in the literature. Partly, those benefits require tracing all around. The major lesson

G. Ebner and H. Kaindl368

learned from several examples in our real-world case study is, however, that such
traceability information can already help the developers (of the new system) in the
course of reengineering legacy software. Such short-term benefits for the developers
from applying this form of traceability can motivate them to provide traces that may
even result in further long-term benefits later.

Acknowledgments

Mario Hailing and Vahan Harput provided useful comments to an earlier draft of this
paper. Finally, we acknowledge the cooperation by the project members in the course
of this reengineering effort.

References

1. E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxonomy.
IEEE Software, pages 13–17, January 1990.

2. G. De Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, J.W. Schmidt, C. Woo, and
E. Yu. A three-faceted view of information systems. Communications of the ACM,
41(12):64–70, December 1998.

3. R. Dömges and K. Pohl. Adapting traceability environments to project-specific needs.
Communications of the ACM, 41(12):54–62, December 1998.

4. R.F. Flynn and M. Dorfman. The automated requirements traceability system (ARTS): An
experience of eight years. In R.H. Thayer and M. Dorfman, editors, System and Software
Requirements Engineering, pages 423–438. IEEE Computer Society Press, 1990.

5. O. Gotel and A. Finkelstein. Extended requirements traceability: Results of an industrial
case study. In Proceedings of the Third IEEE International Symposium on Requirements
Engineering (RE'97), pages 169–178, Annapolis, MD, January 1997.

6. P. Haumer, P. Heymans, M. Jarke, and K. Pohl. Bridging the gap between past and future in
RE: A scenario-based approach. In Proceedings of the Fourth IEEE International Sympo-
sium on Requirements Engineering (RE'99), pages 66–73, Limerick, Ireland, June 1999.

7. H. Kaindl. A practical approach to combining requirements definition and object-oriented
analysis. Annals of Software Engineering, 3:319–343, 1997.

8. H. Kaindl. Combining goals and functional requirements in a scenario-based design proc-
ess. In People and Computers XIII, Proc. Human Computer Interaction '98 (HCI '98),
pages 101–121, Sheffield, UK, September 1998. Springer.

9. H. Kaindl, S. Kramer, and P.S.N. Diallo. Semiautomatic generation of glossary links: A
practical solution. In Proceedings of the Tenth ACM Conference on Hypertext and Hyper-
media (Hypertext '99), pages 3–12, Darmstadt, Germany, February 1999.

10. F.A.C. Pinheiro and J.A. Goguen. An object-oriented tool for tracing requirements. IEEE
Software, pages 52–64, March 1996.

11. B. Ramesh, C. Stubbs, T. Powers, and M. Edwards. Requirements traceability: Theory and
practice. Annals of Software Engineering, 3:397–415, 1997.

12. B. Ramesh and V. Dhar. Supporting systems development by capturing deliberations
during requirements engineering. IEEE Transactions on Software Engineering, 18(6):498–
510, 1992.

	1 Introduction
	2 Traceability in Reengineering Legacy Software
	2.1 High-Level View
	2.2 Our Realization

	3 A Case Study
	3.1 The Given Task
	3.2 Various Roles in This Case Study
	3.3 Concrete Project Experience

	4 Discussion
	5 Related Work
	6 Conclusion
	References

