
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 369-386, 2000
© Springer-Verlag Berlin Heidelberg 2000

A Framework for the Evolution of Temporal
Conceptual Schemas of Information Systems

Juan-Ramón López1,2 and Antoni Olivé1

1
Universitat Politècnica de Catalunya,

Departament de Llenguatges i Sistemes Informàtics.
Barcelona - Catalonia.

{jrlopez|olive}@lsi.upc.es
2
Universidade da Coruña,

Departamento de Computación

Abstract. This paper focuses on the problem of information systems evolution.
Ideally, changes in the requirements of information systems should be defined
and managed at the conceptual schema level, with an automatic propagation
down to the logical database schema(s) and application programs. We propose
here a framework for the evolution of temporal conceptual schemas of
information systems. Our framework uses a reflective architecture with two
levels: meta schema and schema, and two loosely coupled information
processors, one for each level. We define a temporal minimal meta schema, and
we show, using some examples, how to extend this minimal meta schema to
support any usual conceptual modeling construct. We also show how the
framework can be used to specify schema changes.

1 Introduction

This paper deals with the evolution of temporal conceptual schemas of information
systems. We propose a general framework which allows defining schema evolutions
and their effects. We illustrate the framework with a limited albeit representative
number of widely used conceptual modeling constructs, define some evolution
operations at the meta schema level, and analyze their impact on the conceptual
schema and the information base.

In order to characterize our contribution, we find it useful to start with the abstract
database evolution framework presented in [11], that we rephrase as follows: Assume
that an information system satisfies requirements R0. The information system
comprises a conceptual schema CS0, one (or more) database(s) with logical
schema(s) LS0 and extension(s) E0, and several application programs P0. When
requirements change to R1, the information system must evolve. In the general case,
the evolution implies changes leading to a new conceptual schema CS1, new logical
schema(s) LS1 and application programs P1. Moreover, the extension(s) E0 may not
be valid, and need to be converted to E1.

Ideally, the evolution of information systems should follow the strategy of
“forward information system maintenance” [11]: changes should be applied to the
conceptual schema, and from here they should propagate automatically down to the

370 J.-R. López and A. Olivé

logical schema(s) and application programs. If needed, the extension(s) should be also
converted automatically.

In the context of the above framework, the aspect that has received more research
effort is (logical) database schema evolution, including the propagation of changes to
the extensional database. Data models that have been studied extensively include the
relational and object-oriented models, both non-temporal and temporal. In several
cases, research results have been incorporated into commercial or prototype database
management systems (e.g., Orion [4], O2 [27], F2 [1]). We refer to [19, 8, 24, 15] for
extensive bibliographies and surveys.

We observe that the ideal strategy described above implies that the conceptual
schema is the only description to be defined, and the basis for the specification of the
evolution. This observation has led us to our framework, which we see as one step
more towards that ideal strategy. Our framework is based on the commonly accepted
approach that, from a conceptual point of view, an information system consists of a
conceptual schema, an information base and an information processor. The
conceptual schema defines all general domain knowledge relevant to the system,
which includes entity and relationship types, all kind of integrity constraints and
derivation rules, and the effects of external events. The information processor receives
messages from the environment, reporting the occurrence of external events. In
response to such events, the information processor changes the information base
and/or issues messages making known the contents of the information base, in the
way specified in the conceptual schema [12].

In this view, evolution can be accommodated elegantly by using the classical
reflective architecture [18, 22], as shown in Figure 1. A distinction is made between
an information system and a meta information system. The first consists of a
conceptual schema, an information base (IB) and an information processor (IP). The
second consists of a conceptual meta schema, a meta information base (MIB) and a
meta information processor (MIP). In essence, the MIB of the meta information
system describes the conceptual schema of the information system [12].

In our framework, possible changes in the conceptual schema are specified as meta
external events in the conceptual meta schema. Occurrences of these events are
reported to the MIP, which changes the MIB and indirectly the conceptual schema. In
some cases, changes in the IB may be necessary too. These latter changes are not
performed directly by the MIP. Instead of this, the MIP generates occurrences of
external events, which are notified to the IP to perform the desired changes. In this
way, the two processors are loosely coupled.

MIP MIB

External
Events

Meta External
Events

IP

Conceptual Meta
Schema

Conceptual
Schema

IB

Fig. 1. Framework for the evolution of information systems

A Framework for the Evolution of Temporal Conceptual Schemas 371

There is a lot of previous research and development work relevant to this
framework. We can only give in the following a few comments relating a
representative part of this work with our paper.

[14] describes SEA, Schema Evolution Assistant, a tool which allows the evolution
of schemas in Chimera. Chimera is a rich data model that includes integrity
constraints, derivation rules and triggers. SEA uses a reflective architecture [16], as
we do. Initially, Chimera was non-temporal, but a temporal extension was published
later [5]. SEA was developed for the non-temporal version.

[13] describes ConceptBase, a system based on the O-Telos language, a variant of
Telos. O-Telos deals uniformly with objects at different levels of abstraction. O-Telos
has a kernel, from which all other constructs can be bootstrapped. We have followed
the same idea with our minimal meta schema. However, our framework allows that
the information and the meta information processors be different. On the other hand,
we deal with the temporal dimension and focus more on schema evolution.

Finally, we mention the work done in the context of the TIGUKAT temporal
ODBMS [22, 23, 10]. The TIGUKAT schema objects include types, classes,
behaviours, functions and collections. The model allows the representation of the
temporal histories of real-world objects. We also adopt the temporal view, but
conceptual schemas of information systems need to include other elements like
integrity constraints, derivation rules, external events, etc. Evolution is performed by
operations (add, drop and modify) on schema objects. These are similar to our meta
external events, but we need many more to allow the evolution of other schema
objects.

The remainder of this paper is organized as follows. In Section 2, we characterize
temporal conceptual schemas and evolution at the temporal IB level. In Section 3 we
do the same for the conceptual meta schema and MIB, and define the correspondence
between the MIB and the conceptual schema. We also show how usual conceptual
modeling constructs can be defined at the conceptual meta schema level. In Section 4
we then define the meta external events that perform schema evolution. Finally,
Section 5 gives the conclusions and points out future work.

2 Temporal Conceptual Schema and Information Base

In this section, we briefly characterize the elements of a temporal conceptual schema
(or, for short, schema). We wish our work to be of general applicability and language-
independent. For this reason, we focus here on a set of minimal core elements of
schemas. Any schema can be expressed in terms of these elements. They are entity
types, relationship types, derivation rules, integrity constraints and external event
types [3]. We represent them (and their instances in the IB) using the language of the
first order logic (FOL), with some common extensions.

2.1 Temporal Conceptual Schema

The entities of a domain are instance of entity types at particular time points [7]. An
entity may be instance of several entity types at the same time (multiple

372 J.-R. López and A. Olivé

classification). On the other hand, an entity may change the entity types of which it is
instance (dynamic classification).

In a temporal conceptual schema, entity types may be represented by binary
predicates, whose first term is a symbol that denotes an entity in the domain, and the
second a time point. In the IB, we represent by E(e,t) the fact that entity e is instance
of entity type E at time t.

We assume that time is discrete, linear and totally ordered. Time points are
expressed in a common base time unit (or chronon [26]), such as second or day. We
also assume that a schema includes a special unary predicate Time, whose instances
are the time points (in the chosen unit) of the information system lifespan. In general,
the set of entity types defined in a schema is time-varying. We denote by Et the set of
entity types defined in a schema at time t. An entity type may cease to exist in a
schema and appear again later. We adopt here the usual typing rule, which in our case
requires that, for all entity types E:

∀ e,t (E(e,t) → E ∈ Et) . (1)

That is, we do not allow the IB to represent that e is instance of E at t, if E is not
defined in the schema at t. For convenience, we assume that if an entity type E ceases
to exist at time t, then all its instances at t-1 (if any) also cease to exist at t.

Entity types may be lexical or non-lexical. For the sake of uniformity we represent
lexical entity types also by binary predicates, even if lexical entities are usually
instance of their types during the whole lifespan of an information system.

The relationships of a domain are instance of relationship types at particular time
points. In a temporal schema, a relationship type with n participants may be
represented by a predicate of degree n+1, where the first n terms are symbols that
denote the participant entities, and the n+1 term is a time point. In the IB, we
represent by R(e1,...,en,t) the fact that entities e1,...,en participate in a relationship
instance of relationship type R at time t. In general, the set of relationship types
defined in a schema is time-varying, and we denote by Rt the set of relationship types
defined in a schema at time t. The above typing rule also applies to relationship types.

Entity and relationship types may be base or derived. Instances of base types must
be stated explicitly, as will be seen later, while those of derived types are defined by
derivation rules. In a temporal schema, derivation rules must be considered also as
time-varying. We denote by DRt the set of derivation rules defined in a schema at
time t. Our framework allows derivation rules to be written in the language
understood by the IP. In the examples we use the FOL language.

Integrity constraints are conditions that the IB must satisfy. We consider them also
as time-varying. We denote by ICt the set of integrity constraints defined in a schema
at time t. It is assumed that at any time t the IB satisfies all integrity constraints
defined in ICt.

Our framework could be extended by distinguishing, in the schema, several kinds
of integrity constraints (and of derivation rules). However, in this paper we prefer not
to make this distinction here, but we do it in the conceptual meta schema. The MIP
will "generate" constraints in the language required by the IP.

The IB changes due to the occurrence of external events. As we did for entity
types, we represent external event types in a schema by binary predicates, but now the

A Framework for the Evolution of Temporal Conceptual Schemas 373

first term denotes an event occurrence. In the IB we represent by Ev(ev,t) the
occurrence of event ev of type Ev at time t.

In general, the set of external event types defined in a schema is time-varying, and
we denote by EEt the set of external event types defined in a schema at time t. The
above typing rule also applies to these types. External event types may be base or
derived.

For each external event type, the schema includes the definition of its
preconditions and effect rules (transactions). The preconditions are conditions that
must be satisfied when an external event occurs. The effect rules define the changes
produced in the IB by the event. Both preconditions and effect rules are formulas
expressed in the language understood by the IP.

We find convenient to allow the possibility of defining, for each integrity
constraint, a set of compensating effect rules. The IP adds these rules to the effect
rules of an event type when an occurrence of this event type leads to a violation of the
integrity constraint. This, however, does not mean that violations can be prevented in
all cases by compensating rules.

2.2 Information Base Evolution

The effect rules of an external event type define the changes in the IB when an
instance of that type occurs. We model possible changes in the IB as structural events,
and we then say that an external event induces structural events, which, in turn,
change the IB.

The structural event types are determined by the entity and relationship types
defined in a conceptual schema and, thus, they are not defined by the designer. We
represent structural event types by predicates, as follows:
− There is an insertion and a deletion event type for each non-lexical entity type E.

We represent them by the binary predicates Ins_E and Del_E, respectively, where
the first term is a symbol denoting an entity and the second a time point.

− There is an insertion and a deletion event type for each relationship type R. We
represent them by the n+1-ary predicates Ins_R and Del_R, respectively, where the
first n terms are symbols denoting entities and the n+1 term is a time point.

A structural event type is base (derived) if the corresponding entity or relationship
type is base (derived). External events induce directly only base structural events,
while derived ones are induced indirectly by the derivation rules. For example, if we
have in a schema the derivation rule: Young(p,t) ← Person(p,t) ∧ Age(p,a,t) ∧ a ≤ 18,
then an increase of a person’s age may induce a Del_Young event.

3 Temporal Conceptual Meta Schema and Information Base

All conceptual models have a conceptual meta schema (or, for short, meta schema). A
meta schema is like an ordinary schema, except that its domain is a schema. The
elements of a schema are seen as entities, which are instance of appropriate entity
types defined in the meta schema. Similarly, relationships between the elements of a

374 J.-R. López and A. Olivé

schema are seen as instances of relationship types of the meta schema. The MIB has a
representation of the schema.

In this section, we first describe the minimal meta schema necessary to represent
the core elements defined in the previous section. We then establish the
correspondence rules between the MIB and the schema. In the last part of this section
we describe how the meta schema can be enriched with other constructs.

Fig. 2. Minimal conceptual meta schema (Part 1 of 2)

3.1 Minimal Meta Schema

Figures 2 and 3 illustrate, using the UML language [25], the minimal meta schema.1

We now briefly define it in terms of the core elements explained in the previous
section. For clarity, we call sometimes these elements meta elements, in order to
distinguish them from schema elements.
− Entity types. The entity types are shown as rectangles in Figures 2 and 3. All entity

types are non-lexical, except Formula, which is lexical. An instance of Formula is
a formula in the language understood by the IP. For generality, we use here the
FOL language. All entity types are base, except Concept, EntityType and Rule,
which are derived. As we did in Section 2.1, in the MIB we represent by E(e,t) the
fact that e is instance of meta entity type E at time t. For example,
EntityType(Employee,T).

− Relationship types. The meta relationship types are shown as lines linking
rectangles in Figures 2 and 3. All of them are binary and base. Note that a schema
relationship type R may be of degree 2 or higher. R would be an instance of
RelationshipType at T (Figure 2) and, if it has degree n, there would be n instances
HasPt(R,Pi,T) in the MIB.

− Structural events. Meta structural events are defined as we did in Section 2.2. For
clarity, we will prefix them with M_. For example, M_Del_EntityType, whose
intended effect is that an entity type ceases to be instance of EntityType in the MIB.

− Derivation rules. There are three meta derivation rules, which define Concept,
EntityType and Rule. We show here the one corresponding to Concept:

1 Note that, in the figures, we use partitions and cardinality constraints. However, these

constructs will be translated into core elements in what follows.

IsEvTPtOf0..1 0..11

2..*

* *

HasPt

 Participant

Non-Lexical
EntityType IsETPtOf

RelationshipType

Concept

BaseConcept

DerivedConcept

ExternalEventTypeEntityType

Lexical
EntityType

A Framework for the Evolution of Temporal Conceptual Schemas 375

Concept(c,t)↔EntityType(c,t)∨ RelationshipType(c,t)∨ ExternalEventType(c,t) MDR1

− Integrity constraints. A schema is a complex structure subject to a large number of
integrity constraints. This implies that the meta schema must include many meta
integrity constraints, usually called invariants in the schema evolution field [4].
We give bellow an example, that states that only existing rules and formulas can be
related in IsExpressedBy. Other examples can be found in [17].

IsExpressedBy(r,f,t) → Rule(r,t) ∧ Formula(f,t) MIC1

We define a compensating rule for MIC1, which states that when an rule is
deleted so is the relationship, instance of IsExpressedBy, in which it participates:

M_Del_IsExpressedBy(r,f,t) ← M_Del_Rule(r,t) ∧ IsExpressedBy(r,f,t-1)

Fig. 3. Minimal conceptual meta schema (Part 2 of 2)

− External event types. The minimal meta schema includes meta event types that
allow the insertion and deletion of the entity and relationship types shown in
Figures 2 and 3. For example, there could be an external event type NewIC.
Occurrences of NewIC would create an instance of IntegrityConstraint (Figure 3)
and the associated instance of IsExpressedBy. We will discuss them in the next
section.

3.2 Correspondence Rules

We can now define the correspondence rules in our framework between the MIB and
the schema:
• CR1. There is a one-to-one correspondence between the instances at time t of

EntityType in the MIB and the elements of Et in the schema. If an instance of
EntityType is also instance of BaseConcept (DerivedConcept) then it is base (resp.,
derived). If an instance of EntityType is also instance of LexicalEntityType (Non-
LexicalEntityType) then it is lexical (resp., non-lexical).

• CR2. There is a one-to-one correspondence between the instances at time t of
RelationshipType in the MIB and the elements of Rt in the schema. If an instance of
RelationshipType is also instance of BaseConcept (DerivedConcept) then it is base

0..1

IsExpressedBy* 1

0..1

*1..**

IsCompensatedByRequires HasEffect

Formula

DerivationRuleIntegrityConstraintEffectRule

1

ExternalEventType

Precondition

Rule

376 J.-R. López and A. Olivé

(resp., derived). If an instance R of RelationshipType is related (through HasPt) to
n instances of Participant, then the degree of R in the schema is n+1.

• CR3. There is a one-to-one correspondence between the set of Formula in which
IsExpressedBy the instances of DerivationRule at time t in the MIB and the
elements of DRt in the schema.

• CR4. There is a one-to-one correspondence between the set of Formula in which
IsExpressedBy the instances of IntegrityConstraint at time t in the MIB and the
elements of ICt in the schema. If Ic is an instance of IntegrityConstraint, and
IsCompensatedBy(Ic,Eff,t) and IsExpressedBy(Eff,F,t) then formula F is a
compensating effect rule of Ic in the schema at t.

• CR5. There is a one-to-one correspondence between the instances at time t of
ExternalEventType in the MIB and the elements of EEt in the schema. If an
instance of ExternalEventType is also instance of BaseConcept (DerivedConcept)
then it is base (resp., derived). If Ev is an instance of ExternalEventType, and
Requires(Ev,Pre,t) and IsExpressedBy(Pre,F,t), then formula F is a precondition of
Ev in the schema at t. Similarly, if Ev is an instance of ExternalEventType, and
HasEffect(Ev,Eff,t) and IsExpressedBy(Eff,F,t), then formula F is an effect rule of
Ev in the schema at t.

Correspondence rules similar to the above are present in a way or another in all
frameworks with a reflective architecture. We emphasize the distinction between the
MIP and the IP, make explicit the temporal correspondence, and leave undefined how
the correspondence rules are implemented.

3.3 Conceptual Modeling Constructs

The above minimal meta schema is hardly satisfactory because it does not take into
account the important number of special constructs that have been developed in the
conceptual modeling field. These constructs are useful because they ease the
definition of the schema and, at the same time, allow the development of efficient
implementations. In our framework, the modeling constructs are particular types in
the meta schema. However, there is not a direct correspondence between the
"instantiation" of these constructs and the schema, but an indirect one. The meta
schema includes a set of derivation rules that "translate" the constructs into elements
of the minimal meta schema. The above correspondence rules need not to be changed.

In what follows we explain how to extend the minimal meta schema to incorporate
the constructs in our framework. Additional details can be found in [17]. The general
idea is to partition IntegrityConstraint and DerivationRule (Figure 3) into two
subtypes: a base and a derived one (Figure 4). The base subtypes will correspond to
integrity constraints or derivation rules defined explicitly by the designer, while the
derived ones are defined by derivation rules of the meta schema.

3.3.1 Cardinality Constraints. Figure 4 shows the conceptualization in the meta
schema of the common cardinality constraints. In the MIB, these cardinalities are
expressed as instances of relationship types HasMinCard and HasMaxCard. We will
focus only on the minimum cardinality; the maximum one is similar. Each minimum
cardinality constraint is an instance of ICMinCard, which is a specialization of

A Framework for the Evolution of Temporal Conceptual Schemas 377

DerivedIntegrityContraint. A participant may not have minimum cardinality (i.e.,
zero) and then there is not a corresponding instance of ICMinCard. Entity type
ICMinCard is derived. The corresponding derivation rule is:

ICMinCard(s,t) ← HasMinCard(p,int,t) ∧ s = sym(ICMinCard,p) MDR2

where sym(ICMinCard,p) is a function that denotes a time-independent symbol (s),
distinct from any other used in the MIB. The MIP could, for example, create this
symbol when symbol p is created.

Now, we need to define the Formula in which the constraint IsExpressedBy. We
refine the base relationship type between Rule and Formula to a derived one between
ICMinCard and Formula. The derivation rule is:

IsExpressedBy(s,f,t) ← ICMinCard(s,t) ∧ ICMinFormula(s,f,t) MDR3

 In MDR3, ICMinFormula(s,f,t) is a predicate that gives in f the string
representation of the corresponding formula. For a binary relationship type R, the
general form of f for one of its participants (E1) is "E1 (e1,t) → min ≤ |{e2 | R(e1,e2,t)}| ",
where E1 would be given by IsETPtOf (or IsEvTPtOf), min by HasMinCard and R by
HasPt. We omit here the details of predicate ICMinFormula because they are a
lengthy sequence of trivial string manipulation operations.

Note that, by MDR2 and MDR3, the MIB will have a relationship
IsExpressedBy(s,f,t) during the period in which p exists as participant and has a non-
zero minimum cardinality. By CR4, during this period f ∈ ICt, that is, f will be a
schema integrity constraint, to be enforced by the IP.

Fig. 4. Meta schema conceptualization of cardinality and referential integrity constraints

3.3.2 Referential Integrity Constraints. A referential integrity constraint must be
defined for each participant of a base relationship type. We assume that for derived
relationship types the corresponding derivation rule is correct and, therefore, also are
the types of the participants in its instances. To represent these constraints, we define
in the meta schema (see Figure 4) a derived subtype of DerivedIntegrityConstraint,
called ICRefInt, with the following derivation rule:

ICRefInt(s,t) ← HasPt(r,p,t) ∧ BaseConcept(r,t) ∧ s=sym(ICRefInt,p) MDR4

1
IsExpressedBy

0..1 0..1

HasMinCard HasMaxCard* *

FormulaBaseIntegrity
Constraint

IntegrityConstraint

Derived
IntegrityConstraint

ICMinCard
ICRefInt

Participant

Integer

378 J.-R. López and A. Olivé

where sym is again a function that gives us a time-independent symbol, that in this
case denotes the referential integrity constraint related to a participant. We refine
again IsExpressedBy to a derived type, in this case between ICRefInt and Formula:

IsExpressedBy(s,f,t) ← ICRefInt(s,t) ∧ ICRefIntFormula(s,f,t) MDR5

where ICRefIntFormula is a predicate that gives in f the string representation of the
corresponding formula.2 For a binary relationship type R, the general form of f for one
of its participants (E1) is „R(e1,e2,t) → E1(e1,t)„, where R would be given by HasPt,
and E1 by IsETPtOf (or IsEvTPtOf).

3.3.3 Partitions. Partitions are an important modeling construct in many conceptual
models [20]. All generalizations and specializations can be transformed into
partitions. We are going to see that partitions are represented in the core elements of a
schema by zero or one derivation rule, and zero or more integrity constraints. Figure 5
shows the conceptualization of partitions in the meta schema.

Fig. 5. Meta schema conceptualization of partitions

We allow the partition of any Concept. Thus, we deal also with partitions of
relationship types [2]. A concept may be the superconcept (IsTheSup) of several
partitions. A partition has only one superconcept, but it may have one or more
subconcepts. We assume that a concept may be the subconcept (IsASub) of zero or
only one partition. The concepts involved in a partition may be base or derived.
Almost all combinations can be acceptable. One of the exceptions is when all
concepts are base, because if all subconcepts are base, then the superconcept must be
derived. For example, if P1 is a partition with super Person and subs Man and Woman,
and these are base, then Person must be derived, since it is the "union" of Man and
Woman. In the meta schema, there is a relationship type (Defines) between Partition
and DerivedConcept. An instance Defines(P,C,T), where C must be a derived concept
and the super of P, indicates that, at time T, concept C is derived as the union of the
subconcepts of P. In the above example, we could have Defines(P1,Person,T). Entity
type Person may be the super of another partition P2 (for example, into the base entity

2 This formula depends on the relationship type of the participant being synchronous or

asynchronous (see [21] for more details), but for the sake of simplicity in this paper we are
considering only synchronous relationship types.

0..1

IsSuperOf

* 0..1

1 1..*

*

*

IsExpressedBy

Defines

IsTheSup IsASub

0..1

DerivedDerivationRule BaseConceptDerivedConcept

ICCompl ICDisj ICSubs DRPart

Partition

DerivedIntegrityConstraint

Formula

Concept

A Framework for the Evolution of Temporal Conceptual Schemas 379

types Married and Unmarried) but it is defined only by one of them, because the
other definition would be redundant.

Partitions require several meta integrity constraints. See [17] for some of them.
In the schema, we define a disjointness integrity constraint for each concept that is

a sub of a partition.3 In the above example, a Man cannot be a Woman, and the
inverse. These integrity constraints are modeled as instances of ICDisj. Entity type
ICDisj is derived, with derivation rule:

ICDisj(s,t) ← IsASub(c,p,t) ∧ s = sym(ICDisj,c) ∧ IsASub(c’,p,t) ∧ c≠c’ MDR6

The Formula in which ICDisj IsExpressedBy is given by the derivation rule:

IsExpressedBy(s,f,t) ← ICDisj(s,t) ∧ ICDisjFormula(s,f,t) MDR7

where predicate ICDisjFormula gives in f the string representation of the formula. As
an example, the general form of f for a base relationship type R1 in a partition of a
binary relationship type R into R1,..., Rn is "R1(e1,e2,t) → ¬ (R2(e1,e2,t) ∨ ... ∨
Rn(e1,e2,t))".

In the schema, we define also a subset integrity constraint for each subconcept,
except when the partition defines a derived superconcept. For example, if Person is a
derived concept, defined by the partition into Man and Woman and also partitioned
into base concepts Married and Unmarried, then we must ensure that all instances of
Married or Unmarried are also instances of Person. The general form of an integrity
constraint for a base entity type E1 in a partition of a derived entity type E into E1,...,
En would be "E1(e,t) → E(e,t)". These integrity constraints are modeled as instances of
the derived entity type ICSubs using two meta derivation rules similar to the
preceding ones.

Finally, we also include in the schema a completeness integrity constraint for each
partition, except when the partition defines a derived superconcept. In the above
example, we must ensure that all instances of Person are also instance of Married or
Unmarried. The general form of f for a base entity type E partitioned into E1,..., En

would be "E(e,t) → (E1(e,t) ∨ ...∨ En(e,t))". These integrity constraints are modeled as
instances of the derived type ICCompl, using other two meta derivation rules.

 Now, we describe the schema derivation rules implied by partitions. If a derived
concept is defined by a partition, then the schema must include its derivation rule. We
model it as an instance of DRPart, which is a derived entity type subtype of
DerivationRule (Figure 5). Its derivation rule is:

DRPart(s,t) ← Defines(p,c,t) ∧ s = sym(DRPart,c) MDR8

Note again the use of sym(DRPart,c), which denotes a symbol we use to refer to
the derivation rule. We refine the base relationship type IsExpressedBy between Rule
and Formula to a derived one between DRPart and Formula. The derivation rule is:

IsExpressedBy(s,f,t) ← DRPart(s,t) ∧ DRPartFormula(s,f,t) MDR9

3 For flexibility, we allow a partition with only one subtype (Figure 5). In this particular case, it

is obvious that disjointness constraints would not apply.

380 J.-R. López and A. Olivé

where predicate DRPartFormula gives the string representation of f. The general form
of f in a partition of a derived entity type E into E1,..., En is "E(e,t) ← (E1(e,t) ∨ ... ∨
En(e,t))".

4 Schema Evolution

In our framework, schema evolution is performed by meta external events. When the
designer wants to change a schema, she generates an instance of the appropriate meta
external event type. The corresponding effect rules will induce meta structural events,
which change the MIB. By the correspondence rules (Section 3.2), such changes
imply changes to the schema.

The set of external event types included in the meta schema define the possible
schema evolutions, either applied individually or by means of their composition.
There is no other way to evolve a schema. Given that usually a schema may change in
many different ways, it is necessary to include many external event types in the meta
schema. For example, [1] defines 38 possible F2 schema changes. More are needed
for richer schemas. We cannot show here the complete set of needed external event
types. Rather, we are going to show how external event types and their effects can be
defined in our framework.

Some meta external event types change only the schema, without affecting the IB.
For example, M_RemoveIntegrityConstraint could have only the effect rule:

M_Del_BaseIntegrityConstraint(ic,t) ← M_RemoveIntegrityConstraint(rm,t) ∧
RemovesIC(rm,ic,t)

which, by CR4, would remove ic from the set of schema integrity constraints ICt.
Note that, in this case, the relationship IsExpressedBy between ic and its formula at t
would be deleted by the compensating rule of MIC1 (Section 3.1).

Other meta external event types require changing the schema and the IB. We can
distinguish two cases here: when the required changes to the IB are given by the
typing rule (Section 2.1), and when they must be defined by explicit effect rules. An
example of the former could be M_RemoveRelType, with appropriate preconditions
and the effect rule:

M_Del_RelationshipType(r,t) ← M_RemoveRelType(rm,t) ∧ RemovesRT(rm,r,t)

which, by CR2, would remove r from the set of the schema relationship types Rt and,
by the typing rule, would delete existing instances of r at t in the IB. We will show a
more complete example of this case in Section 4.1 below.

In other cases, the changes implied by the typing rule are not enough. We need to
define an appropriate external event type in the schema, generate an occurrence of it
and notify the IP of this occurrence. We generate “on the fly” an instance EvT of
ExternalEventType, without parameters, and then we notify the IP of an occurrence of
EvT. We will use in the meta effect rules the notation “EvT ← to mean that the MIP
notifies the IP of an occurrence of EvT. We will show a detailed example of this case
in Section 4.2 below.

A Framework for the Evolution of Temporal Conceptual Schemas 381

4.1 M_RemoveEntityType

We start with a rather simple external event type, M_RemoveEntityType. It has only
one parameter, given by relationship type Removes between that type and Non-
LexicalEntityType. A particular instance of M_RemoveEntityType, occurring at time T
and removing E, represents the design decision that, from time T, E ceases to be
instance of EntityType and, therefore, the IB must not record the instances of entity
type E. However, E may be again instance of EntityType later. E may be base or
derived. For illustration purposes, we only deal here with the simple case when E
does not participate in any relationship type and is not involved in any partition.

Preconditions. We define first the preconditions. One of them is that E is a non-
lexical entity type at time T-1. Formally,

M_RemoveEntityType(rm,t) ∧ Removes(rm,e,t) → Non-LexicalEntityType(e,t-1)

The if-part of the rule serves only to declare that an instance of the event type has
occurred and to give name to its parameters. We omit this part in the next rules. Then,
the other preconditions are:

¬∃ participant IsETPtOf(e,participant,t-1)
¬∃ partition IsTheSup(e,partition,t-1)
¬∃ partition IsASub(e,partition,t-1)

Effect rules. The first effect rule induces the meta structural event that deletes E from
Non-LexicalEntityType:

M_Del_Non-LexicalEntityType(e,t)←M_RemoveEntityType(rm,t)∧ Removes(rm,e,t)

As we did before, we omit the if-part of this rule in the next ones. Now, we must
remove E from BaseConcept or from DerivedConcept:

M_Del_BaseConcept(e,t) ← BaseConcept(e,t-1)
M_Del_DerivedConcept(e,t) ← DerivedConcept(e,t-1)

Finally, if E is derived, we must delete its derivation rule:

M_Del_DerivationRule(s,t) ← DerivedConcept(e,t-1) ∧ s = sym(DerivationRule,e)

Induced effects on the MIB. The above effect rules are the only ones that need to be
defined. We now reason (informally) about induced effects on the MIB:
− By the MDR’s described in Section 3.1 (e.g. MDR1), e ceases to be instance of

Concept and EntityType. The derived structural events M_Del_Concept(e,t) and
M_Del_EntityType(e,t) are induced. Also, M_Del_DerivationRule induces
M_Del_Rule. By the compensating rule of MIC1, M_Del_IsExpressedBy(s,f,t) is
induced if IsExpressedBy(s,f,t-1).

Induced effects on the schema and IB. We now reason about the induced effects on
the schema and the IB:
− By CR1, e is not an entity type in the schema at t (that is, e ∉ Et)
− By the typing rule, all instances of e at t-1 cease to be instances of e at t.

382 J.-R. López and A. Olivé

− By CR3, all instances of DerivationRule that have been deleted at t cease to exist in
the schema at t.

Remarks. The removal of an entity type, or any other schema change, can affect
indirectly to integrity constraints, derivation rules, or external event types defined
explicitly in the schema by the designer. Some changes in those elements can be
needed. The analysis of those changes results in a very complex task [15, 27], that is
outside the scope of this paper.

4.2 M_ChangeParticipantToSET.

We now deal with a complex external event type, M_ChangeParticipantToSET. It has
two parameters, given by relationship types Changes, with Participant, and
HasNewType, with EntityType. An occurrence M_ChangeParticipantToSET(CP,T) of
this event type, with Changes(CP,P,T) and HasNewType(CP,NT,T) represents the fact
that, from time T, the participant P of a relationship type R changes its type to a
supertype or a subtype,4 the entity type NT. This means that, from T, instances of R
are only valid if their corresponding participant is instance of NT.

Fig. 6. An example of changing a participant in a relationship type

We consider the general case in which the relationship type has any degree, and is
base or derived, subtype in zero or one partition, and super in any number of
partitions. Changing a participant of a binary relationship type (attribute) has been
studied extensively in the literature. However, we have not found the study of the
change in our general settings.

If the relationship type is base, some of its instances may become invalid after the
change. We have two possible strategies here: either to reject the change or to delete
explicitly the invalid instances. The two possibilities must be offered to the designer.
We could define a different external event type for each strategy, or add a new
parameter to the event type, indicating the desired strategy [27]. In the following, we
assume the existence of two different external event types, and present here the one
that performs the strategy of deleting explicitly the invalid instances. In that case, if
the relationship type is involved in a partition, deletion of some of its instances must
be propagated through the partition hierarchy. For base types, the propagation must be

4 ToSET stands for „To a Super or a Sub Entity Type„.

0..1Participates* 0..10..1

Lectures

0..1

0..1 Lectures

Teaches 0..1*

Assistant

Teacher Course

Professor

A Framework for the Evolution of Temporal Conceptual Schemas 383

done explicitly. For derived types, the associated derivation rules might have to be
corrected in the right way. On the other hand, if the relationship type changed is
derived, the corresponding derivation rule needs to be changed too, so the invalid
instances will be deleted implicitly.

This is a more complex change than the one exposed in Section 4.1, so for clarity
we present here only an example. The complete formalization of the general case can
be found in [17]. Assume a university information system (see Figure 6) with two
base entity types, Teacher and Course, and also a base relationship type Teaches
between Teacher and Course, partitioned into two subtypes, Lectures (base) and
Participates (derived), with the same participants as the supertype. A teacher
participates in a course if she teaches but does not lecture it. Any teacher can lecture
courses or participate in them.

Assume now that the domain changes, and Teacher is transformed into a derived
type, partitioned into Professor and Assistant. Now, among other changes, only a
professor can be the lecturer of a course. That implies changing the participant of the
relationship type Lectures from Teacher to Professor. The effects of this change, in
our framework, would be the following:

The type of the participant must be explicitly changed in the MIB:

M_Del_IsETPtOf (Teacher, P, T)
M_Ins_IsETPtOf (Professor, P, T)

with P being the symbol representing the participant being changed, and T the time
instant when the change is done.

As Lectures is base, P has a referential integrity constraint that must change. This
change is performed automatically by MDR5, which induces:

M_Del_IsExpressedBy(S,’Lectures(tch,c,t) → Teacher(tch,t)’, T)
M_Ins_IsExpressedBy(S,’Lectures(tch,c,t) → Professor(tch,t)’, T)

with S=sym(ICRefInt,P).
Some of the instances of Lectures may violate the above new integrity constraint.

In that case, they must cease to exist. As Lectures is base, we must define a new
external event type in the conceptual schema to explicitly eliminate its invalid
instances; and also to eliminate them as instances of Teaches, since it is a base
supertype of Lectures. We use the special function newSymbol() to obtain new
symbols in the MIB, when needed. The explicitly defined effects in the MIB must be
the following:

et=newSymbol()
M_Ins_ExternalEventType(et,T)

er1=newSymbol()
M_Ins_EffectRule(er1,T)
M_Ins_HasEffect(et,er1,T)
M_Ins_IsExpressedBy(er1,’Del_Lectures(tch,c,t) ← Lectures(tch,c,t-1)

∧ ¬ Professor(tch,t-1)’ ,T)

er2=newSymbol()
M_Ins_EffectRule(er2,T)
M_Ins_HasEffect(et,er2,T)

384 J.-R. López and A. Olivé

M_Ins_IsExpressedBy(er2,’Del_Teaches(tch,c,t) ← Del_Lectures(tch,c,t)’,T)

Finally, we have to notify the IP of an occurrence of the external event type we
have just defined:

et ←

Remarks. As pointed out at the beginning of this section, this event type can require
the change of some derivation rules, corresponding to derived relationship types of
the partition hierarchy. As we think that this kind of change must be modeled as an
independent external event type, in this case would be needed the composition of
instances of both event types to achieve the whole desired change.

5 Conclusions

We have presented a framework that allows the definition of the evolution of
information systems, at the conceptual level. The framework is based on a reflective
architecture, with two loosely coupled conceptual processors.

Our framework allows the definition of all conceptual modeling constructs in the
meta schema. This has been illustrated with three representative constructs. On the
other hand, our framework allows the definition of any evolution operation, and this
has been illustrated also by two particular operations, which have been analyzed in
detail.

Our work can be extended in at least five directions. First, we could define, in the
meta schema, other modeling constructs (aggregation, materialization, etc.). Second,
we could develop the complete (both at schema and instance-level [8]) set of meta
external event types, for the minimal meta schema and for the considered constructs.
Other complex external event types could be added to that set to facilitate the
evolution to the designer [6]. Of course, this should be done on the basis of existing
work. Third, a prototype implementation could be developed, preferably using two
processors of different type. In view of practical applications, the two processors
should be loosely coupled, as suggested by our framework. Fourth, that prototype
could include a tool to assist and guide the designer in the definition and analysis of
evolution operations [27, 9]. For instance, warning her about external event types
possibly affected by a particular schema change. Finally, building on top of existing
knowledge and experience, one could attempt the development of an industrial
system, with several possible degrees of ambition.

Acknowledgments

The authors are indebted to Dolors Costal, Cristina Gómez, Camilo Ocampo and Toni
Urpí, and to the anonymous referees, for their helpful comments. This work has been
partially supported by CICYT program projects TIC99-1048-C02-1 and TEL99-0335-
C04-02.

A Framework for the Evolution of Temporal Conceptual Schemas 385

References

1. Al-Jadir, L., Léonard, M.: Multiobjects to Ease Schema Evolution in an OODBMS. In:
Proc. ER’98, Singapore, LNCS 1507, Springer (1998) 316-333

2. Analyti, A., Spyratos, N., Constantopoulos, P.:Property Covering: A Powerful Construct
for Schema Derivations. In: Proc. ER’97, LNCS 1331, Springer-Verlag (1997) 271-284

3. Boman, M., Bubenko jr., J.A., Johannesson, P., Wangler, B.: Conceptual Modelling.
Prentice Hall (1997)

4. Banerjee, J., Chou, H-T., Garza, J.F., Kim, W., Woelk, D., Ballou, N.: Data Model Issues
for Object-Oriented Applications. In: ACM TOIS Vol.5, No.1, January (1987) 3-26

5. Bertino, E., Ferrari, E., Guerrini, G.: T_Chimera: A Temporal Object-Oriented Data
Model. TAPOS 3(2) (1997) 103-125

6. Brèche, P.: Advanced Primitives for Changing Schemas of Object Databases. 8Th. In: Intl.
Conf. CAiSE’96, LNCS 1080, Springer (1996) 476-495

7. Bubenko jr., J.A.: The Temporal Dimension in Information Modelling. In: Architecture
and Models in Data Base Management Systems, North-Holland (1977)

8. Casais, E.: Managing Class Evolution in Object-Oriented Systems, In: D.C. Tsichritzis
(ed.): Object Management (1990) 133-195

9. Erwald, C.A., Orlowska, M.E.: A procedural approach to schema evolution. In: Proc.
CAiSE’93, LNCS 685, Springer (1993) 22-38

10. Goralwalla, I., Szafron, D., Özsu, T., Peters, R.: A Temporal Approach to Managing
Schema Evolution in Object Database Systems. In: Data&Knowledge Eng. 28(1), October
(1998) 73-105

11. Hainaut, J-L., Englebert, V., Henrard, J., Hick, J-M., Roland, D.: Database Evolution: the
DB-MAIN Approach. In: 13th. Intl. Conf. on the Entity-Relationship Approach - ER’94,
LNCS 881, Springer-Verlag (1994) 112-131

12. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. J.J. van Griethuysen (ed.), March (1982)

13. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase - a
deductive object base for meta data management. In: Journal of Intelligent Information
Systems, 4(2) (1995) 167-192

14. Lemke, T., Manthey, R.: The Schema Evolution Assistant: Tool Description.
IDEA.DE.22.O.004, University of Bonn (1995)

15. Lemke, T.:Schema Evolution in OODBMS: A Selective Overview of Problems and
Solutions. IDEA.WP.22.O.002, University of Bonn (1994)

16. Lemke, T.: DDL = DML?. An Exercise in Reflective Schema Management for Chimera.
IDEA.WP.22.O.003, University of Bonn (1995)

17. López, J.R., Olivé, A.: A Framework for the Evolution of Temporal Conceptual Schemas
of Information Systems – Extended Version. LSI-00-14-R. Department of Software (LSI).
Universitat Politècnica de Catalunya (2000)

18. Manthey, R.: Beyond Data Dictionaries: Towards a Reflective Architecture of Intelligent
Database Systems. In: DOOD’93, Springer-Verlag (1993) 328-339

19. Nguyen, G.T., Rieu, D.: Schema evolution in object-oriented database systems. In:
Data&Knowledge Eng. 4 (1989). 43-67

20. Olivé, A., Costal, D., Sancho, M.-R.: Entity Evolution in IsA Hierarchies. In: Proc. ER’99,
LNCS 1728, Springer-Verlag (1999) 62-80

21. Olivé, A.: "Relationship Reification: A Temporal View". In: Proc. CAiSE’99, LNCS
1626, Springer (1999) 396-410

22. Peters, R.J., Özsu, T.: Reflection in a Uniform Behavioral Object Model. In: Proc. ER’93,
Arlington, LNCS 823, Springer-Verlag. (1993) 34-45

23. Peters, R.J., Özsu, T.: An Axiomatic Model of Dynamic Schema Evolution in Objectbase
Systems. In: ACM TODS Vol. 22, No. 1, March (1997) 75-114

386 J.-R. López and A. Olivé

24. Roddick, J.F.: Schema Evolution in DataBase Systems – An Updated Bibliography. In:
ACM SIGMOD Rec., 21(4), May (1994) 35-40

25. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley (1999)

26. Tansel,A., Clifford,J., Gadia,S. et al.: Temporal Databases: Theory, Design and
Implementation. Benjamin/Cummings (1993)

27. Zicari, R.: A Framework for Schema Updates in Object-Oriented Database System. In:
Bancilhon,F.; Delobel,C.; Kanellakis, P. (eds.): Building an Object-Oriented Database
System - The Story of O2. Morgan Kaufmann Pub. (1992) 146-182

	1 Introduction
	2 Temporal Conceptual Schema and Information Base
	2.1 Temporal Conceptual Schema
	2.2 Information Base Evolution

	3 Temporal Conceptual Meta Schema and Information Base
	3.1 Minimal Meta Schema
	3.2 Correspondence Rules
	3.3 Conceptual Modeling Constructs

	4 Schema Evolution
	4.1 M_RemoveEntityType
	4.2 M_ChangeParticipantToSET.

	5 Conclusions
	References

