Distance M easures
for Information System Reengineering

Geert Poels, Stijn Viaene, and Guido Dedene

Management Information Systems Group
Department of Applied Economic Sciences
Katholieke Universiteit Leuven
Naamsestraat 69, B-3000 Leuven, Belgium
{geert.poels, stijn.viaene, guido.dedene}@con. kul euven. ac. be

Abstract. We present an approach to assess the magnitude and impact of
information system reengineering caused by business process change. This
approach is based on two concepts: object-oriented business modeling and
distance measurement. The former concept is used to visualize changes in the
business layer of an information system architecture. The latter concept is used
to quantify these changes. The paper aso describes the application of our
approach in the context of front-office system design.

1 Introduction

There exists a wide spectrum of reasons for information system reengineering. The
evolution of an information system over many years frequently leads to software that
is unnecessarily complex and inflexible, making the maintenance and enhancement of
the system more and more expensive [1]. Often, legacy systems are reengineered
because of a desire to move to new generations of software technology, like
component software [2]. Changes in the computer and network infrastructure may as
well trigger reengineering efforts.

The focus of this paper is however on a different type of reengineering, i.e.
information system reengineering because of changing business processes. Magjor
strategic management decisions regarding business re-positioning and drastic business
transformations (i.e. BPR as defined in [3], [4]) require the current business
process(es) to be changed and the existing information system to be modified in order
to further support the business operations. A characteristic of this type of information
system reengineering is that it is fundamental. It affects the enterprise model, which
is the core layer in an object-oriented information system architecture [5]. The
enterprise model is an abstract image of business reality (either a single business
process or a network of interrelated processes), capturing the relevant business
entities, events and rules, their static relationships and dynamic interactions. In the
implemented software system, the classes of the enterprise model are responsible for
the business functionality that is offered by the information system.

Reengineering the information system is crucial for the overall success of a
business process change. One aspect to consider is the reengineering cost. Promised
benefits must be balanced against this cost, preferably before the actual change(s)
take(s) place. In this paper we present an approach to assess the magnitude and

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 387-400, 2000
© Springer-Verlag Berlin Heidelberg 2000

388 G. Pods, S. Viaene, and G. Dedene

impact of information system reengineering, more precisely the amount of changesin
the enterprise model. An assessment of the effect of 'business process change'-driven
reengineering on the core layer of an information system provides complementary
quantitative information (apart from financial measures like ROI, etc.) to support
strategic decision making with respect to business re-positioning and business
transformation. Measurement allows assessing how 'big' the changes are, and thus
provides an objective means to compare aternatives.

Our approach is based on two concepts: business modeling and distance
measurement. First, a conceptual modeling method, called object-oriented business
modeling by contract [6], is used to model the AS-IS enterprise model (i.e. the model
before the business process change(s) take(s) place) and the TO-BE enterprise model
(i.e. the model asit would look like after the business process change(s)). Comparing
these models allows visualizing the changes that would be caused by reengineering.
Next, the distance between the models is measured to quantify the magnitude of the
changes. The basic assumption underlying our approach is that the larger the distance
between the AS-IS and TO-BE models, the larger the amount of changes that must be
handled, and thus the larger the impact and cost of information system reengineering.

This paper is organized as follows. Section 2 discusses previous work on distance
measurement in the context of software reengineering. Section 3 presents the
modeling and measurement aspects of our approach. In section 4 we discuss some
experiences in using our approach in the context of front-office system design.
Conclusions and topics for further research are presented in section 5.

2 Rdated Work

Distance measurement is of course not a new concept in the software reengineering
field. Such measurements have been used to cluster components of a software system
into subsystems or modules, for instance, to improve the modularity of the system [7],
or to reverse engineer the system (i.e. design recovery) [8]. They have also been used
to assess the cohesion of subsystems [9], again with the purpose of reengineering the
system. In other software engineering related fields, distance measurement has been
proposed as a technique for component reusability assessment [10] and component
retrieval [11].

Generaly, these approaches use distance measurement to assess the closeness
between two software entities in terms of the properties they have in common and the
properties that are unique to each of the entities. Most measures of 'closeness take
the form of a normalized similarity (or affinity) measure. Given a set of software
entities E (e.g. classes in an object-oriented system), a set of properties P (e.g. the
union of class methods in the system), and a function p mapping entities of E into
subsets of P (e.g. al methods defined in a class or used by the class), the degree of
similarity between A [0 E and B O E with respect to P is measured by

[p(A) n p(B)| @
[p(A) O pB)

This measure returns the relative amount of common properties between A and B.
The higher this value, the more similar A and B are with respect to P.

Sm(A,B) =

Distance Measures for Information System Reengineering 389

It is obvious that Sm works fine for purposes like cluster analysis and component
matching. However, we need a measure for the distance (and not the closeness)
between two software entities. In other words, we are not interested in the properties
that A and B have in common, but in the properties in which they are different.

A measure that puts more emphasis on the difference between A and B is the
dissimilarity measure Dis as proposed, for instance, in [9]

[p(A) O p(B)| ~|p(A) n p(B)| 2
[p(A) O p(B)| '

This measure however does not express the magnitude of the dissimilarity between
A and B. The measure is normalized and thus implicitly accounts for the relative
amount of common properties between A and B. For our research purpose we need to
guantify the absolute amount of differences between entities A and B, regardless of
how many properties they have in common.

An alternative measure is the distance measure Dist

Dist(A,B) = |p(A) 0 p(B)| =|p(A) n p(B)| = [p(A) —p(B)| +|p(B) — p(A)| . ®3)

This measure returns the cardinality of the symmetric difference between p(A) and
p(B). It focuses upon the changes that are needed to turn entity A into entity B, and
vice versa

Our approach to distance measurement uses measures of the form Dist. The
approach is different from previous research in the sense that distance measures
satisfy the metric axioms [12]. Working with metrics offers the additional advantage
that the measures can be formally validated within the framework of measurement
theory, asrequired by software measurement scientists[13], [14], [15].

Dis(A,B) =

3 A Distance-Based Change Assessment Approach

We first present a brief introduction to object-oriented business modeling by contract.
Next, a generic method to define distance measures for software entities is presented
and illustrated for OO business models.

3.1 OO Business Modeling by Contract

Object orientation has proven an excellent paradigm to model business processes
[16], [17]. Object-oriented enterprise models improve the communication between
business professionals and software engineers. Moreover, many OOAD methods (see
eg. [18], [19]) develop information systems starting from such models. The
enterprise model does not only describe the functioning of a business process; it is an
integral part of the specifications of the information system that supports the business
process. The object classes, identified during business modeling, take a prominent
place amongst the classes in the OO information system, once it is implemented.
Therefore, a comparison of the AS-1S and TO-BE enterprise models provides insight

390 G. Pods, S. Viaene, and G. Dedene

into business process changes as well as information system changes. Moreover, this
insight is gained before the actual changes take place.

The object-oriented business modeling by contract method [6] places much
emphasis on the concept of a 'business event', in so far as it has been classified as an
event-driven method [20]. At the highest level of abstraction, a business process is
seen as a sequence of occurrences of business events. The business entities affected
by these occurrences are modeled as business objects. Business objects and events
are further classified into types and subtypes (i.e. generalization / specialization).

Mathematically, each business object type is defined through the set of business
event types it is involved in. Object life cycle models are used to specify sequence
constraints on the participation of business objects into business events. They thus
model an important class of business rules. The communication and synchronization
between objects is modeled by means of common event participation (i.e. event
broadcasting instead of message passing). This principle aso alows modeling well-
known structural relationships between business object types (e.g. categorization,
aggregation, composition, association) in terms of existence dependency associations
and/or contract object typest| The main advantage of the existence dependency
concept is that the consistency between the static and dynamic aspects of the business
model can be formally verified.?

At lower levels of abstraction, business object types are given a class definition,
which can be gradually refined throughout the development process. Generalization /
specialization relationships between business object types are specified by means of
inheritance relationships between the corresponding classes. Existence dependency
associations are implemented through the data abstraction mechanism (e.g. by means
of attributes that are used as pointers to existence dependent and/or master classes).
The end result is a fully (and formally) specified object-oriented model of the
business process that acts at the same time as the kernel of a layered architecture for
the information system [22].

As an illustration, part of the specification for a (simplified) library's loan
circulation process is shown below. Fig. 1 presents the class diagram in UML
notation [23]. Table 1 is an object-event association matrix, showing which business
object types/ classes are affected by the occurrence of business events. The symbols
"C","M", and "E" indicate respectively that the occurrence of the business event (of
the type shown in the row header) creates, modifies or ends the life of a business
object (of the type shown in the column header).

1 A business object x is existence dependent on a business object y if x is during its life dways
associated to y (i.e. x cannot be created before y and it can no longer exist when the life of y
has ended). In alibrary for instance, each LOAN object is always associated to a particular
BOOK object. Therefore we say that the object type LOAN is existence dependent on the
object type Book. For the existence dependent object type (e.g. LOAN), the association with
the master object type (e.g. BOOK) is mandatory with a connectivity (cardinality, multiplicity)
of one.

2 The semantic integrity between the static business model (e.g. class diagram) and the dynamic
business model (e.g. object-event association matrix) is guaranteed when the existence
dependent object type is a subset of the master object type. Note that at this level of
abstraction business object types are defined as sets of business event types. For a formal
proof we refer to [21].

Distance Measures for Information System Reengineering 391

MEMBER

ITEM RESERVATION LOAN

4 0.* é é

NOT RENEW- || RENEWABLE
ABLE LOAN LOAN

0.1 0.1

1 1

VOLUME CopPY 1

Fig. 1. Classdiagram of alibrary

3.2 Distance Measuresfor OO Business M odels

Our approach to define distance measures for software entities has been fully
described elsewhere [24]. Here, wejust present the basic principles.

Two software entities can be different in many aspects. For each aspect that is
considered, a model or abstraction of the software entity is defined. The distance
between software entities A and B with respect to aspect X is then measured by the
count of elementary transformations (i.e. atomic changes of a given type) that are
minimally needed to transform the model of A (for X) into the model of B (for X).
The more elementary transformations that are needed, the larger the distance between
A and B, with respect to aspect X.

As an example, the distance between business object types vOLUME and COPY can
be expressed in terms of their involvement in business event types (cf. Table 1). The
relevant model of an object type is here the set of event typesit isinvolved in (i.e. all
event types having their entries marked in the column for the object type in the object-
event association matrix). Elementary transformations are of the type ‘adding an
event type or ‘removing an event type’. It can easily be seen that for voLUME and
COPY it takes minimally 12 such transformations. Hence, their distance with respect
to business event type involvement is 12.

The measure thus defined is of the form Dist as presented in section 2. The aspect
of distance X, i.e. business event type involvement, corresponds here to the set of
properties P in the general definition of Dist. The function p referred to in this
definition, maps the object types A and B into their mathematical definition. Hence,
the sets p(A) - p(B) and p(B) - p(A) contain the business event types that have to be
added or removed by means of elementary transformations. Consequently, the sum of
the cardinalities of these sets equals the minimum number of eementary
transformations that are needed to transform object type A into object type B, or vice
versa

392 G. Pods, S. Viaene, and G. Dedene

Table 1. Object-event association metrix for alibrary

ITEM
LOAN

VOLUME
COPY

RESERVATION
MEMBER
RENEWABLE_LOAN

NOT_RENEWABLE_LOAN

Acquire C
acq vol. C
acq_cop.
Catalogue M M
Sl E
sell vol. E
sell_cop.
Reserve
Cancel

Fetch

Register
Leave

Borrow
cr_nrloan M
cr_rloan M
Return M M
Lose
Lose vol. E
Lose cop E
Renew M

<0

ZIZ|IZ|m
ullulfe]

E
M

LI Z2 IS IO
0

We have defined sets of elementary transformation types for different kinds of
models like sets, multi-sets, matrices, state machines, etc. Similar notions for distance
between trees, strings, clusters, etc. can be found in the literature [25], [26], [27]. An
important result of our research is that this particular way of defining a distance
measure results in a function that satisfies the metric axioms. The good news is that
metric functions fit into the framework of measurement theory. According to [12],
metrics are homomorphic mappings of proximity structures into metric spaces, i.e.
they map an empirical notion of distance into a mathematical notion of distance.
Another result from measurement theory is that metrics define ordinal scales of
distance. They alow distance values to be ranked, which is useful when comparing
alternatives.

Distance Measures for Information System Reengineering 393

In [28] we further showed that distance measures based on counts of elementary
transformations represent a special type of proximity structure, i.e. segmentally
additive proximity structures. Such a representation results in the definition of ratio
scales of distance, which allows expressing distance values in ratios and percentages
[12].

It should be noted that metrics focus on the difference between two entities,
without regard to how much these entities have in common. We believe such a point
of view isjustified for the type of application described in this paper: to quantify the
amount of change in the enterprise model due to business process changes.

4 Applying the Approach to a Reference Framework
for Front-Office System Design

We applied our approach to a reference framework for front-office system design
[29]. This framework concerns the organization of the front-office, i.e. the part of a
service organization where the services required by a customer and offered by the
service provider are agreed upon. The framework is based on the concept of service
customization, as proposed by the management scientists Lampel and Mintzberg [30].
It distinguishes five types of front-office depending on the level of service
customization: pure standardization, segmented standardization, customized
standardization, tailored customization, and pure customization. Each type of front-
office requires its own specific information system to support its specific information
requirements. The framework proposes an object-oriented business model for each
type of front-office. These models can be used as reference models for actual front-
office system design.

The framework of de Vries is useful for companies wishing to introduce a front-
office organization and its supporting information system. It is aso useful as a
strategic management instrument for changing the service specification process.
Companies wishing to move to higher levels of service customization can use the
framework to reengineer their front-office system. However, before such a move is
decided on, companies must have an idea of the impact of the reengineering. Thisisa
question that can be addressed by our distance-based change assessment approach.

In a first sub-section we present the generic front-office enterprise models of de
Vries. The models in [29] were aready specified using the object-oriented business
modeling by contract method. For the sake of brevity, we only present here the static
business models, i.e. class diagrams in UML notation. In the next sub-section we
propose a distance measure for UML class diagrams. In a final sub-section the
measurement results are presented and analyzed.

4.1 Generic Front-Office Object Models

Overdll, the front-office needs product-information, process-information and
information on the customer-relationship. Table 2 shows for each level of service
customization and corresponding front-office type the type of information that is
needed.

394

G. Podls, S. Viaene, and G. Dedene

Table 2. Information model of front-office customer interaction of de Vries [29]

FRONT- DEGREE OF | RELATION- PRODUCT- PROCESS
OFFICE CUSTOM- RELATED RELATED RELATED
TYPE IZATION
Counter Pure Anonymous | End products | Delivery times
standardization | transactions for products
Onestopshop | Segmented [Characteristics | Assortments | Delivery times
standardization of market for assortments
segments
Field and Customized Customer Standard Available
inside service | standardization profiles components capacity
Control room Tailored Development Smallest Capacity
customization of the replicating unit | assignment
relationship
Symbiosis Pure Opportunities Design Implementation
customization | for partnership | knowledge | and outsourcing
opportunities

Fig. 2 presents the ‘counter’ model. The information needed for standardized

service transactions can be encapsulated in the SUPPLIER, SERVICE and TRANSACTION
classes in the diagram. For instance, descriptive attributes of the SERVICE class
include the service functionality description, price and warranty conditions and
service procedure descriptions. Transaction amounts and timestamps are descriptive
attributes of the TRANSACTION class.

Supplier

Transaction

Customer

Fig. 2. The counter model

A 'one-stop-shop' offers a specific assortment of services to customers depending
on the market segment to which they belong (Fig. 3). The essentia front-office
processes are the determination of market segments and assortments. Information
like segmentation criteria, assortment discount rates, etc. can readily be encapsulated
in the front-office enterprise classes.

Distance Measures for Information System Reengineering 395

1 Market 1
Segment
1
O..* 0“*
Assortment- Customer-
Segment assign| 0. * Segment assign
0.*
1 1
Assortment
(Trans. Type) 1 Customer
1 1
0.* 0. 0..*
) 1 0.* ! i 1
Supplier Grouping Transaction
0.*
1 0.x 0.*
) 1 0.-*|" Customer
Service Representative Contact

Fig. 3. The one-stop-shop model

According to de Vries et al. the 'one-stop-shop' model unfolds from the 'counter’
model. The primary effects of customization are the concepts of segmentation and
assortments.

The 'field and inside service' type of front-office is a clear extension of the ‘one-
stop-shop' (Fig. 4). To offer customized standardization the front-office is organized
into a field service (e.g. sales people) that is supported by an inside service. The
former is responsible for the customer relationships, whereas the latter is responsible
for profiling, matching, and the bundling and offering of services.

Figs. 5 and 6 show the models of the 'control room' and 'symbiosis' types of front-
office. The models clearly show that the emphasis shifts from product and process
related information to the customer relation. The 'control room' front-office aims to
establish a structural link with commercially attractive customers by means of tailored
customization. Within the bounds of the standard service design and delivery
process, the front-office representative and the customer specify the service to be
provided. In the 'symbiosis model the service provider and the customer collaborate
completely in the various steps of designing, acquiring, and producing customized
services.

42 A Distance Measure

A distance measure is needed for the UML class diagrams of Figs. 2 to 6. Note that
these diagrams are built from only two types of elements. classes and existence
dependency associations between classes. Note also that all associations are
characterised by the same connectivity constraints (i.e. mandatory with a connectivity
of 1 on one side and optional with a connectivity of many on the other side).

396 G. Pods, S. Viaene, and G. Dedene

1 Market Customer |1
Segment Profile
1 1
0.* 0. 0. 0.*
Assortment- Segment- 1| Customer-
Segment assign 0. Profile Match Profile assign
l 0..*
1 1
Assortment
(Trans. Type) 1 Customer
1
0.* 0. \0-* 0.*
. 1 0.* .) 1
Supplier Grouping Transaction
0.*
1 0.*
Standard Representative ! 27) Customer
component e Contact

Fig. 4. Thefield and inside service model

A set of elementary transformation types that is sufficient to express al different
types of atomic change in the UML class diagrams considered here, is the following:

t,: remove aclass from the diagram;
t,: add aclass to the diagram;

t,: remove an association;

t,: add an association.

The distance between any pair of front-office types, with respect to their static
business models (i.e. the UML class diagrams of Figs. 2 to 6), is measured by the
minimum number of elementary transformations of the typest, to t, that are needed to
transform one model into the other.

The application of a distance measure for software entities may require syntactic,
semantic and/or linguistic rules to decide on two entities being identical or not. We
assume here that gtrict class labeling conventions have been followed, such that
classes with the same name can be considered as identical. By convention, if part of
the class name is between brackets, then only this part is used for matching classes.
Associations are identical across models if the participating classes are also identical:
if classes C and C' are associated in model M,, and class C' is replaced by classC” in
model M,, without changing the connectivity constraints of the association with C,
then we also consider this association to be the same in M, and M,. Generally
however, removing a class implies that all the associations it is involved in are
removed as well.

4.3 Analysisand Discussion of M easurement Results

Table 3 shows the distance measurements between all possible pairs of generic front-
office object model. Asan example, consider the distance between the * control room’

Distance Measures for Information System Reengineering 397

model (Fig. 5) and the ‘symbiosis model (Fig. 6). The table shows that 12 atomic
changes are needed to transform one model into the other, or vice versa. Starting
from the ‘control room’, the classes STANDARD COMPONENT, STANDARD SERVICE,
TRANSACTION, REPRESENTATIVE and CUSTOMER CONTACT, and the associations
STANDARD SERVICE - GROUPING, STANDARD SERVICE - TRANSACTION, TRANSACTION -
CUSTOMER CONTACT and REPRESENTATIVE - CUSTOMER CONTACT are removed,
whereas the classes RESOURCE and ACTION, and the association ACTION - GROUPING
are added to obtain the ‘symbiosis' front-office model.

Customer
1
0.*
Standard service Control
(Trans. Type) 1 (Link)
1 1
0.*
0“*
_ 1 0.%] 0.*
Supplier Grouping Transaction 1
0.*
1 0.
Standard N 0.*|" " Customer
component Representative Contact

Fig. 5. The control room model

Table 3 can be used as a complementary evaluation instrument by companies
wishing to reengineer their front-office and supporting front-office information
system, in order to move to another level of service customization. Suppose for
instance that a service organization with a ‘counter’ office wishes to offer customized
services. The values of Table 3 suggest that a move towards segmented or
customized standardization requires a far greater impact on the front-office enterprise
model than a move towards the highest levels of service customization. The values
a so suggest that companies that gradually move towards the highest levels of service
customization will face more changes in the beginning of this process than in the end.
Note further the effect of the *triangle inequality’, i.e. one of the metric axioms. For
instance, whereas the distance between the ‘ one stop shop’ and the *‘ control room’ is
14 and the distance between the ‘control room’ and the ‘symbiosis model is 12, the
distance between the ‘one stop shop’ and the ‘symbiosis model is only 24, i.e. less
than 14 + 12. The *strict’ triangle inequalities observed in Table 3 strongly suggest
that it might be sub-optimal to move the level of service customization one step at a
time. A more drastic reengineering of the current front-office may pay off in the long
term.

The valuesin Table 3 must of course be interpreted with care. Moving to another
level of service customization and re-organizing the front-office requires more than
changing the front-office information system. Besides, the values only reflect the
amount of change required for the enterprise model layer in the architecture of the
front-office system. In the absence of further (empirical) studies, we can only assume

398 G. Pods, S. Viaene, and G. Dedene

that the impact on the other layers of the system architecture is proportiona to the
amount of enterprise model changes. The same remark holds for the reengineering
costs. It isfor instance assumed that each type of elementary transformation involves
the same reengineering cost, which is of course only an approximation of reality.
Finally, note that the generic object models of Figs. 2 to 6 are to be seen as domain
models, that must be instantiated for individual companies. The actual front-office
enterprise models might thus be different from the domain models proposed in the
reference framework. Asaconsequence, the distance values might be different too.

Customer

1

0.*
Project
(Link)

] 1 - i 0 1 .
Supplier Grouping Action

0.*
1

Resource

Fig. 6. The symbiosis model

Table 3. Distance values for the generic front-office object models in the reference framework
of de Vries

counter | onestop | field andinside | control room | symbiosis
shop service
counter 0 22 28 18 14
one stop shop 22 0 16 14 24
field and inside service 28 16 0 16 28
control room 18 16 16 0 12
symbiosis 14 24 28 12 0

5 Conclusionsand Further Research Topics

The approach presented in this paper provides information regarding the impact and
magnitude of information system reengineering caused by business process change.
Measuring the distance between the AS-1S and TO-BE models of a business process
helps quantifying the amount of change that is needed to reengineer the supporting
information system. We must note that further research, mainly empirical in nature,
is needed to relate this modeled and measured amount of change to management
variables like reengineering costs, migration costs, and risks (e.g. potential dataloss).

Distance Measures for Information System Reengineering 399

We also acknowledge that measuring static enterprise models, asin section 4, gives
only one view on the complex problem of ‘business process change-driven
information system reengineering. A balanced approach requires measuring a whole
array of static and dynamic product models, as well as process models, workflow
models, etc.

Our distance-based modeling and measurement approach can be applied in other
contexts too. In [24] a method is proposed to measure software attributes (e.g.
coupling, cohesion, size) in terms of distances between software product models, that
emphasize such attributes, and ‘reference’ models, that represent ‘ideal’ models for
the attributes. In [31] this method has been used to measure the reuse of object-
oriented business models. A topic of future research is to use distance measurement
in object-oriented business models for the identification of reusable business
(software) components [32]. In our opinion and experience, the concepts of distance
and metric are both flexible and formal, allowing them to be used in a variety of
software (re)engineering contexts.

Acknowledgements

Geert Poels is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium)(F.W.0.). Stijn Viaene holds the KBC Insurance Research Chair in Management
Information Systems at the Katholieke Universiteit Leuven. We wish to thank the anonymous
referees for their valuable comments.

References

1. Ciupke, O.: Automatic Detection of Design Problems in Object-Oriented Reengineering. In:
Proc. TOOL S99. Santa Barbara, Calif. (1999) 18-32

2. Sahraoui, H.A., Melo, W., Lounis, H., Dumont, F.: Applying Concept Formation Methods
to Object Identification in Procedural Code. In: Proc. 12th Int'l Automated Software Eng.
Conf. (ASEC'97). Incline Village, Nev. (1997) 210-218

3. Davenport, T.H., Short, J.E.: The New Industrial Engineering: Information Technology and
Business Process Redesign. Sloan Management Review. 31 (1990) 11-27

4. Hammer, M., Champy, J.. Reengineering the Corporation, A Manifesto for Business
Revolution. Harper, New Y ork (1993)

5. Zachman, JA.: A framework for information architecture. IBM Systems J. 26 (1987) 276-
292

6. Snoeck, M., Dedene, G., Verhelst, M., Depuydt, A.: Object-Oriented Enterprise Modelling
with MERODE. University Press, Leuven (1999)

7. Brito e Abreu, F., Peirera, G., Sousa, P.: Reengineering the Modularity of Object-Oriented
Systems. In: Proc. ECOOP'98, Workshop Reader, Workshop on Techniques, Tools and
Formalisms for Capturing and Assessing the Architectural Quality in Object-Oriented
Software. Brussels (1998) 62-63

8. Tzerpos, V., Holt, R.C.: Software Botryology: Automatic Clustering of Software Systems.
In: Proc. Int'l Workshop on Large Scale Software Composition. Vienna (1998)

9. Simon, F., Loffler, S., Lewerentz, C.: Distance Based Cohesion Measuring. In: Proc. 2nd
European Software Measurement Conf. Amsterdam (1999) 69-83

10.Castano, S., De Antonellis, V., Zonta, B.: Classifying and Reusing Conceptual Schemas. In:
Proc. 11th Int’| Conf. on Conceptual Modelling (ER'92). Karlsruhe (1992) 121-138

400 G. Pods, S. Viaene, and G. Dedene

11.Jilani, L.L., Mili, R., Mili, A.: Approximate Component Retrieval: An Academic Exercise
or a Practical Concern? In: Proc. 8th Workshop on Ingtitutionalising Software Reuse
(WISRS8). Columbus, Ohio (1997)

12.Suppes, P., Krantz, D.M., Luce, R.D., Tversky, A.: Foundations of Measurement:
Geometrical, Threshold, and Probabilistic Representations. Academic Press, San Diego,
Calif. (1989)

13.Briand, L., El Emam, K., Morasca, S.: Theoretical and Empirical Validation of Software
Product Measures. Tech. rep. ISERN-95-03, International Software Engineering Network
(1995)

14.Fenton, N., Pfleeger, SL.,: Software Metricss. A Rigorous and Practica Approach.
International Thomson Computer Press, London (1997)

15.Zuse, H.: A Framework for Software Measurement. Walter de Gruyter, Berlin (1998)

16.Wang, S.: OO Modeling of Business Processes: Object-Oriented Systems Anaysis.
Information Systems Management. (1994) 36-43

17.Dedene, G., Snoeck, M.: Generic Object Models and Business Process (Re)Design. Tech.
rep. DTEW 9667, Catholic University of Leuven (1996)

18.Jacobson, I., et a.: Object-Oriented Software Engineering, A Use Case Driven Approach.
Addison-Wesley, Reading, Mass. (1992)

19.D’'Souza, D.F., Wills, A.C.. Objects, Components, and Frameworks with UML: The
Catalysis Approach. Addison-Wesley, Reading, Mass. (1998)

20.Simons, A.JH., Snoeck, M., Hung, K.S.Y.: Design Patterns as Litmus Paper to Test the
Strength of Object-Oriented Methods. In: Proc 5th Int'l Conf. on Object Oriented
Information Systems (OOIS 98). Paris (1998)

21.Snoeck, M., Dedene, G.: Existence Dependency: the key to semantic integrity between
structural and behavioural aspects of object types. IEEE Trans. Software Eng. 24 (1998)
233-251

22.Poels, G.: Evduating the Modularity of Model-Driven Object-Oriented Software
Architectures, In: Proc. ECOOP 98, Workshop Reader, Workshop on Techniques, Tools
and Formalisms for Capturing and Assessing the Architectural Quality in Object-Oriented
Software. Brussels (1998) 52-53

23.Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading, Mass. (1999)

24.Poels, G., Dedene, G.: Distance-based software measurement: necessary and sufficient
properties for software measures. Information and Software Technology. 42 (2000) 35-46

25.Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and
related problems. Siam J. on Computing. 18 (1989) 1245-1262

26.0ommen, B.J,, Zhang, K., Lee, W.: Numerical Similarity and Dissimilarity Measures
Between Two Trees. |EEE Trans. on Computers, 45 (1996) 1426-1434

27.Tzerpos, V., Holt, R.C.: MoJo: A Distance Metric for Software Clusterings, In: Proc. 6th
Working Conf. on Reverse Engineering (WCRE’ 99). Atlanta (1999)

28.Poels, G., Dedene, G.: Modelling and measuring object-oriented software attributes with
proximity structures, In: Proc. 3rd Int'l Workshop on Quantitative Approaches in Object-
Oriented Software Eng. Lisbon (1999) 1-22

29.de Vries, E.J.,, Maes, R., Dedene, G., Viaene, S, Poels, G., Snoeck, M.: Object Models for
Customer Relations in the Front-Office. Tech. rep. PrimaVera 98-11, University of
Amsterdam (1998)

30.Lampel, J., Mintzberg, H.: Customizing Customization, Sloan Management Review. 38
(1996)

31.Snoeck, M., Poels, G., Dedene, G.: Reusing Business Models. Tech. rep. DTEW 9934,
Catholic University of Leuven (1999)

32.Poels, G., Dedene, G.: Moving from OOAD to COAD. In: Proc. 8th Object Technology
Conf. (OT’2000). Oxford (2000)

	1	Introduction
	2 Related Work
	3	A Distance-Based Change Assessment Approach
	3.1 OO Business Modeling by Contract
	3.2	Distance Measures for OO Business Models

	4	Applying the Approach to a Reference Framework	� for Front-Office System Design
	4.1	Generic Front-Office Object Models
	4.2 A Distance Measure
	4.3	Analysis and Discussion of Measurement Results

	5	Conclusions and Further Research Topics
	References

