
Temporally Faithful Execution
of Business Transactions

Werner Obermair1 and Michael Schrefl2

1 Institut für Wirtschaftsinformatik
Universität Linz, Austria

obermair@dke.uni-linz.ac.at
2 School of Computer and Information Science

University of South Australia, Australia
schrefl@cs.unisa.edu.au

Abstract. Serializability is a prominent correctness criterion for an in-
terleaved execution of concurrent transactions. Serializability guarantees
that the interleaved execution of concurrent transactions corresponds to
some serial execution of the same transactions. Many important business
applications, however, require the system to impose a partial serialization
order between transactions pinned to a specific point in time and con-
ventional transactions that attempt to commit before, at, or after that
point i n time. This paper introduces temporal faithfulness as a new cor-
rectness criterion for such cases. Temporal faithfulness does not require
real-time capabilities but ensures that the serialization order of a set of
business transactions is not in conflict with precedence requirements be-
tween them. The paper also shows how a temporally faithful transaction
scheduler can be built by extending proven scheduling techniques.

1 Introduction

Transaction processing as it is discussed widely in literature and as it is sup-
ported in many commercial systems follows a prominent principle: Concurrent
transactions are executed in an interleaved manner and serializability is used
as the correctness criterion for the interleaving. This means that an interleaved
execution of concurrent transactions is considered correct if it produces the same
output and has the same effect on the database state as some serial execution
of the same transactions. O f course, not all serial executions produce the same
output and have the same effect.

Important business applications are not supported appropriately if trans-
action processing follows this principle. Consider the following scenario: In a
trading system, a trader intends to adjust the selling price of a product at 12:00
noon. The trader intuitively expects that sales transactions performed before
12:00 noon should be performed on the old selling price, and that sales transac-
tions performed after 12:00 noon should be performed on the new selling price.
In deciding whether a sales transaction i s performed before or after 12:00 noon,
the trader considers relevant the point in time when the customer commits to

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 462–481, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Temporally Faithful Execution of Business Transactions 463

a sale, i.e., when the customer decides to buy. This point in time corresponds
to the “handshake” between the seller and buyer in a traditional sales transac-
tion; in a computer-based trading sytem, this point in time corresponds to the
attempt to commit the sales transaction. If the attempt to commit the sales
transaction is placed before 12:00 noon, the sales transaction has to be performe
d on the old selling price and, therefore, serialized before the adjusting transac-
tion. If the attempt to commit the sales transcation is placed after 12:00 noon,
the sales transaction has to be performed on the new selling price and, therefore,
serialized after the adjusting transaction.

We refer to transactions as contained in the described scenario as business
transactions. Business transactions require a combination of concepts that is
not yet appropriately provided by current transaction execution models. From
a user’s perspective, the required concepts are:

First, business transactions behave as if executed instantaneously. Although
they may be actually executed over some time period, the end user will assume
that each business transaction is performed at a particular point in time.

Second, business transactions can be linked to wall-clock time. This point
in time indicates when the transaction is performed from the perspective of the
end user, regardless when it is actually executed internally.

Third, two types of business transactions can be distinguished. Those which
are performed (from the user’s point of view) at a specific wall-clock time and
those which are performed at the wall-clock time of the “handshake”, i.e., at the
request to commit the business transaction.

Fourth, real-time capabilities are not required. It is sufficient that the effect
of the execution of a set of business transactions is the same as if each transaction
had been executed instanteneously at its specified wall-clock time.

How can this desired semantics of business transactions be achieved in a
system that guarantees only that the interleaved execution of concurrent trans-
actions corresponds to some serial execution? In our scenario, starting the ad-
justing transaction at 12:00 noon is not sufficient. The transaction execution
may be delayed due to concurreny conflicts, and there may be sales transactions
reading the old price but attempting to commit after 12:00 noon. A solution for
this particular case would be to incorporate the price of a product as a time-
stamped attribute (perhaps in a historical database). The price change could
have been recorded proactively, and sales transactions could read the current
selling price just before they attempt to commit. This solution, however, is not
general since it may not be applied in cases in which the time critical update
relies on a complex computation. For example, consider the case that the new
product price should be determined through an analysis of the market as it is
at 12:00 noon. The market at 12:00 noon cannot be anticipated and, thus, no
proactive price change can be recorded. Also using some form of multi-version
concurrency control will not be sufficient as such, since multi-version concurrency
control is typically based on internal processing time rather than on real-world
time. Business transactions are better supported by a system that provides a
general mechanism for influencing the order in which transactions are serialized.



464 W. Obermair and M. Schrefl

In this paper, we present such a general mechanism. Its key advantage is that
it is based on standard concurrency control techniques and applicable to conven-
tional database systems. As such it does neither rely on sophisticated, special
concurrency control mechanisms (such as multi-version concurrency control) nor
does it require specialized database systems (such as temporal or real-time).

We introduce a new category of transactions, so-called pinned transactions.
A user who submits a pinned transaction gives the transaction an explicit time-
stamp. If a pinned transaction needs to be aborted internally during its pro-
cessing (e.g., because of a deadlock), the transaction is automatically restarted
with the same timestamp. In our example scenario, the transaction adjusting
the selling price would be a pinned transaction with timestamp 12:00 noon. Also
conventional transactions, we refer to them as unpinned transactions, receive
timestamps. The timestamp of an unpinned transaction is not given by a user,
but is the current reading of the system clock when the transaction attempts
to commit. If an unpinned transaction needs to be aborted internally during
its processing, it is the user who decides whether to restart or to dismiss the
transaction. A user who decides to commit an unpinned transaction relies on
the database state as it is at the attempt to commit. It cannot be assumed t
hat the user decides to issue the attempt to commit again if the database state
has changed after a restart. In our example scenario, sales transactions would be
unpinned transactions receiving as timestamps the reading of the system clock
when they attempt to commit.

The timestamps associated with transactions do not mean that the trans-
actions are executed real-time at the indicated points in time. A less stringent
criterion than real-time execution is sufficient for many business applications:
temporal faithfulness. Timestamps are interpreted as precedence requirements
and temporal faithfulness means that the serialization of transactions follows
these precedence requirements. Although possibly laging behind real time, a
system that behaves in a temporally faithf ul manner guarantees the expected
serialization order. Reconsider the transaction adjusting the selling price of a
product upon an analysis of the market as it is at 12:00 noon: If this pinned
transaction is still running after 12:00 noon, unpinned sales transaction carrying
a later time stamp but incorrectly relying on the old selling price are prevented
from committing. Moreover, if such an uncommitted sales transaction keeps the
adjusting transaction from committing (e.g., because of a lock conflict), th e
sales transaction is aborted.

We first encountered the need for a temporally faithful execution of transac-
tions when we developed an execution model for rules on business policies in [9].
Rules on business policies express how an external observer, e.g., a swift clerk,
could monitor calendar time and the database state to recognize predefined sit-
uations and to react to them accordingly in order to meet a company’s business
policy. They are formulated according to the event-condition-action structure of
rules in acti ve database systems [4] and can be classified into two categories,
(1) rules that are executed asynchronously to user transactions and (2) rules
that are executed “immediately” upon temporal events. The second rule cate-



Temporally Faithful Execution of Business Transactions 465

gory is not supported appropriately by the execution models of existing active
database systems. Existing active database systems allow to react upon tempo-
ral events only by starting independent transactions without any possibility to
predict when the reaction will actually be committed to the database. A rule of
the second category, however, relies on a temporally faithful execution of trans-
actions where the execution of the rule is reflected by a pinned transaction. For
details on rules on business policies and their execution semantics see [9].

The remainder of this paper is organized as follows: Section 2 introduces the
concept of temporal faithfulness. Section 3 establishes a theory for a concurrent
and temporally faithful execution of transactions. Section 4 outlines a scheduler
that provides for a temporally faithful execution of transactions and that is based
on strict two-phase locking. Section 5 concludes the paper by summarizing its
main achievements and by outlining future work .

2 Temporal Faithfulness

In this section, we introduce the concept of temporal faithfulness. Section 2.1
starts with the presentation of the time model underlying our timestamping
mechanism. Section 2.2 discusses the precedence requirements imposed by the
timestamps assigned to transactions. Section 2.3 relates temporal faithfulness
with concepts presented in the diverse literature.

2.1 Time Model

The timestamps assigned to pinned transactions bear application semantics.
Timestamps have to be meaningful for users. Time as it is perceived by users
may be of a coarser granularity than it is supported in some database system. In
other words, the temporal unit that is not further decomposable from a user’s
perspective can often be of a coarser granularity than the temporal unit defined
by two successive clock ticks of an internal clock of some target system. E.g.,
timestamps showing only minutes but not seconds are sufficient for many busi-
ness applications. We consider time as a finite sequence of chronons. A chronon
is the smallest temporal unit that is not further decomposable from a user’s
perspective. The timestamps that are assigned to transactions—either explicitly
in the case of pinned transactions, or upon their attempt to commit in the case
of unpinned transactions—are of the same granularity as chronons. This means
that several transactions will share a common timestamp.

2.2 Precedence Requirements

Timestamps that are associated with transactions impose precedence require-
ments that induce a partial execution order. For the sake of simplicity, we as-
sume an execution model in which transactions are executed serially. We will
relax this assumption in Sect. 3.



466 W. Obermair and M. Schrefl

If a transaction t has a lower timestamp than another transaction t′, temporal
faithfulness requires that t has to be executed before t′. Irrespective of chronon
length, there may be several transactions that share a common timestamp. Even
if chronons are extremely short, the timestamp given to a pinned transaction by
an external user may coincide with the point in time at which an unpinned trans-
action requests to commit. Several pinned transactions with the same timestamp
cannot be further distingu ished and, therefore, no precedence requirements can
be identified among them. Correspondingly, also several unpinned transactions
with the same timestamp can be executed in an arbitrary order. Pinned and
unpinned transactions sharing a common timestamp, however, may be related
in different ways:

1. Head policy: All pinned transactions are performed before all unpinned
transactions. In this policy, the unpinned transactions are performed on a
database state that reflects the updates of the pinned transactions. Scenarios
can be drawn in which this execution semantics is favourable.

Example 1. Consider a pinned transaction that updates selling prices at
12:00 noon upon market analysis. This pinned transaction is expected to
be performed before any unpinned sales transaction attempting to commit
during the chronon from 12:00 to 12:01 noon. The sales transactions should
be performed on the new price.

2. Tail policy: All pinned transactions are performed after all unpinned trans-
actions. In this policy, the pinned transactions are performed on a database
state that reflects the updates of all unpinned transactions. Favourable sce-
narios can be drawn, too.

Example 2. Consider a transaction pinned to 11:59 a.m. that publishes the
selling prices and computes the morning sales figures. This pinned transac-
tion is expected to be performed after all unpinned sales transactions at-
tempting to commit during the chronon from 11:59 a.m. to 12:00 noon. The
sales performed during the last chronon of the morning should be reflected
in the sales figures.

3. Don’t care policy: Pinned transactions and unpinned transactions are exe-
cuted in arbitrary order. If a pinned transaction precedes some unpinned
transactions with the same timestamp and succeeds some others, it is not
predictable on which database states transactions are executed. We did not
encounter any realistic application scenario that is best supported by the
don’t care policy and believe that this case is probably not relevant in prac-
tice.

We support the head policy and the tail policy by introducing two kinds
of pinned transactions: transactions that are pinned to the begin of a chronon
(head transactions) and transactions that are pinned to the end of a chronon
(tail transactions). One may argue that a tail transaction t pinned to the end
of chronon i (case 1) could be replaced by a head transaction t′ pinned to the



Temporally Faithful Execution of Business Transactions 467

begin of chronon i + 1 (case 2). This is not true for the following reason: In the
first case, all head transactions pinned to the begin of chronon i + 1 work on
a database state that reflects the changes performed by t, in the second case,
there may be some head transactions pinned to the begin of chronon i + 1 that
are executed before t′ since transactions of the same kind sharing a common
timestamp are performed in any order.

From the view point of a chronon i—lasting from clock-tick i to clock-tick
i+1—there are transactions pinned to the begin of chronon i (head-transactions,
Hi), unpinned transactions attempting to commit during i (body-transactions,
Bi), and transactions pinned to the end of chronon i (tail-transactions, T i).

2.3 Related Work

Timestamps that are associated with transactions have a long tradition in trans-
action processing: They are employed in timestamp ordering as a concurrency
control mechanism or in deadlock prevention without risking livelocks. The com-
mit time of transactions is often used as transaction time in rollback or bi-
temporal databases. Commit-time timestamping guarantees transaction-consis-
tent pictures of past states of a database ([11]). In all those cases, however, the
timestamps assigned to tra nsactions are generated by the database system and
do not bear application semantics.

Georgakopoulos et al. [7] introduce transaction timestamps that bear appli-
cation semantics. They call their timestamps “value-dates”. By means of value-
dates, Georgakopoulos et al. specify “succession dependencies”. Like precedence
requirements in our model, succession dependencies do not impose real-time
constraints on the execution of transactions, but they influence the ordering of
transactions. If a succession dependency is specified between two transactions,
the two transacti ons are serialized in the requested order irrespective whether
they conflict in their operations or not. This is an important difference to tempo-
ral faithfulness where a precedence requirement influences only the ordering of
conflicting transactions. Disregarding other transactions, two transactions that
do not conflict in their operations can be serialized in an arbitrary order in a
temporally faithful setting. We will discuss this in detail in Sect. 3.

Finger and McBrien [6] introduce “perceivedly instantaneous transactions”
for valid-time databases. For a perceivedly instantaneous transaction it is guar-
anteed that “current time” (usually referred to as now) remains constant during
its execution. The point in time at which a transaction is submitted is taken as
the transaction’s value of now. Transactions that conflict in their operations are
serialized according to their values of now, i.e., according to their subm ission
points. Contrary to our approach, timestamps assigned to transactions do not
bear application semantics in the approach of Finger and McBrien. Further, all
transactions are timestamped in the same way. This is an important difference to
our approach where usually a high number of unpinned transactions is serialized
around a few pinned transactions.

The specification of temporal transaction dependencies has been discussed in
the literature also without using timestamps. For example: Ngu [10] builds prece-



468 W. Obermair and M. Schrefl

dence graphs that reflect temporal dependencies. Dayal et al. [5] use rules as they
are provided by active database systems to specify the ordering of transactions.
They do this by specifying rules that are triggered by transaction events and by
exploiting the capabilities of coupling modes (cf. [3]). The bas ic limitation of
these approaches is that all related transactions must be known in advance. Our
model is by far more modular and general: A transaction can be pinned to a
point in time without the need to consider all the transactions that potentially
may be executed around the critical point in time.

3 Theory of Concurrent
and Temporally Faithful Histories

A theory to analyze the concurrent temporally faithful execution of transactions
can be formulated similarly to the classical serializability theory (cf. [1]). We will
establish our theory through the following steps: First, we will define the condi-
tions under which a serial history is temporally faithful. Then, we will recall the
conditions under which two histories are equivalent, and we will define a history
to be temporally faithfully serializable—and thus correct—if it is equivalent to
a temporally faithful serial history. Finally, we will show how it can be tested
whether a history is temporally faithfully serializable.

A history covers a set of chronons C and a set of transactions T where T
contains all committed transactions t1, t2, . . . , tn that are time-stamped with a
chronon in C. History h indicates the order in which the operations of t1, t2, . . . , tn
are executed. T can be subdivided into disjoint subsets according to two dimen-
sions: (1) For every chronon c (c ∈ C) there is a subset Tc containing the trans-
actions time-stamped with c. (2) According to the transactio n categories, T
can be subdivided into a set of head-transactions Th, body-transactions T b, and
tail-transactions T t. Combining the two dimensions, for every chronon c (c ∈ C)
there is a set Th

c containing the head-transactions that are pinned to the begin
of c, a set T b

c embracing the body-transactions that attempt to commit during
c, and a set T t

c containing the tail-transactions that are pinned to the end of c.

Definition 1. A history is temporally faithfully serial if it is serial, if it observes
timestamps, and if it observes priorities:

1. A history is serial if, for every two transactions ti and tj, either all oper-
ations of ti are executed before all operations of tj or vice versa. Thus, a
serial history represents an execution in which there is no interleaving of the
operations of different transactions.

2. A history observes timestamps if, for every two transactions ti ∈ Tck
and

tj ∈ Tcl
where ck < cl, ti is executed before tj. Thus, timestamp obser-

vation requires that transactions with different timestamps are executed in
timestamp order.

3. A history observes priorities if (1) for every two transactions ti ∈ Th
ck
and

tj ∈ T b
ck

∪ T t
ck
, ti is executed before tj and if (2) for every two transactions

ti ∈ T b
ck
and tj ∈ T t

ck
, ti is executed before tj. Thus, priority observation



Temporally Faithful Execution of Business Transactions 469

requires that head-transactions are executed before body- and tail-transactions
and that body-transactions are executed before tail-transactions if they have
the sam e timestamp.

Example 3. We examine histories over the set of chronons C = {c1, c2} and the
set of transactions T = {t1, t2, t3, t4, t5} with1

t1 = r1[x] → w1[x]
t2 = r2[z] → w2[z]
t3 = r3[y] → r3[x] → w3[y]
t4 = r4[z] → r4[x] → w4[z]
t5 = r5[y] → w5[y]

where Th
c1

= {}, T b
c1

= {t1}, T t
c1

= {}, Th
c2

= {t2}, T b
c2

= {t3, t4}, and T t
c2

= {t5}.
Different timestamps and different priorities impose precedence requirements

on the transactions contained in T . Figure 1 shows the imposed precedence re-
quirements graphically. A circle depicts a transaction, an arrow from a trans-
action ti to a transaction tj indicates that ti has to be performed before tj .
In our example: Timestamp observation requires for a temporally faithfully se-
rial history that transaction t1 is executed before transactions t2, t3, t4, and t5.
Priority observation requires that head-transaction t2 is executed before body-
transactions t3 and t4 and before tail-transaction t5 and that body-transactions
t3 and t4 are executed before tail-transaction t5.

t1 t2

t3

t5

t4

Fig.1. Precedence requirements imposed by timestamps and priorities

Definition 2. Two histories h and h′ are equivalent if (1) they cover the same
set of transactions performing the same operations, and if (2) they order con-
flicting operations in the same way. The second condition requires that for any
conflicting operations oi belonging to transaction ti and oj belonging to transac-
tion tj, their execution order in h corresponds with their execution order in h′.
(This definition follows the basic serializability theory, cf. [1]).

Definition 3. A history is temporally faithfully serializable (TFSR) if it is
equivalent to a temporally faithfully serial history.
1 We denote the ordering of operations within a transaction or history by means of
arrows (→).



470 W. Obermair and M. Schrefl

Whether a history is temporally faithfully serializable can be determined by
checking an extended form of a serialization graph (SG), a so-called temporally
faithful serialization graph (TFSG), for cycles. Like an SG, a TFSG is a directed
graph whose nodes are the transactions covered by the analyzed history. The
edges of a TFSG, however, do not represent only precedence requirements im-
posed by conflicts, but also precedence requirements imposed by different time-
stamps and priorities. Throughout the rest of this paper, we refer to precedence
requirements imposed by different timestamps or different priorities as temporal
precedence requirements.

A TFSG is built in two steps:

1. An SG is built by introducing edges that represent precedence requirements
imposed by conflicts. An SG for a history h contains an edge from transaction
ti to transaction tj (i �= j) if ti issues an operation oi that conflicts with an
operation oj of tj and if oi precedes oj in h. An edge from ti to tj expresses
that ti has to precede tj in a serial history equivalent to h. According to the
classical Serializability Theorem, an equi valent serial history can be found—
and thus a history is serializable—iff its serialization graph is acyclic (for the
Serializability Theorem and a proof see [1]). An acyclic SG means that the
precedence requirements imposed by conflicts do not contradict each other.

Example 4. We continue the above example. Consider the histories:

h1 = r5[y] → w5[y] → r2[z] → r3[y] → r3[x] → w2[z] → r4[z] → w3[y] →
r1[x] → r4[x] → w1[x] → w4[z]

h2 = r1[x] → r2[z] → w1[x] → r3[y] → w2[z] → r4[z] → r3[x] → r4[x] →
w4[z] → w3[y] → r5[y] → w5[y]

Figure 2 shows the SG for history h1 in part (a) and the SG for history
h2 in part (b). The edges representing precedence requirements imposed
by conflicts are shown as solid lines. Both graphs are acyclic, i.e., for both
histories equivalent serial histories can be found.

2. The SG is extended to a TFSG by adding edges that represent temporal
precedence requirements. Since a cyclic SG implies a cyclic TFSG, this sec-
ond step is applied only if the SG of a history is acyclic, i.e., if the history is
serializable. To capture different timestamps, for every pair of transactions
(ti, tj) with ti ∈ Tck

, tj ∈ Tcl
and ck < cl, there is an edge from ti to tj .

To capture different priorities, for every pair of transactions (ti, tj) with (1)
ti ∈ Th

ck
and tj ∈ T b

ck
∪T t

ck
, or with (2) ti ∈ T b

ck
and tj ∈ T t

ck
, there is an edge

from ti to tj . If a TFSG is built according to these rules, the TFSG contains
also all edges implied by transitivity: If there is an edge from tj to tk and
an edge from tk to tl, there is necessarily an edge from tj to tl. We draw
edges implied by transitivity since they allow to efficiently decide whether a
TFSG is acyclic (see below).

Example 5. We continue the above examples: Figure 2 (c) shows the TFSG
for h1 and Fig. 2 (d) shows the TFSG for h2. The edges representing temporal
precedence requirements are shown as dashed lines.



Temporally Faithful Execution of Business Transactions 471

(c) (d)

t1 t2

t3

t5

t4

(a) (b)

t1 t2

t3

t5

t4

t1 t2

t3

t5

t4

t1 t2

t3

t5

t4

Fig.2. Building TFSGs (example)

A history is TFSR if there are no contradicting precedence requirements.
Precedence requirements contradict, for example, if conflicts require transaction
ti to be executed before transaction tj in a serial execution whereas timestamp
observation requires tj to be executed before ti. Contradicting precedence re-
quirements become visible in TFSGs as cycles. This can be summarized in a
theorem closely related with the classical Serializability Theorem:

Theorem 1. A history is TFSR iff its TFSG is acyclic.

Proof. See Appendix.

Example 6. We continue the above examples: Figure 2 shows that the TFSG of
h1 contains cycles. History h1 is not TFSR since the precedence requirements
imposed by timestamps and priorities contradict the precedence requirements
imposed by conflicts. The TFSG of h2, however, is acyclic. History h2 is TFSR
since the precedence requirements imposed by timestamps and priorities do not
contradict the precedence requirements imposed by conflicts.

Cycles can be detected efficiently in a TFSG if their characteristics are ex-
ploited:

Lemma 1. Every cycle in a TFSG contains at least one edge representing a
precendence requirement imposed by a conflict.

Proof. See Appendix.

Cycles that can be detected efficiently are cycles of length two. In fact, it
can be shown that the existence of a cycle of an arbitrary length in a TFSG
of a serializable history implies the existence of a cycle of length two. This is
captured by the following theorem:



472 W. Obermair and M. Schrefl

Theorem 2. A TFSG of a serializable history is acyclic if it does not contain
a cycle of length two.

Proof. See Appendix.

Corollary 1. A serializable history is TFSR if the serialization of every pair of
conflicting transactions (ti, tj) is in accordance with possible temporal precedence
requirements between ti and tj.

Proof. See Appendix.

This insight reduces the effort of building a TFSG. In order to decide whether
a serializable history is TFSR, it is sufficient to introduce an edge representing a
temporal precedence requirement only if the two involved transactions conflict.
Temporal precedence requirements between transactions that do not conflict can
be neglected. If no cycle (of length two) arises, the history is TFSR.

4 A Temporally Faithful Scheduler

This section presents a scheduler that provides a temporally faithful and of course
serializable execution of concurrent transactions. First, we select strict two-phase
locking as the basis for discussing a temporally faithful scheduler. Then, we
present a temporally faithful scheduler built on strict two-phase locking. Finally,
we sketch possible enhancements to the presented scheduler.

4.1 Rationale

Similar as serialization-graph testing (SG-testing) can be used in conventional
systems to ensure serializability, TFSG-testing could be used to ensure temporal
faithfulness. SG-testing is rarely used in conventional systems. It suffers from
the considerable overhead of maintaining a graph and checking for cycles. Since
TFSG-testing implies SG-testing, TFSG-testing suffers from the same problems
and does not seem promising. One of the most prominent scheduling techniques,
implemented by many commercial data base systems, is strict two-phase locking
(strict 2PL). We select strict 2PL as the basis for our considerations since we
want to discuss temporally faithful scheduling on a broad and well known basis.

Strict 2PL guarantees serializability of a produced history. An add-on is
necessary to achieve temporal faithfulness. The add-on has to ensure that the
serialization order imposed by the underlying 2PL scheduler does not contra-
dict the temporal precedence requirements. As we have shown in Corollary 1, a
serializable history is TFSR if the serialization of every pair of conflicting trans-
actions (ti, tj) is in accordance with possible temporal precedence requirements
between ti and tj . Thus, the add-on has to check only the serialization order of
pairs of conflicting transactions.

In strict 2PL, conflicts occur only between two transactions that run concur-
rently. Only then, a lock conflict arises if the two transactions try to perform



Temporally Faithful Execution of Business Transactions 473

conflicting operations. When a conventional strict 2PL scheduler encounters a
lock conflict, the scheduler forces the requesting transaction (requester) to wait
until the holding transaction (holder) releases its locks, which temporally coin-
cides with the commit of the holding transaction. The scheduler serializes the
requester after the holder. In a te mporally faithful setting, this may contra-
dict the temporal precedence requirements between the involved transactions.
A temporally faithful scheduler has to behave according to the principle “abort
holder if younger”. If the holder of a lock has a higher timestamp or the same
timestamp but a lower priority than the requester of an incompatible lock, the
holder has to be aborted. Otherwise, the requester has to be blocked.

If two transactions do not run concurrently, an existing conflict between
them does not become visible. A way to avoid that conflicts are missed is to
delay the commit of transactions. A temporally faithful scheduler built on strict
2PL cannot grant the commit of a transaction t before it is sure that no lock
conflict can arise upon which t would have to be aborted. No such lock conflict
can arise after all transactions that have a lower timestamp than t or that have
the same timestamp as t but a hi gher priority are committed.

Example 7. Consider a tail-transaction with timestamp 11:59 a.m. that pub-
lishes the selling prices and computes the morning sales figures. Further, consider
a head-transaction with timestamp 12:00 noon that adjusts the selling prices of
all items according to market analysis. Obviously, the two transactions conflict,
and the tail-transaction has to be serialized before the head-transaction. Assume
that the head-transaction attempts to commit already at 11:58 a.m. since it has
been pre-scheduled (see below). If the c ommit is granted and the locks are re-
moved, conflicts between the transactions do not become visible. The commit
of the head-transaction has to be delayed until all transactions with a lower
timestamp and all transactions with the same timestamp but a higher priority
are committed. Only then, a lock conflict arises and the head-transaction can be
aborted (and restarted).

In a system where a commit is not granted immediately, the point in time
when the execution of a pinned transaction is started influences the system’s
behavior significantly. The start time determines whether a pinned transaction
may have to wait for its commit rather long or whether other transactions may
have to wait for the commit of the pinned transaction. Two extreme approaches
in starting pinned transactions are:

1. Full pre-scheduling: A pinned transaction is started immediately when it is
submitted. This approach may be inefficient if the transaction is submitted
pro-actively long before its timestamp. Then, the transaction has to wait
rather long for its commit and has to be aborted every time it runs into a
lock conflict with a transaction carrying a lower timestamp.

2. No pre-scheduling: A pinned transaction is started only after all transactions
that have to precede it are committed (i.e., the transaction is not “pre-
scheduled”). This approach may be inefficient if the transaction performs



474 W. Obermair and M. Schrefl

time-consuming operations. Then, other transactions will have to wait rather
long for the commit of the pinned transaction.

Both approaches are not satisfactory for all application scenarios. Different
application scenarios need different start times for pinned transactions. There-
fore, we assume that the user who submits a pinned transaction specifies the
point in time when the transaction has to be started. Depending on the nature
of a transaction, the user may use the submission time, the timestamp of the
transaction, or any time in between as the start time.

By forcing a transaction to wait upon its attempt to commit, some form
of two-phase commit is introduced. In the first phase, the scheduler receives a
commit request from a transaction that is ready to commit and registers the
request for future handling. In the second phase, the scheduler actually grants
the commit request and waits for the commit to be performed.

4.2 The TFSR Scheduler

For our presentation, we need a common understanding how transaction pro-
cessing is done in a database system. Similar to Bernstein et al. [1], we suppose
a modularized architecture in which a transaction manager, a scheduler, and
a data manager contribute to transaction processing: The transaction manager
(TM) performs any required preprocessing of transaction operations it receives
from applications. It uses the services of the scheduler to schedule transaction
operations and to commit or abort transactions. The scheduler provides its func-
tionality by utilizing the services of a data manager (DM), which is responsible
for recovery and cache management. In the following, we restrict our discussion
to the scheduler, in particular, to those scheduling services in which a tempo-
rally faithful scheduler differs from a conventional strict 2PL scheduler. We do
not further elaborate on the TM and the DM in the scope of this paper.

Like a conventional scheduler, the TFSR scheduler concurrently provides ser-
vices for scheduling operations, for handling commit requests, and for handling
abort requests. In handling abort requests, the TFSR scheduler does not differ
from a conventional scheduler. In scheduling operations and in handling commit
requests, however, the scheduler deviates from standard strategies. The scheduler
cannot grant commit requests immediately and has to deal with lock conflicts in
the realm of temporal precedence requ irements. Further, the scheduler requires
a new transaction to be registered before its operations can be scheduled. A
transaction’s timestamp has to be accepted. The TFSR scheduler does not act
only upon invocation of one of its services but also as time proceeds. The sched-
uler steps forward from chronon to chronon and grants pending and arriving
commit requests of transactions.

In the following, we discuss how the TFSR scheduler registers transactions,
how it schedules operations, how it handles commit requests, and how it grants
the commit of transactions:



Temporally Faithful Execution of Business Transactions 475

Registering Transactions. Before the scheduler may schedule any operation of a
transaction, the transaction has to be registered with the scheduler. In the case
of a pinned transaction, the scheduler has to check the transaction’s timestamp.
A pinned transaction could theoretically be time-stamped with c at every time.
Then, however, a temporally faithful scheduler could never grant the commit
of a transaction with a timestamp higher than c. It would never hold that all
transactions with tim estamp c had been committed. We therefore allow pinned
transactions to be scheduled only pro-actively. We refer to the current reading
of the wall-clock time reduced to chronon granularity as WCT . In particular,
the timestamp assigned to a head-transaction must be greater than the WCT
and the timestamp assigned to a tail-transaction must be greater than or equal
to the WCT.

Scheduling Operations. As motivated above, the TFSR scheduler acts according
to the principle “abort holder if younger” if a lock conflict arises. The strategy
of aborting and blocking transactions relies on transaction timestamps: The
timestamp of a pinned transaction is known immediately when the transaction
is registered. The timestamp of a body-transaction, however, is unknown before
the transaction’s commit request. The timestamp of a body-transaction that has
not yet requested to commit is resolved dynamically to the WCT, i.e., to the
lowest timestamp potentially assigned to the transaction.

Alternatively, it would be possible to block a requesting body-transaction
irrespective of the WCT. The produced serialization order would still remain
valid since the timestamp of the blocked body-transaction would increase as
time proceeds. Such a blocking, however, usually cannot be accepted.

Example 8. Assume a head-transaction with timestamp 12:00 noon that adjusts
selling prices. Further assume that the transaction has been pre-scheduled and
is waiting for its commit. Let the WCT be 11:55 a.m. If now a sales transaction
(body-transaction) runs into a lock conflict with the head-transaction, it cannot
be accepted that the sales transaction is delayed for such a long time. Rather, the
timestamp of the sales transaction is resolved to 11:55 a.m., the two timestamps
are compared, and the head-transaction is aborted and automatically restarted.

When the timestamp of a body-transaction is resolved dynamically, a decision
to force a pinned transaction to wait until a body-transaction has committed
may become invalid as time proceeds. This means that lock tables and queues
of blocked transactions have to be reconsidered as time proceeds (and the WCT
changes).

Example 9. We continue the above example. Assume that the customer hesitates
to commit the sales transaction. Let the WCT be 11:58 a.m. in the meantime.
If now the restarted head-transaction runs into a lock conflict with the sales
transaction again, the head-transaction is forced to wait. If the WCT increases to
12:00 noon, however, the decision to block the head-transaction becomes invalid.
The sales transaction has to be aborted, and lock tables and queues have to be
adjusted accordingly.



476 W. Obermair and M. Schrefl

The presented strategy for resolving precedence requirements is only a sup-
plement to existing strategies for detecting and dealing with deadlocks. Con-
ventional deadlocks are outside the scope of our paper, they may still occur for
transactions among which no temporal precedence requirements are defined (i.e.,
among transactions sharing a common timestamp and priority).

If a head- or tail-transaction needs to be aborted, the transaction is restarted
automatically with the same timestamp. The transaction manager re-submits
the transaction’s operations for scheduling. If a body-transaction needs to be
aborted, the transaction is not restarted automatically. It is the user who decides
whether to restart or dismiss an aborted body-transaction.

Handling Commit Requests. When a transaction requests to commit, the trans-
action is not committed immediately, but is marked ready-to-commit. In the
case of a body-transaction, the transaction additionally is time-stamped with
the WCT. Transactions that are marked ready-to-commit are actually commit-
ted when the scheduler considers the corresponding chronon (see below).

Granting Commits. The scheduler continuously steps forward from chronon to
chronon and grants pending and arriving commit requests of transactions. We
refer to the chronon the scheduler currently considers as the scheduler’s current
processing time (CPT). The scheduler’s CPT may lag behind the WCT (CPT
≤ WCT). Figure 3 depicts the scheduler’s state “granting commits” as a UML
statechart diagram (cf. [2]). After its creation, the scheduler resides in this sub-
state concurrently to other substates in which it registers transactions, schedules
operations, and registers commit/abort requests. The diagram shows the steps
the scheduler runs through after changing its CPT to chronon ci:

1. Grant commit requests of head-transactions: In this state (named “head”),
the assertion holds for a head-transaction t with timestamp ci that all trans-
actions that have to precede t have been committed. First, the scheduler
commits head-transactions with timestamp ci that have been marked ready-
to-commit in the past. Then, the scheduler waits until all head-transactions
with timestamp ci have been committed. If a head-transaction with time-
stamp ci is marked ready-to-c ommit in this phase, the commit is granted
immediately.

2. Grant commit requests of body-transactions: In this state (named “body”),
the assertion holds for a body-transaction t with timestamp ci that all trans-
actions that have to precede t have been committed. First, the scheduler
commits body-transactions with timestamp ci that have been marked ready-
to-commit in the past. As long as the WCT corresponds to ci, the sched-
uler commits a body-transaction that is marked ready-to-commit. After the
WCT increases beyond ci, no further body-transaction is time-stamped with
ci (but with a higher timestamp).

3. Grant commit requests of tail-transactions: In this state (named “tail”), the
assertion holds for a tail-transaction t with timestamp ci that all transactions
that have to precede t have been committed. First, the scheduler commits



Temporally Faithful Execution of Business Transactions 477

markReadyToCommit(t)
[isHead(t) and ts(t)=CPT]

/grantCommit(t)

grantPending
CommitRequestsOf
HeadTransactions

grantArriving
CommitRequestsOf
HeadTransactions

head

markReadyToCommit(t)
[isBody(t) and ts(t)=CPT]

/grantCommit(t)

grantPending
CommitRequestsOf
BodyTransactions

grantArriving
CommitRequestsOf
BodyTransactions

body

markReadyToCommit(t)
[isTail(t) and ts(t)=CPT]

/grantCommit(t)

grantPending
CommitRequestsOf

TailTransactions

grantArriving
CommitRequestsOf

TailTransactions

tail

granting commits

[WCT > CPT]
[all head-transactions
with timestamp CPT

are committed]

[all tail-transactions with timestamp CPT are committed]

/CPT:=CPT+1

...

...

Fig.3. Granting commits (a substate of the scheduler)

tail-transactions with timestamp ci that have been marked ready-to-commit
in the past. Then, the scheduler waits until all tail-transactions with time-
stamp ci have been committed. If a tail-transaction with timestamp ci is
marked ready-to-c ommit in this phase, the commit is granted immediately.

After running through these states, the scheduler has finished processing of
chronon ci and changes its CPT to ci+1.

4.3 Advanced Scheduling Techniques

The performance of a temporally faithful scheduler can be increased if it has
more knowledge at hand about what is going to be scheduled. In the following, we
sketch advanced scheduling techniques that employ information on predeclared
read-sets and write-sets of transactions, on the structure of pinned transactions,
or on the expected durations of body-transactions.

– Predeclared read-sets and write-sets of transactions: The commit of a trans-
action can be granted if there is no conflicting transaction that has to be
executed before. Without additional knowledge, every transaction has to be
treated as a potentially conflicting one. All conflicts between a transaction
t waiting for its commit and a transaction t′ that has to be executed before
t have become visible only after t′ has committed. If no conflict arises, the



478 W. Obermair and M. Schrefl

commit of t has been delayed unnecessarily. Conflicts can be detected ear-
lier and, thus, long delays can be avoided if transactions preclaim all their
required locks. This can be achieved by having each transaction predeclare
its read-set and write-set. Predeclaring of read-sets and write-sets can be
introduced only for pinned transactions or for all kinds of transactions.

– Structure of pinned transactions: In typical applications, pinned- and un-
pinned transactions more often run into read-write conflicts than into write-
write conflicts. Remember the introductory example: Assume that the pinned
transaction adjusting selling prices is waiting for the scheduler to grant its
commit request. The pinned transaction has to be aborted and restarted
every time a sales transaction with a lower timestamp tries to read price in-
formation that has been updated—and write-loc ked—by the pinned transac-
tion. Restarts of pinned transactions could be significantly reduced if pinned
transactions were clearly separated into a read-phase and a write-phase:
When a pinned transaction is started, it enters its read-phase. The transac-
tion obtains the necessary read-locks, reads the database objects it needs,
and performs all its time-consuming computations. Then, the transaction
waits until the scheduler’s CPT corresponds to the transaction’s timestamp.
While the transaction is waiting, it holds only read-locks and, thus, is less
likely to run into lock conflicts. Only when the CPT corresponds to the
transaction’s timestamp, the transaction enters its write-phase. The trans-
action obtains the necessary write-locks (or upgrades some of its read-locks)
and actually performs write operations.

– Duration of body-transactions: The timestamp of a body-transaction is re-
solved dynamically to the WCT during its execution. If a body-transaction
is long, its associated timestamp increases continuously. If the timestamp of
a body-transaction increases beyond the timestamp of a blocked transaction,
the body-transaction has to be aborted and the lock tables and the queues of
blocked transactions have to be updated. This represents an overhead that
can be reduced by associating with every body-t ransaction an estimation
how long the execution of the transaction will probably take. In the presence
of such an estimation, the timestamps assigned to body-transactions would
be more realistic and would reduce overhead.

5 Conclusion

In this paper, we have presented an approach to execute business transactions
in a temporally faithful manner. The main characteristics of our approach are:

– The approach is general. It relieves the designer from inventing a case-specific
solution every time a particular precedence order should be enforced on the
execution of transactions.

– The approach is modular. By means of pinned transactions, precedence re-
quirements can be imposed without the need to consider all the unpinned
transactions that potentially may be executed around the critical point in
time.



Temporally Faithful Execution of Business Transactions 479

– The approach is simple. A temporally faithful scheduler can be implemented
by extending proven scheduling techniques in conventional database systems.
It does neither rely on special concurrency control mechanisms nor does it
require specialized database systems.

Currently, a prototype of a temporally faithful scheduler is being imple-
mented within a master thesis. The prototype is built on top of the active
object-oriented database system TriGS [8]. The reason to select an active object-
oriented database system is that we consider active rules a well-suited concept
for enhancing system capabilities without the need to introduce special-purpose
mechanisms.

Appendix

Proof (Theorem 1). First, we prove that a history is TFSR if its TFSG is acyclic:
We suppose that the TFSG of a history h is acyclic. An acyclic TFSG may be
topologically sorted. Consider t1, t2, . . . , tm as a topological sort of the TFSG
of h, and let hs be the history t1 → t2 → . . . → tm. History hs is temporally
faithfully serial since (1) it is serial, (2) it observes timestamps, and (3) it ob-
serves priorities (cf. Definition 1). Now we show that h is equivalent to hs. If a
transaction ti performs an operation oi and another transaction tj performs a
conflicting operation oj where oi precedes oj in h, this is reflected by an edge
from ti to tj in the TFSG of h. In any topological sort of the TFSG of h, ti
must appear before tj . Since a history hs is serial, all operations of ti appear
before any operation of tj in hs. Thus, we have proved that any two conflicting
operatio ns are ordered in h in the same way as they are ordered in hs (and that
h and hs are equivalent).

Second, we prove that a history is TFSR only if its TFSG is acyclic. We
do this by showing that no cyclic TFSG can exist for a history that is TFSR:
We suppose a history h that is TFSR. Since h is TFSR, there is a temporally
faithfully serial history equivalent to h. We refer to this history as hs. Now we
suppose a cycle in the TFSG of h and let the cycle be t1 → t2 → . . . → tk → t1.
An edge from ti to tj exists in the TFSG of h (1) if ti performs an operation
oi and tj performs a conflicting operation oj where oi precedes oj in h, (2) if ti
has a lower timestamp than tj , or (3) if ti has the same timestamp as tj but a
higher priority. Since hs is serial, an edge from ti to tj in the TFSG of h requires
that ti appears before tj in hs. The existence of the cycle implies that each of
t1, t2, . . . , tk appears before itself in hs, w hich is a contradiction. So, no cycle
can exist for a history that is TFSR.

Proof (Lemma 1). In our setting, time is linear. Transaction timestamps impose
a linear order on transactions with different timestamps, while priorities impose
a linear order on transactions with the same timestamp. Thus, timestamp ob-
servation and priority observation impose acyclic precedence requirements. At
least one edge representing a precedence requirement imposed by a conflict is
necessary to form a cycle in a TFSG.



480 W. Obermair and M. Schrefl

Proof (Theorem 2). We prove that the existence of a cycle in a TFSG of a
serializable history implies the existence of a cycle of length two. We use the
following notational conventions: With ti → tj we denote an edge from ti to tj
representing a precedence requirement imposed by a conflict. With ti ⇒ tj we
denote an edge from ti to tj representing a temporal precedence requirement.
With ti 	 tj we denote an arbitrary edge from ti to tj .

We assume a cycle involving the transactions t1, t2, . . . , tn (n > 2). The cycle
contains at least one edge representing a temporal precedence requirement. This
is true since the TFSG of a serializable history is built on an acyclic SG, and thus
at least one edge representing a temporal precedence requirement is necessary
to form a cycle. We refer to one of these edges as tn ⇒ t1 and let the cycle be
tn ⇒ t1 	 t2 	 . . . 	 tn−1 	 tn.

Now, we analyze the precedence requirements among the nodes contained in
the cycle. We consider the triple (tn, ti, ti+1), where i initially is 1 and increases
with each iteration by 1. Before the i-th iteration, tn ⇒ ti holds. After the i-th
iteration, either we have shown the existence of tn ⇒ ti+1 in the TFSG or we
have detected a cycle of length two and stop analyzing. Depending on the kind of
precedence requirement between ti and ti+1, the pr ecedence requirements among
the triple of transactions may follow only one of two alternative patterns:

1. tn ⇒ ti ⇒ ti+1: In this case, also edge tn ⇒ ti+1 exists in the TFSG.
2. tn ⇒ ti → ti+1: In this case, edge tn ⇒ ti indicates that tn either has a lower

timestamp than ti or the same timestamp but a higher priority. This means
that ti+1 cannot be temporally independent from both, tn and ti. One of the
following temporal precedence requirements must hold:

(a) ti+1 succeeds ti: Then, edges ti ⇒ ti+1 and tn ⇒ ti+1 exist in the TFSG.
(b) ti+1 succeeds tn and is temporally independent from ti: Then, edge tn ⇒

ti+1 exists in the TFSG.
(c) ti+1 succeeds tn and precedes ti: Then, edge ti+1 ⇒ ti exists in the

TFSG, and we detect the cycle of length two ti+1 ⇒ ti → ti+1.
(d) ti+1 precedes ti and is temporally independent from tn: Then, edge

ti+1 ⇒ ti exists in the TFSG, and we detect the cycle of length two
ti+1 ⇒ ti → ti+1.

(e) ti+1 precedes tn: Then, edges ti+1 ⇒ tn and ti+1 ⇒ ti exist in the TFSG
and we detect the cycle of length two ti+1 ⇒ ti → ti+1.

We show that we necessarily detect a cycle of length two after at most n − 1
iterations: The analyzed cycle contains at least one edge representing a prece-
dence requirement imposed by a conflict (see Lemma 1). This means that we find
pattern 2 at least once. Now suppose that condition (a) or (b) would hold every
time we find pattern 2. Then, after n − 1 iterations, the TFSG would contain
an edge tn ⇒ tn, which is clearly never the case. Thus, condition (c), (d), or (e)
must hold at least o nce when we find pattern 2. But then, we detect a cycle of
length two. We have shown that if a cycle exists in a TFSG built on an acyclic
SG, then there is also a cycle of length two.



Temporally Faithful Execution of Business Transactions 481

Proof (Corollary 1). Every cycle of length two contains an edge representing
a precedence requirement imposed by a conflict (cf. Lemma 1). Thus, when a
TFSG is checked for cycles, only pairs of conflicting transactions have to be
considered. A history is TFSR and its TFSG is acyclic if no pair of conflicting
transactions (ti, tj) can be found where conflicts require ti to precede tj while
at the same time different timestamps or priorities require tj to precede ti.

References

1. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley, 1987.

2. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language—User
Guide. Addison Wesley, 1999.

3. A.P. Buchmann, J. Zimmermann, J.A. Blakeley, and D.L. Wells. Building an
Integrated Active OODBMS: Requirements, Architecture, and Design Decisions.
In Proc. of the 11th Intl. Conf. on Data Engineering (ICDE), 1995.

4. U. Dayal. Active Database Management Systems. In Proc. of the 3rd Intl. Conf.
on Data and Knowledge Bases, pages 150–167, June 1988.

5. U. Dayal, U. Hsu, and R. Ladin. Organizing Long-running Activities with Triggers
and Transactions. In Proc. of the ACM SIGMOD Conf. on Management of Data,
1990.

6. M. Finger and P. McBrien. Concurrency Control for Perceivedly Instantaneous
Transactions in Valid-Time Databases. In Proc. of the 4th Intl. Workshop on
Temporal Representation and Reasoning. IEEE Comp. Soc. Press, 1997.

7. D. Georgakopoulos, M. Rusinkiewicz, and W. Litwin. Chronological Scheduling of
Transactions with Temporal Dependencies. VLDB Journal, 3(3), 1994.

8. G. Kappel, S. Rausch-Schott, and W. Retschitzegger. A Tour on the TriGS Ac-
tive Database System—Architecture and Implementation. In Proc. of the ACM
Symposium on Applied Computing, Atlanta, Georgia, 1998.

9. P. Lang, W. Obermair, and M. Schrefl. Modeling Business Rules with Situa-
tion/Activation Diagrams. In A. Gray and P. Larson, editors, Proc. of the 13th
Intl. Conf. on Data Engineering (ICDE), pages 455–464. IEEE Computer Society
Press, April 1997.

10. A.H.H. Ngu. Specification and Verification of Temporal Relationships in Transac-
tion Modeling. Information Systems, 15(2):5–42, March 1990.

11. B. Salzberg. Timestamping After Commit. In Proc. of the 3rd Intl. Conf. on
Parallel and Distributed Information Systems, Austin, Texas, 1994.


	1 Introduction

	2 Temporal Faithfulness
 
	2.1 Time Model

	2.2 Precedence Requirements

	2.3 Related Work


	3 Theory of Concurrent and Temporally Faithful Histories

	4 A Temporally Faithful Scheduler

	4.1 Rationale

	4.2 The TFSR Scheduler
	4.3 Advanced Scheduling Techniques

	5 
Conclusion
	Appendix
	References

