
Advertising Database Capabilities
for Information Sharing

Suzanne M. Embury1, Jianhua Shao1, W. Alex Gray1, and Nigel Fishlock2

1 Department of Computer Science, Cardiff University,
P.O. Box 916, The Parade, Cardiff, CF24 3XF, Wales, U.K.

{S.M.Embury|J.Shao|W.A.Gray}@cs.cf.ac.uk
2 Pirelli Cables Limited Communication Cables,

Wednesbury Street, Newport NP9 0WS, Wales, U.K.
fishlocn@pirellicables.co.uk

Abstract. The development of networking technology has resulted in a
computing environment which is highly distributed, heterogeneous and
dynamic. In order for the autonomous software components in such an
environment to share their information, and hence to collaborate with
each other, they must be able to advertise their capabilities — that is, to
express what they have got to offer — in a form that can be understood
by other resources.
In this paper, we study the problem of advertising the capabilities of
an important class of resources within distributed information systems:
namely, databases. We argue that current advertising mechanisms have
limitations when applied to database systems, and propose an approach
which overcomes these limitations. The resulting advertisement language
is flexible and allows database components to advertise their capabilities
in both a general and a specific way. We have demonstrated its utility by
using it to advertise capabilities within a network of product databases
created for Pirelli Cables Ltd.

1 Introduction

The development of networking technology has resulted in a computing envi-
ronment which is highly distributed, heterogeneous and dynamic. Users of this
environment, and developers of software components for use within it, increas-
ingly expect to be able to make use of the facilities provided by other software
components without prior agreement. In other words, if a component A needs
the results of some computation or query which can already be performed by
component B, then A should be able to request that the service be performed on
its behalf by B. Moreover, A should be able to make the decision to exploit B’s
services at the point at which the need for them arises — this decision should
not be hard-coded in at the time that component A was created. If, at some later
date, a faster, more reliable and more accurate component C comes on-line, A
should have the option of making use of the higher quality services this new
agent offers, even though the original developer of A had no idea that C would
ever exist.

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 47–63, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

48 S.M. Embury et al.

In order to achieve this sort of flexibility, some mechanism is needed by which
the various software components in a distributed information system (DIS) can
publish details of their capabilities, and by which components that require some
functionality can discover which other systems might be able to provide it. In
response to the same need within multi-agent systems, some authors have pro-
posed the use of a special kind of software agent which can perform resource
discovery tasks of this sort on behalf of other agents. This type of agent is called
variously a match-maker agent [7], a middle agent [4] and a facilitator [9]. Typ-
ically, a match-maker agent will receive advertisements from agents, describing
the services they are willing to perform. When an agent wishes to discover who
is capable of undertaking some particular task, it sends a description of that
task to the match-maker, which compares the agent’s requirements against the
advertisements stored in its local database. The advertisements that match in-
dicate the set of agents which can perform the task. Details of these are then
returned to the requesting agent.

Components performing match-maker functions can offer similar advantages
for distributed information systems (DISs): they can provide some degree of
protection against change in the availability or capabilities of components, and
they can ease the design of new components by acting as a machine-manipulable
representation of the existing capabilities of the network. However, current ad-
vertising mechanisms have limitations when applied to a class of components
that are of particular importance in DISs — database systems.

In this paper, we present an approach to match-making in DISs that takes
into account the special requirements of database components, while retaining
the flexibility to advertise the capabilities of other kinds of software component.
In particular, we suggest that an accurate representation of the capabilities of a
database system must include both domain-specific aspects (e.g. the classes and
relationships stored by the database) and operational elements (e.g. the gen-
eral capabilities of the query language supported by the DBMS). The proposed
approach allows database components to advertise their capabilities in both a
general and a specific way. We have tested it in the context of a small prototype
network of information sources developed for Pirelli Cables Ltd.

The remainder of the paper is organised as follows. We begin, in Sect. 2,
by considering the particular problems posed by the need to advertise database
capabilities. We then summarise previous approaches to match-making in Sect. 3.
Section 4 outlines our proposed advertisement format, and Sect. 5 presents the
process by which advertisements in this format are matched to requests. Finally,
conclusions are given in Sect. 6.

2 Advertising Database Capabilities

In order to illustrate the problems involved in advertising database capabilities,
we will present some examples based on KQML [5], a standard framework for
agent communication. The issues raised, however, are not specific to KQML,
which is used here simply as a convenient notation for the purposes of illustration.

Advertising Database Capabilities for Information Sharing 49

In a KQML-compliant system, agents communicate by exchanging messages.
Each message is a list of components. The first component, known as the per-
formative, indicates the type of communication (e.g. tell for passing informa-
tion to an agent, and ask-one or ask-all for requesting information from an
agent). The subsequent components, known as arguments, indicate the content
of communication. For example, the following KQML message illustrates the
performative by which an agent informs another agent (usually a match-maker)
of its capabilities:

(advertise,
:sender testManager
:receiver matchMakerAgent
:language KQML
:content (ask-one,

:sender <anyone>
:receiver testManager
:language Prolog
:ontology Cables
:content ‘‘stress_test_result($date,

$engineer, $specNo, $result)’’))

Here, the :sender and :receiver arguments specify the agent which sent the
message and the agent to which it is sent, respectively. The :language argu-
ment indicates the language in which the :content is expressed and :ontology
defines the terms used in the content. The message in the above example states
that the testManager agent is able to respond to ask-one messages whose ar-
guments match with those given. That is, if the content of an ask-one message
is expressed in Prolog and in terms of the Cables ontology, and if it matches
the pattern given in the innermost :content slot, then the testManager agent
can handle this message.1

When a request for some capability is received, the match-maker tries to
match the content portion of the request against the content patterns in the
advertisements. The success of this process depends on the following factors:

– The precision of the advertisement. The pattern given in an advertisement
acts as a general description of a set of similar requests, any of which can
be serviced by the adverting component. If a component over-advertises its
capabilities (i.e. uses too general a pattern) then it may be asked to serve
requests that it is not capable of handling. On the other hand, if a component
under-advertises its capability (by using too strict a pattern) then it may
not be asked to serve requests that it is quite capable of serving. In either
case, matching performance is degraded.

– The intelligence of the match-maker. It is possible that the same capability
may be specified in a number of ways. This means that the match-maker must

1 The pattern takes the same form as a Prolog request, except that variables (specified
here with the $ prefix) are used wherever we don’t care about the form of the request.

50 S.M. Embury et al.

be intelligent enough to recognise, for instance, equivalence or subsumption
relationships between advertised capabilities, and between the capabilities
and the request.

These two factors are inter-dependent. For example, if the match-maker is capa-
ble of learning from its experience, then over-advertisement may not be a serious
problem. In this paper, however, we do not consider the issue of match-maker
intelligence but focus instead on the problem of how database components can
advertise their capabilities both precisely and at a sufficient level of generality.

To appreciate the problems associated with advertising database capabilities,
consider the following example. Suppose that a database has the schema:

opticalCable(specNo, cableType)
stressTest(testDate, testEngineer, specNo, result)

and it wishes to advertise that it can answer all SQL queries expressible against
this schema. Under the standard KQML advertisement scheme, the database
component would be forced to advertise its capabilities by generating one ad-
vertisement for each form of query it can answer. For example:

(advertise,
:sender dbAgent
:receiver matchMakerAgent
:language KQML
:content (ask-one,

:sender <anyone>
:receiver dbAgent
:language SQL
:ontology Cables
:content ‘‘SELECT count(specNo)

FROM opticalCable’’))

(advertise,
:sender dbAgent
:receiver matchMakerAgent
:language KQML
:content (ask-one,

:sender <anyone>
:receiver dbAgent
:language SQL
:ontology Cables
:content ‘‘SELECT testEngineer, cableType

FROM opticalCable c, stressTest t
WHERE c.specNo = t.specNo’’))

:
and many more
:

Advertising Database Capabilities for Information Sharing 51

This need to anticipate all the query forms that might be sent to the database
is unsatisfactory for the following reasons:

– For any realistic database system, trying to advertise all the queries that it
can handle in this way is almost impossible. As a result, some queries will
be left out, resulting in an inevitable under-advertisement of its capabilities.

– Even if we can tolerate a degree of under-advertisement, the match-maker
will be loaded with a large number of highly-specific advertisements. This
will degrade matching performance.

– Such specific advertisements are difficult to analyse intelligently. The best a
match-maker can do is to match incoming requests syntactically and exactly.

All these points suggest that an approach to advertising database capabilities
based purely on pattern-matching is unworkable. We require a more general
and more expressive advertisement language in which a range of functionalities,
rather than just service signatures, can be described. Indeed, the limitations of
the pattern-based approach have been recognised by other researchers, and in the
next section we examine the suitability of more advanced forms of agent-based
match-making for advertising database capabilities.

3 Current Approaches to Advertising

The approach to advertisement discussed above is based on that proposed for
facilitator agents, within the Knowledge Sharing Effort [9]. The role of a facil-
itator is to present the appearance of an agent which has the combined capa-
bilities of all the other agents in the distributed system. Individual agents need
communicate with just this single facilitator agent, rather than having to know
the addresses and capabilities of all other agents on the network. In order to
present this illusion, each facilitator maintains a database of advertisements,
given in KQML, which are matched against incoming requests. However, the
KSE researchers recognised the limitations of a purely pattern-based approach
and allowed constraints to be placed on the values of pattern variables. When
a request is matched against an advertisement, these variables are instantiated
with values from the request and the constraints are checked against them.

This pattern matching style is most suitable when the capabilities of the ad-
vertising agent can be described as a small number of named services. It is much
less practical for advertising very broad and generic services, such as database
query answering, which may require the creation of a large (possibly infinite)
number of advertisements. Later authors (e.g. [7]) have tried to redress this bal-
ance by extending the richness of the facilitator’s pattern matching capabilities.

More recent work has generalised the concept of pattern-based content lan-
guages for advertisements to allow the description of many database queries in
a single advertisement. Vassalos and Papakonstantinou, for example, have pro-
posed a language called p-Datalog [13] for advertising database queries. This
language generalises Datalog programs by introducing a distinguished form of
variable that can be used in place of constants within rule definitions. In itself,

52 S.M. Embury et al.

this is no more useful than the KQML patterns introduced in Sect. 2. However, a
further development of p-Datalog, called the Relational Query Description Lan-
guage (RQDL) [12], allows pattern variables to be used in place of the functors
of terms, as well as their parameters. This allows a wider set of queries to be
described by a single specification. In particular, query types can now be speci-
fied independently of any domain facts (e.g. “fetch the <A> of all whose
<C> attribute is greater than <D>”). This language allows many different
query forms to be described using a single advertisement, and so contributes to
solving the problems of database advertising. However, many kinds of agent can
only handle requests which are relevant to a particular domain. This is certainly
true of database components, which can only answer queries that are expressed
in terms of their own particular schema. Rich pattern matching capabilities, if
used without any regard to the domain of interest of the query, will result in
over-advertisement for database systems, with a corresponding degradation in
the performance of the network as a whole.

Other authors have focussed trying to provide richer constructs for mod-
elling the domain-specific aspects of agent capabilities, rather than on extending
pattern matching. DISs such as SIMS [1] and TAMBIS [2] make no use of pat-
tern matching and instead use only domain information to carry out resource
discovery tasks. For example, in both SIMS and TAMBIS a common domain
model expressed using a description logic is used to describe the combined do-
main models of all resources in the network. Relevant resources are identified
by classifying the incoming request against the common model, and identifying
those resources which commit to the concepts occurring within the request. This
form of advertisement, while appropriate in relatively homogeneous agent net-
works, can also result in over-advertisement, since it assumes that every agent
which commits to the concepts occurring within a request is able to answer that
request, regardless of whether its querying capabilities are up to the task.

In a variant on this domain-centred approach, Decker et al. have proposed an
advertising format for database agents based on KQML advertisements, in which
the advertisement language includes a specification of the schema over which
queries can be evaluated [3]. Under this approach, a resource is considered to be
a suitable recipient of a request if it involves no schema elements which are not
also recorded within the advertisement. While the recognition of the importance
of the schema in advertising database capabilities is a distinct step forward, we
believe that it is not appropriate to embed details of a database component’s
schema explicitly within advertisements in this way. Firstly, the schemas of many
real database systems (particularly legacy database applications) are very large,
containing hundreds of tables and thousands of attributes. Duplication of all
this information within an advertisement results in highly complex capability
descriptions, which are difficult to reason with efficiently. Secondly, this approach
commits the database system to advertising requests relating to its schema at
the time of the advertisement and not as it may be at the time a request is to be
serviced. Over time, use of an advertising scheme that is intolerant of updates

Advertising Database Capabilities for Information Sharing 53

to source schemas will mean that advertisements become out-of-date, resulting
in both under- and over-advertisement.

More recently, the LARKS language for the advertisement of agent services
[11] has been proposed, which combines a variety of different types of match-
ing. LARKS assumes the availability of an ontology of terms, which is used to
compute similarity measures between the terms used within a request and an ad-
vertisement. It also uses ideas from component-based development to determine
whether the parameters of the advertised service are compatible with those in the
request, and whether pre- and post-constraints on the parameters in the adver-
tisement are compatible with those in the request. LARKS represents the most
sophisticated approach to the advertisements of general agent services proposed
to date. However, the use of “plug-in” matching to determine compatibility of
parameters is not relevant to matching of database queries, which can have very
similar parameters but very different semantics. Moreover, LARKS takes the un-
usual approach of requiring users to convert their requests into the same format
used for advertisements before matching. Effectively, the user is forced to guess
what the advertisement for the service they require might contain. While this is
reasonable for named agent services, where very little semantics is available from
analysis of the bare procedure call, it is less appropriate for database queries,
where much of the semantics is present in the request itself.

If a capability is to be precisely defined, then both its operational aspects (i.e.
“what the agent can do”) and its domain-specific aspects (i.e. “what it can do
it to”) must be specified. Recognising this point, researchers on the InfoSleuth
project have made some preliminary steps towards combining both elements in a
single advertisement format [8]. Following the approach described above, InfoS-
leuth advertisements contain information on the subset of the common ontology
that a particular resource can handle embedded within the advertisement. This
allows consideration of domain-specific aspects. For the operational aspects, In-
foSleuth advertisements may also contain terms ¿From a special service ontology,
which defines different typ of operational capability (e.g. relational algebra). It is
not yet clear what role these service terms will play in matching requests in the
Infosleuth system. However, what is clear from our own investigations so far is
that a combined approach to advertising both domain and operational elements
is required if capabilities from a wide variety of agents and resource types are to
be advertised. This is particularly true when attempting to advertise the poten-
tially infinite capabilities of database systems in a precise, yet flexible manner.
In the next section, we present our own approach to this problem.

4 An Advertisement Language for Database Capabilities

How does one describe the “domain aspects” and “operational aspects” of a
component’s capabilities? The domain of a database is defined by the entity
types and the relationships (or other data model constructs) that appear in the
database’s schema. The operational aspect is defined by the underlying DBMS.
Different DBMSs (particularly legacy systems) will offer different functionali-

54 S.M. Embury et al.

ties, and it is this that determines how the available data may be manipulated.
Both aspects must be known to the match-maker if incoming requests are to
be matched accurately. To accommodate this, we propose the following basic
framework for advertisements:

(advertise,
:sender <component>
:receiver match-maker
:language Advertise
:content (ask-*,

:sender <anyone>
:receiver <component>
:language <language>
:ontology <ontology>
:domain d-constraint(<expr>)
:operation o-constraint(<expr>)
:content <expr>))

As in KQML advertisements, the outermost :content slot contains a specifica-
tion of a collection of requests the advertising component is willing to service.2

The innermost :content slot contains a pattern expression which describes the
syntactic structures the advertising component is willing to handle.

Unlike KQML, however, there is also a :domain slot and an :operation
slot, each of which specifies additional constraints on the pattern expression. The
constraints given in the domain slot describe the characteristics of requests whose
domain of interest matches that of the advertising component. The :operation
slot, on the other hand, indicates that the component can only serve requests
whose semantics satisfy the conditions it specifies. Thus, even if a request r
matches a pattern expression e, it may still not be servable by the advertising
agent if r fails on either the operational or domain constraints. Match-making
is therefore based on semantic as well as syntactic considerations.

4.1 Simple Pattern Expressions

Before describing the form that the domain and operational constraints may
take, we present the format of the pattern expressions that may be specified in
the :content slot. We first define the concept of “capability” formally and then
discuss how a capability may be described using simple expressions.

Definition 1. A request is a recursive structure of the following form:

α(τ1, τ2, . . . , τm)

where α is a constant term and each τi, i = 1, . . . ,m is either a constant or a
structure of this same form.
2 ask-* matches with any of the range of ask performatives (ask-one, ask-all, etc.).

Advertising Database Capabilities for Information Sharing 55

This definition approximates a syntax tree for the request language, and is in-
tended to model the internal representation of the request within the match-
maker agent. For example, the following SQL query:

SELECT specNo FROM opticalCable WHERE cableType = ’Unitube’

can be expressed as:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ’Unitube’))

A well-formed request is a request whose structure represents a legal expression
in the content language.3 It is trivial to define this notion of legality of expression
formally, and we do not define it here. However, we note that the arguments in
the request structure are “positional”, i.e. different permutations of arguments
results in different requests. For example, the following:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ’Unitube’))

select(tables([opticalCable]), attrs([specNo]),
op(=, ‘Unitube’, attr(cableType)))

are considered to be distinct requests.4

We define a component’s capability in terms of the set of requests that it
claims to be able to serve.

Definition 2. Let R = {r1, r2, . . . , rn} be the set of all well-formed requests. A
capability C is a set of such requests; that is, C ⊂ R. Each ci ∈ C is referred to
as a capability element (or element when the context is clear).

Advertisement of a capability is therefore specification of the set C. A naive ap-
proach is to enumerate all the elements as a disjunction. That is, the component
anticipates all possible requests that it can answer and specifies each of them
in detail. However, as we have argued, this approach is unworkable for database
resources (or any component where C is large). To advertise a capability more
concisely, we require a means of advertising several capability elements in one
expression, and hence introduce the use of simple pattern expressions.

Definition 3. A simple pattern expression takes one of the following forms:

3 In order to simplify the presentation, we assume a reduced dialect of SQL that can
be represented by syntax trees of the form given. However, the issues discussed are
largely independent of the choice of content language.

4 This assumption is not a serious limitation. If, for example, our match-maker is
intelligent enough to recognise the commutative property of the = operator, then
it could treat both requests as equivalent. In this paper, however, we focus on the
specification of capabilities, rather than the intelligence of the match-maker.

56 S.M. Embury et al.

1. a constant pattern α(τ1, τ2, . . . , τm), where each α, τ1, . . ., τm is a constant,
2. a variable pattern α(τ1, τ2, . . . , τm), where at least one α, τ1, . . . , τm is a pat-

tern variable, or
3. a single pattern variable v.

Note that if any τi, 1 ≤ i ≤ m, is a recursive structure, then rules 1) and 2)
apply recursively.

We denote a pattern variable in an advertisment by a literal with a $ prefix. For
example, the following are all valid pattern expressions:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ‘Unitube’))

$opn(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), $value))

$expr

The use of pattern variables in this way allows agents to abstract their capabil-
ities (i.e. describe them more concisely). To capture this notion of abstraction
formally, we give the following definition.

Definition 4. Let c1 and c2 be two simple pattern expressions. We say that c1
abstracts c2 in the following mutually exclusive cases:

1. if c1 is a single pattern variable v
2. if c1 is a constant pattern α(τ1, . . . , τn) and c1 lexically matches c2
3. if c1 = α(τ1, . . . , τn), c2 = α′(τ ′1, . . . , τ

′
n) where α is a variable or α = α′,

and for each τi, i = 1, . . . ,m, τi is a variable or τi = τ ′i

Again, if any τi is a recursive structure, then rules 2) and 3) apply recursively.

Definition 5. Let C1 and C2 be two capabilities. C1 subsumes C2, denoted by
C1 � C2, if for every c2 ∈ C2, there exists a c1 ∈ C1 such that c1 abstracts c2.

Obviously, an ideal capability advertisement is a pattern expression that sub-
sumes the intended set of requests both concisely and precisely. The use of
pattern variables in expressions allows us to achieve this at various levels. At
the lowest level, we have domain abstraction. That is, we allow pattern variables
to be used wherever domain values are used. For example, the following is an
abstraction of a class of capability elements that all have the same structure,
but use different domain values:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), $value))

Advertising Database Capabilities for Information Sharing 57

Here, $value is a pattern variable which can be instantiated with any constant
value. As this example shows, the abstraction achieved at this level is fairly
limited. The next level of abstraction, argument-level abstraction, overcomes this
limitation to an extent. With this form of abstraction, we allow pattern variables
to be used for the arguments of a capability element, e.g.

select(tables([opticalCable]), attrs([specNo]), $cond)

Here, a pattern variable ($cond) is used to abstract the class of SQL selection
conditions. Thus, the above expression subsumes both:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ‘Unitube’))

and

select(tables([opticalCable]), attrs([specNo]),
op(<>, attr(cableType), ‘Unitube’))

Note that as the capability elements become more abstract, the likelihood of
over-advertisement increases and the accuracy of the advertisement becomes
more dependent on the constraints given in the :operation and :domain slots.

As Vassalos and Papakonstantinou [13] have pointed out, it is also possible
to use pattern variables to generalise operations. For example, the following
expression illustrates this operation-level abstraction:

$db-op(tables([opticalCable]), $attrs, $cond)

The element in this example advertises that it is willing to serve any operation
involving only the table opticalCable. This expression abstracts both of the
following requests:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ‘Unitube’))

delete(tables([opticalCable]), (),
op(<>, attr(cableType), ‘Unitube))

Operation-level abstraction is very general. Careful specification of constraints
on such abstractions is therefore important if software components are not to be
flooded with requests that they cannot answer.

All the abstractions we have introduced so far are limited in that they specify
a fixed structure. In cases where a software component wishes to advertise a
capability that is made of capability elements with different structures (e.g some
with three arguments and some with two), we allow structure abstraction — the
highest level of abstraction in our language. Consider the following example,

$any-req

58 S.M. Embury et al.

Here the expression is a single pattern variable $any-req which abstracts, and
hence can match, any request. Without appropriate constraints, this form of
pattern leads to an extreme form of over-advertisement in which the agent claims
to be able to serve any request whatever.

4.2 Composite Pattern Expressions

If we view matching as evaluation of a truth-valued function that returns true
if the request matches the pattern and false otherwise, we can combine sim-
ple pattern expressions using the standard logical operators AND, OR and NOT.
For example, the following composite pattern expression shows how two simple
expressions may be combined using the OR operator:

select($tables, $attrs, op(=, $attr, $value)) OR
select($tables, $attrs, op(<>, $attr, $value))

This pattern expression matches a request if either of the two simple expressions
match it. In other words, the set of requests that the component is willing to
handle is the union of the request sets specified by the two simple expressions.

We can also use the AND and NOT operators to combine patterns. For example,
a component C1 may advertise that it can handle the retrieval of any attributes
from opticalCable relation, except the cableType attribute alone:

select(tables([opticalCable]), $attrs, $cond) AND NOT
select(tables([opticalCable]), attrs(cableType), $cond)

Of course, a similar effect could be achieved by adding a constraint to the
:domain slot. We will now describe how such constraints can be used to limit
the over-advertising tendencies of patterns.

4.3 Constraining Pattern Variables

The pattern variables introduced in the previous section are useful in that they
allow database resources to specify a superset of the requests they are willing to
handle very concisely. While, in general, over-advertisement is to be preferred
to under-advertisement, it is clearly beneficial for all parties if advertisements
can be specified as accurately as possible. Pattern variables must therefore be
further constrained so that the match-maker agent is aware of any additional
restrictions on the domain of interest or the semantics that can be handled by the
advertising component. For example, a database component that stores details of
optical cables cannot answer queries which relate to copper cables, even if some
aspects of the query also relate to optical cables. Similarly, consider a wrapped
component that is capable of evaluating certain SQL queries against a flat file,
by converting them into instructions to the Unix Grep program. This component
will only be capable of answering a restricted set of SQL queries; namely, those
consisting of a series of simple projections and selections on the structure of the
file.

Advertising Database Capabilities for Information Sharing 59

Definition 6. A domain constraint in an advertisement relating to a compo-
nent c is a truth-valued expression, parameterised by the pattern variables ap-
pearing in the advertisement. The constraint determines the subset of requests
that match with the pattern expression that are concerned wholly with domain
elements known to the component.

Definition 7. An operational constraint in an advertisement relating to a com-
ponent c is a truth-valued expression, parameterised by the pattern variables ap-
pearing in the advertisement. The constraint determines the subset of requests
that match with the pattern expression that the component has the operational
capacity to evaluate.

For the purpose of this paper, we assume that both domain and operational
constraints (as stated in the :domain and :operation slots of the advertisement
format respectively) are first order logic expressions over pattern variables.5

Consider the following fragment of an advertisement sent by component C1:

:operation (simple_query $e)
:domain (subset (domain $e) (commits_to C1))
:content $e

Here, (simple query $e) is a predicate which is true if the value of $e is equiv-
alent to a request fragment with the semantics of a “simple” relational algebra
query. We define a “simple” query to be one in which the condition of the query
is a simple conjunction of comparison operators on attributes.

The domain constraint states that the domain elements occurring in the
request must be a subset of the domain elements to which the advertising com-
ponent commits. In other words, the component cannot answer queries asking
about domain elements which are not contained within its schema. Notice that
we have not embedded any details of the actual schema within the advertisement
itself. Instead, we assume that the match-maker component has the responsibil-
ity of discovering what the current set of commitments of component C1 are —
perhaps by interrogating some ontological knowledge agent or data dictionary.

Operational and domain constraints like those given in the example are speci-
fied by building expressions using the usual logical connectives (and, or and not)
and a number of pre-defined predicates and functions, such as simple query
and commits, stored in a special purpose task ontology. If a predicate such as
simple query is not defined by a formula (i.e. it is a ground definition), then
we assume that it is a Boolean valued function stored in the task ontology that
returns true if its arguments have the required properties and false otherwise.
In our prototype, for example, we have used the “grammar” shown below to
recognise the subset of legal syntax tree forms that correspond to the class of
simple queries.

5 It is, of course, possible to use various other formalisms to specify the constraints,
such as a description logic.

60 S.M. Embury et al.

<simple_query> ::= select(<tables>, <attributes>) |
select(<tables>, <attributes>), <condition>)

<tables> ::= tables(<table names>)
<table names> ::= <table name> | <table names>,<table name>
<attributes> ::= attrs(<attribute names>)
<attribute names> ::= <attribute name> |

<attribute names>,<attribute name>
<condition> ::= op(=, <attribute name>, <attribute name>) |

op(=, <attribute name>, <constant>) |
op(=, <constant>, <attribute name>)

<attribute name> ::= <name> | <table name>.<name>
<table name> ::= <name>
<name> ::= <identifier>

5 Matching Process

We now consider how a request from a user agent is matched with an adver-
tisement by the match-maker. A request is first matched syntactically with the
pattern expression and then semantically with the constraints. The process of
syntactical matching is straightforward. An advertisement a matches a request
r if it can be made identical with r by substituting the pattern variables in a
with the corresponding values in r. In other words, a matches r if a abstracts r.
For example, the advertised pattern:

select(tables([opticalCable]), attrs([specNo]), $cond))

can be made to match the following request:

select(tables([opticalCable]), attrs([specNo]),
op(=, attr(cableType), ‘Unitube’))

by substituting the variable $cond by op(=, attr(cableType), ‘Unitube).
Our match-maker therefore performs a simple pre-order matching process, re-
cursively matching the request with a simple pattern expression, argument by
argument from left to right. The complexity of the matching process is therefore
linear in the size of the advertisement base (the number of advertisements). The
matching of a request with a composite expression is a trivial extension to this
process.

Once the request has been matched with the pattern expression, the match-
maker will proceed to attempt a semantic match against the domain and op-
erational constraints. The semantic matching process can potentially be very
complex, depending on the form of the constraints and the reasoning power of
the matchmaker. As our focus in this paper is the specification of advertisement,
we have used standard first order logic specification and inference for domain
and operation constraints, as discussed in the previous section. However, there
are clearly opportunities for improving the efficiency of matching by using more

Advertising Database Capabilities for Information Sharing 61

advanced algorithms (based on constraint logic programming, for example). A
simple match-maker based on the proposal presented in this paper has been
implemented within the context of a case study of a distributed information
system at Pirelli Cables Ltd Newport factory [6]. The matching process is im-
plemented in Prolog, with a Java front-end. The JATlite toolkit was used to
provide KQML-based communication between software components.

6 Conclusions

The ability to advertise database capabilities concisely yet precisely is an im-
portant pre-requisite for the development of flexible DIS architectures, based
on “location-independent” cooperation between components. A DIS based on
match-making is more resilient to both short- and long-term change in its con-
stituent components, as existing components can automatically make the deci-
sion to use services offered by new components. We have described an approach
to advertisement that overcomes the limitations of previous proposals for de-
scribing database capabilities. The result is a capability description language
that combines the following advantages:

– Pattern variables may be used at all levels to allow many different request
forms to be advertised using a single pattern expression.

– Further flexibility in describing capabilities is provided by the ability to
combine patterns using the OR, AND and NOT operators.

– Additional constraints can be placed on the semantics of the capabilities
which are advertised, over and above the syntactic constraints given by pat-
tern expressions. This allows agents to characterise their capabilities much
more precisely than would be possible using pattern matching alone.

– Despite our focus on pattern matching as the basis of our advertisement
format, the importance of matching on domain concepts as a means of re-
ducing over-advertisement is not neglected. Additional constraints can be
specified to ensure that incoming requests are matched only with resources
which share their domain of interest.

– Our approach does not require that the entire schema of the resource be
embedded explicitly within the advertisement. Thus, we do not place un-
reasonable demands on the match-maker’s ability to cope with very large
advertisements, nor do advertisements grow out of date as resources evolve.

Our proposal thus combines the flexibility of pattern expressions of RQDL (al-
beit without the rigorous formal underpinnings of that proposal) with the real-
istic approaches to matching large domains in DIS systems and the ontological
approach to operational constraints hinted at within the InfoSleuth proposal [8].

A number of open questions regarding the advertisement of capabilities for
database agents still remain. There is as yet very little understanding of the
trade-off between advertisement complexity (to reduce over-advertising) and the
time required to match requests with such complex advertisements. It may be
that a certain amount of over-advertisement is beneficial to the agent system as

62 S.M. Embury et al.

a whole if this means that the match-maker agent is able to operate efficiently.
Further investigation is also required into the level of intelligence to be provided
by the match-maker agent. For example, it may be useful to endow the match-
maker with incremental learning capabilities to allow it to refine its database
of advertisements based on experience. The match-maker can monitor the re-
sults of the requests it matches, to build up a knowledge base of the successful
and unsuccessful cases. Initially, the system’s performance would be relatively
poor, as the match-maker would have very little knowledge of the participating
resources, but it would improve over time as its experience grew. A facility for
adaptive match-making of this kind could remove the responsibility for moni-
toring the capabilities of the network from individual components, and optimise
the connections between consumer and provider components to improve overall
performance of the DIS.

Acknowledgements

We are grateful to Martin Karlsson for the implementation, to Alun Preece for
his helpful comments on a draft of this paper, and to the members of the OKS
group at Cardiff University for their feedback on our advertisement format.

References

1. Y. Arens, C.-N. Hsu, and C.A. Knoblock. Query Processing in the SIMS Infor-
mation Mediator. In Austin Tate, editor, Advanced Planning Technology, pages
61–69. AAAI Press, 1996.

2. P.G. Baker, A. Brass, S. Bechhfer, C. Goble, N.W. Paton, and R. Stevens. TAMBIS
- Transparent Access to Multiple Biological Information Sources. In J. Glasgow
et al., editor, Proc. of 6th Int. Conf. on Intelligent Systems for Molecular Biology,
pages 25–34, Montréal. AAAI Press, 1998.

3. K. Decker et al. Matchmaking and Brokering. In M. Tokoro, editor, Proc. of 2nd
Int. Conf. on Multiagent Sytems, Kyoto. AAAI Press, 1996.

4. K. Decker, K. Sycara, and M. Williamson. Middle-Agents for the Internet. In
Proc. of 15th Int. Joint Conf. on Artificial Intelligence (IJCAI’97), pages 578–
583, Nagoya, Japan. Morgan Kaufmann, 1997.

5. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Com-
munication Language. In Proc. of 3rd Int. Conf. on Information and Knowledge
Management (CIKM’94), pages 456–463, Gaithersburg, USA, 1994. ACM Press.

6. M. Karlsson. A Matchmaker Agent for Database Applications. Master’s thesis,
Cardiff University, September 1999.

7. D. Kuokka and L. Harada. Supporting Information Retrieval via Matchmaking.
In C. Knoblock and A. Levy, editors, Proc. of AAAI Spring Symp. on Information
Gathering from Heterogeneous, Distributed Envs., pages 111–115. AAAI, 1995.

8. M. Nodine, W. Bohrer, and A.H.H. Ngu. Semantic Brokering over Dynamic Het-
erogeneous Data Sources in InfoSleuth. In M. Papazoglou, C. Pu, and M. Kit-
suregawa, editors, Proc. of 15th Int. Conf. on Data Engineering (ICDE’99), pages
358–365, Sydney. IEEE Computer Society Press, 1999.

Advertising Database Capabilities for Information Sharing 63

9. N. Singh, M. Genesereth, and M.A. Syed. A Distributed and Anonymous Knowl-
edge Sharing Approach to Software Interoperation. International Journal of Co-
operative Information Systems, 4(4):339–367, 1995.

10. K. Sycara, J. Lu, and M. Klusch. Interoperability among Heterogeneous Software
Agents on the Internet. Technical Report CMU-RI-TR-98-22, Robotics Institute,
Carnegie Mellon University, October 1998.

11. K. Sycara, J. Lu, M. Klusch, and S. Widoff. Matchmaking among Heterogeneous
Agents in the Internet. In S. Murugesan and D.E. O’Leary, editors, Proc. of AAAI
Spring Symp. on Intelligent Agents in Cyberspace, Stanford, USA, 1999.

12. V. Vassalos and Y. Papakonstantinou. Describing and Using Query Capabilities
of Heterogeneous Sources. In M. Jarke et al., editor, Proc. of 23rd Int. Conf. on
Very Large Data Bases, pages 256–265, Athens, 1997. Morgan Kaufmann, Inc.

13. V. Vassalos and Y. Papkonstantinou. Expressive Capabilities Description Lan-
guages and Query Rewriting Algorithms. Journal of Logic Programming, 43(1):75–
122, 2000. Special Issue on Logic-Based Heterogeneous Information Systems.

	Introduction
	Advertising Database Capabilities
	Current Approaches to Advertising
	An Advertisement Language for Database Capabilities
	Simple Pattern Expressions
	Composite Pattern Expressions
	Constraining Pattern Variables

	Matching Process
	Conclusions

