
A Model for ínter-module Analysis and
Optimizing Compilation

Francisco Bueno1 , María García de la Banda 2 , Manuel Hermenegildo1 ,
Kim Marriot t 2 , Germán Puebla 1 , and Peter J. Stuckey3

1 Technical University of Madrid (UPM), Spain
{bueno,herme,german}@fi.upm.es

2 Monash University, Australia
{mbanda,marriott}@csse.monash.edu.au

3 University of Melbourne, Australia
pjsOcs.mu.oz.au

Abs t r ac t . Recent research into the implementation of logic program-
ming languages has demonstrated that global program analysis can be
used to speed up execution by an order of magnitude. However, cur-
rently such global program analysis requires the program to be analysed
as a whole: sepárate compilation of modules is not supported. We de­
scribe and empirically evalúate a simple model for extending global pro­
gram analysis to support sepárate compilation of modules. Importantly,
our model supports context-sensitive program analysis and multi-variant
specialization of procedures in the modules.

1 Introduction

Decades of software development have demonstrated tha t the use of modules to
structure programs is crucial to the development of large software systems. It
has also shown tha t sepárate compilation of these modules is vital since it is too
inefficient to have to compile the entire program including library files each time
something is changed. Thus, virtually all commercially used compilers for almost
all programming languages allow compilation of modules in isolation. Typically
this is achieved by import and export declarations in the module providing
information about each module's interface to other modules.

Recent research into the implementation of logic programming languages has
demonstrated tha t information from global program analysis can be used, for
example, to guide compile-time optimizations which can speed up execution by
an order of magnitude [8] or to guide automatic parallelization [3]. In order to
perform such optimizations, program analyses must determine useful informa­
tion at compile-time about the run-time behavior of the program. However, a
severe limitation of most existing analyses is tha t they require the program to
be analysed as a whole: thus sepárate compilation of modules is not supported.

One of the main reasons to need the whole program is tha t , at least for logic
programs, accurate program analysis seems to require context-sensitive analysis
in which procedures are analysed with respect to a number of calling pat terns ,

http://upm.es
http://monash.edu
http://mu.oz.au

rather than a context-free analysis in which analysis is only performed once for
each procedure. Context-sensitive analysis is also important because it naturally
supports specialization of the program procedures for particular cases. Such
multi-variant specialization [19] allows different optimizations to be performed
on the same procedure, a technique which has been shown to be quite important
in practice [8,10].

Here we describe and empirically evalúate a rather simple model for extend-
ing abstract interpretation based global program analysers for logic programming
languages to support sepárate module compilation. Our model supports a pro­
gram development scenario in which the program is divided into modules and
each module is developed separately, possibly by different programmers. Each
module may be compiled separately, taking into account the available analysis
information of the modules it imports for optimization. Each compilation up-
dates available analysis information as well as marking other modules where re-
compilation could improve performance. The whole process migrates towards a
point equivalent to that obtained by analysing and optimizing the whole program
at once. Importantly, the model supports context-sensitive program analysis and
multi-variant specialization of procedures in the modules.

The issue of how to combine global program analysis with sepárate compila­
tion of modules is not new: however, most work has been limited to context-free
program analysis. In this context, make style dependencies [6] can be used to
order compilation of modules. If a module is modified, other modules depend-
ing upon it must be recompiled if the changes may have affected them. Thus,
one área of research has been to determine precisely which changes to a mod­
ule forcé recompilation of another module [13,14,16]. These approaches do not
extend naturally to context-sensitive analyses.

Another proposal consists in a two stage approach to program analysis, in
which a fast imprecise global analysis is applied to the whole program, then more
precise analysis (possibly context sensitive) is applied to each module in turn [12].
Similarly, the work described in [4] proposes an approach to analysis of Prolog
modules in which the system ñrst pre-analyses modules, and then analyses the
program as a whole by combining the result of these pre-analyses. This method
is basically restricted to context-free analyses. These approaches contrast to our
approach in which no analysis of the whole program is ever required.

In the speciñc context of logic programming languages, Mercury [15] is a
modular logic programming language which makes use of sophisticated modular
analyses to improve execution speed, but context sensitive analysis information
is required to be specified by the user for exported predicates.

The present paper extends our previous work on the incremental analysis of
logic programs [7] (although this work did not consider modules as such) and
also [11] which contains a general discussion of different scenarios and the overall
issues which appear in the analysis and specialization of programs decomposed
into modules. The paper is organized as follows. In the next section we introduce
our notation. Then, Section 3 gives our model for modular compilation where
modules are not changing. Section 4 extends this to the edit-compile-test cy-

ele. Some brief experimental results are provided in Section 5, while Section 6
concludes.

2 Preliminaries and notation

We assume the reader is familiar with the concepts of abstract interpretation [5]
which underlie most analyses of logic programs.

The context-sensitive analysis of a module starts from descriptions of the
initial calis to the module. The analysis computes descriptions of all the possible
calis to the procedures in the module and, for each possible cali, a description
of its possible answers (returns of the calis). Descriptions of procedure calis and
answers are "abstract" valúes in a domain V of descriptions, which is a poset
with ordering relation -<. The inñmum and supremum of the poset are denoted
-L and T, respectively, while the operations of least upper bound and greatest
lower bound are denoted U and l~l, respectively.

A cali pattern is a pair P : CP of a procedure P and a description CP of the
valúes of the arguments of P (in logic programming terms, the head variables)
when it is called. We assume for simplicity that all procedures P appear with
a unique set of arguments (head variables), so we can refer to the argument
positions in the description. An answer pattern is a triple P : CP >-> AP where
AP is a description of the valúes of the argument positions of P on return of
calis described by cali pattern P : CP. Analysis of a module M proceeds from
a cali pattern P : CP for a procedure P exported by M and computes a set
of answer patterns for all procedures that are visible in M and are reachable
from P : CP. The description ± indicates an unreachable situation (e.g. an
unreachable program point) while the description T conveys no information. The
answer patterns computed by analysis are kept in the answer table of module
M. There will be only one answer pattern per cali pattern.

A cali dependeney is an are P : CP —> P' : CP' between cali patterns which
indicates that calis of the form P' : CP' (might) oceur during execution of calis
of the form P : CP. The analysis also computes all possible cali dependencies in
the module, which are kept in the cali dependeney graph.

Example 1 A widely used analysis domain in the context of (constraint) logic
programs is groundness analysis using the Pos abstract domain [1]. Descriptions
in Pos are positive Boolean functions denoting groundness dependencies, for
example the description X A (Y «->• Z) denotes that X is ground and Y is ground
iff Z is ground. In this domain the least description _Lp0S is false, and the
greatest description Tpos is trae, least upper bound Upos is V and greatest
lower bound ripos is A.

Consider the top-down analysis of the following module, from the initial cali
pattern app(X, Y, Z) : X, that is, where app is called with the first argument
ground.

: - module app.
appCX.Y.Z) : - X = [] , Y = Z.

app(X,Y,Z) : - X = [A|X1], Z = [A|Z1], app(Xl,Y,Z1).

Analysis proceeds by iterative fixpoint evaluation. The first iteration through
the program produces answer pattern app(X, Y,Z) : I 4 I A (F « Z) (the
answer from the first rule), as well as a cali dependency app(X, Y,Z) : X —>
app(X,Y,Z) : X. In the second iteration the same answer pattern is produced
and so we have reached a fixpoint. •

3 A model for sepárate module compilation

The principal idea of our compilation model is that at each stage the analysis
information and associated executable code is correct, but recompilation may
use more accurate analysis information to better optimize the generated code.
Each compilation of a module asks the modules it calis for new (more accu­
rate) analyses of the procedures it calis, and tells its calling modules whether
more accurate information is available for their use. In this section we present
a framework where the individual modules are not being modified and, thus,
the information inferred during each compilation is never invalidated. In the
next section we examine the use of the sepárate compilation model in the edit-
compile-test cycle, where modules are being modified.

During modular analysis, information about each exported procedure is kept
in the analysis registry. The analysis registry, or registry for short, is an extended
answer table with the most up to date analysis information about procedures to-
gether with book keeping information for the compilation process. It is used when
compiling a module to access information about procedures in other modules.
Information about procedures is updated when their module is (re-)compiled.
For simplicity, we assume that the analysis registry is global, but in practice
we will store each answer pattern P : CP >->• AP attached to the module M in
which procedure P resides (see Section 5 for more details).

Entries in the analysis registry may be marked, written P : CP >->•• AP. A
marked entry indicates that recompilation of the module containing P may infer
better information. Entries may also be followed by another cali pattern P : CP'
for the same procedure P, written P : CP >->• AP (P : CP'), where P : CP' is
called the versión cali pattern. At any time there is only one entry of the form
P : CP i->- _ (with or without versión cali pattern) for each P : CP.

A versión cali pattern indicates that a specialized procedure for P : CP
does not exist and instead the specialized procedure for P : CP' should be used
for linking. It also indicates that the compiler has not (yet) performed context
sensitive analysis for P : CP, but rather has used information in the analysis
registry to infer the answer pattern for P : CP. In an entry P : CP >->• AP (P :
CP') it is always the case that CP < CP' since it must be legitímate to use the
existing procedure P : CP' for calis of the form P : CP.

The analysis registry is initialized with (marked) entries of the form P : T i-)-*
T for each exported procedure P in the program. This gives no information, but
ensures a correct answer is available for each procedure.

The inter-module dependency graph is a cali dependency graph with entries
of the form Pi : CP\ —> P-¿ : CP-i where P\ and P2 are procedures exported by
different modules. It is used to assess which modules may beneñt from recompi-
lation after the module exporting P2 is (re-)compiled.

The key to the method is that the analysis registry always contains correct
information, henee (optimizing) compilation of a module can safely make use of
this information.

3.1 Compiling a single module

The ñrst step in compiling a module M is determining its initial cali patterns.
This is simply the list of P : CP appearing in a marked entry in the analysis
registry where P is a procedure exported by M. Analysis proceeds from these
initial cali patterns as usual. During analysis of M, information for procedures in
other modules is accessed by looking in the analysis registry. Suppose imported
procedure P is being called with cali pattern CP. Two cases are considered:

1. If P : CP H- AP (or P : CP ^ AP (P : CP')) exists in the analysis registry
then the analysis can use AP as the answer description.

2. Otherwise, the analysis seleets an entry in the registry of the form P : CP' >->•
AP' (or P :CP' H- AP' (P : CP")) such that CP ^ CP' and uses AP'
as a correct (but possibly inaecurate) answer description. Note that such
an entry must exist since there is always an entry P : T 4 AP' for every
exported procedure.

If there are several entries of the appropriate form, analysis will choose
one whose answer is no less aecurate than the rest, i.e., an AP' will be
chosen such that for all other entries of the form P : CP¡ i-» AP¡ or P :
CP¡ H- AP¡ (P : CP¡') in the registry for which CP < CP¡ we have that
API /AP'.1

A new entry P : CP >->' AP' (P : CPimp) is then added to the analysis
registry, where P : CPímp is either P : CP' if the selected entry does not
have a versión cali pattern or P : CP" otherwise. The mark indicates that
the new cali pattern could be refined by recompilation, and the versión cali
pattern indicates its best current implementation.

The algorithm get_answer(P : CP) below defines the answer pattern returned
for a calling pattern P : CP. For the purposes of matching in the algorithm we
assume that an entry without versión cali pattern P : CP i->- AP' is equivalent
to an entry with the versión cali pattern P : CP i->- AP' (P : CP)

get_answer(P : CP)

1 If the behaviour of code resulting from multivariant specialisation is the same as the
original program code with respect to the analysis domain, then a better choice for
AP' is n¿AP/. Even better, if the analysis domain is downwards closed, the answer
description CP l~l AP1 is also correct for P : CP and, in general, more aecurate since
CP n AP' < AP'. Thus, in this case, we can choose AP' to be CP n (HiAP¡).

if exists P :CP H- AP' (P : CP1) in registry
return AP'

else
Al '. = I ; O ±íjnp '• — '

foreach P : C P ' H- AP ' (P : CP") in registry
if CP < CP' and AP' < AP

AP := AP'
CP — CT>"

add P:CP^* AP (P : CPimp) to the registry
return AP

Once analysis is complete, the analysis registry is updated as follows. For
each initial cali pattern P : CP the entry in the analysis registry is modiñed to
P : CP i->- AP as indicated by the answer table for module M. Note that any
previous mark or additional versión cali pattern is removed. If the answer pattern
has changed then, for each Pi : CPi —> P : CP appearing in the inter-module
dependency graph, the entry in the analysis registry for Pi : CPi is marked.
Note that after analysis of a module, none of its procedures will be marked or
have versión cali patterns in the analysis registry.

The inter-module dependency graph is updated as follows. For each initial
cali pattern P : CP any entries of the form P : CP —̂ P2 : CP2 are removed.
For each P3 : CP3, where P3 is an imported procedure reachable from P : CP,
the entry P : CP —> P3 : CP3 is added to the inter-module dependency graph.

Example 2 Consider the analysis of a simple program consisting of the modules

: - module main.
: - import rev .
main(X) : - A = [1 , 2 , 3] , rev(A,X).

: - module rev .
: - import app.
rev(X,Y) : - X = [] , Y = [] .
rev(X,Y) : - X = [A|X1], r ev (Xl ,Yl) , B = [A], app(Yl,B,Y).

: - module app.
app(X,Y,Z) : - X = [] , Y = Z.
app(X,Y,Z) : - X = [A|X1], Z = [A|Z1], app(Xl,Y,Z1) .

using groundness analysis domain Pos. Assume we want to compile module rev
after we have compiled modules main and app, with current analysis registry

main(X) : trae *-* true,

rev(X,Y) : true >->•* true,

rev(X,Y) : X >->•• true {rev : true),

app(X, Y, Z) : true 4 (I A 7) H Z ,

and inter-module dependencies main(X) : true —> rev(X, Y) : X. See Example 5
to determine how the compilation process might reach this state.

Given the above analysis registry, the initial cali patterns are rev(X, Y) : true
and rev(X, Y) : X. Analyzing both of them we obtain answer table

rev(X,Y) : true >->• true,

rev(X,Y) : X ^ X AY

and cali dependency ares

rev(X, Y) : true —> rev(X,Y) : true,

rev(X,Y) : X -)• rev(X,Y) : X,

rev(X, Y) : true —> app(X, Y, Z) : true,

rev(X, Y):X-> app(X, Y,Z):X A Y.

During the analysis the new calling pattern app(X, Y,Z) : X A Y is generated
and it uses the answer for app(X, Y, Z) : true adding the entry app(X, Y, Z) :
X A Y i-)-' (X A Y) -H- Z (app(X, Y, Z) : true) to the registry.

The updating stage moves the answer patterns to the registry, marks the
entry main(X) : true >->• true, and adds the inter-module dependency ares (the
last two cali dependency ares) to the inter-module dependency graph. •

3.2 Obtaining an executable without recompilation

The single module compilation algorithm must genérate correct answers since it
uses the information from the analysis registry, and that information is known
to be correct (of course we assume the underlying local analysis algorithm is
correct). Henee, the analysis information generated can be safely used to guide
the optimization of the compiled code of the module. In particular, information
about different cali patterns facilitates multivariant specialisation of the proce­
dure. Different variants of a procedure are generated if different optimizations
can be performed depending on the different cali patterns of the procedure.

Example 3 Several variants may be generated for the same procedure. We
distinguish them by replacing the ñame of the procedure by the corresponding
cali pattern. Continuing with Example 2, compilation produces two variants for
procedure rev, identiñed by 'Tev.true' and ' r e v : X ' , respectively. The second
one can be optimized to:

' r e v : X ' (X , Y) : -
(X == []
-> Y = []
; X =: [A| XI] ,

' r e v : X ' (X l , Y l) ,
B := [A],
' a p p : X A y (Y1,B,Y)

) .

where == is a test, := is an assignment and =: is a deconstruction. •

Once an object file exists for each module, an executable for the entire pro-
gram can be produced by simply linking all the object files as usual (modulo the
small change to the linker described below). The resulting executable is correct
and any optimizations performed for specialized procedures are guaranteed to
be valid.

Linking is made between specialized procedures as usual. From the linkers
point of view the pair P : CP is just a unique identiner for a specialized variant of
procedure P. There is one additional complexity. The linker must use the analysis
registry information to handle non-existent specialized variants. If the specialized
procedure P : CP does not exist then the link is made instead to the procedure
P : CP' where the entry in the analysis registry is P : CP >->• AP (P : CP').

Example 4 After the compilation in Example 3, the cali to ' app :X A y in
the body of 'zev.X' is linked to the procedure 'app:£rwe'. •

3.3 Obtaining an executable by performing recompilation

Although linking can be performed at any time in the program development
process without requiring any additional work, recompilation of module M might
improve the analysis information if there is a procedure P in M with a marked
entry P : CP >->•• AP in the analysis registry. In turn, recompiling a module
may mark procedures in modules that it calis (if new cali patterns are created)
and in modules that cali it (if more accurate answer information is obtained).

We may continué choosing a module M which can benefit from recompilation
and recompile it as above until either there are no marked entries in the analysis
registry anymore (a "completely optimized" versión of the program has been
reached) or we decide not to perform any further recompilation. The latter is
possible because the algorithm guarantees that after any number of recompila­
tion steps the compiled program and the corresponding linked object is correct,
even if marked entries still remain in the registry. This is important since the aim
of the sepárate compilation model we propose is not to use a long full optimiza-
tion process often. Instead, during the lifetime of the program various modules
move towards fully optimized status as the program is modified and recompiled.

The process of repeated compilation is guaranteed to terminate if the abstract
domain has no infinite descending chains. This is because every new answer de-
scription is guaranteed to be more specific than the previous answer description,
and any new cali pattern must be more specific than previous cali patterns. More
importantly, as long as there are no cyclic inter-module dependencies the process
of repeated compilation is guaranteed to be as accurate as the analysis of the
entire program at once. Essentially, this is because since there are no cycles there
is only one fixpoint and the greatest fixpoint discovered by repeated compilation
is equivalent to the least fixpoint discovered by a usual analysis of the entire
program at once (see [2] for the formal proof).

Example 5 Consider compiling the program of Example 2 from scratch. Ini-
tially the analysis registry contains

main(X) : true *-^' trae,

rev(X,Y) : true >->•* true,

app(X, Y, Z) : true i-»-* true.

Compiling module rev first we obtain answer table rev(X, Y) : true >-> true
and cali dependency ares rev(X, Y) : true —> app(X, Y, Z) : true and rev(X, Y) :
true —> rev(X,Y) : true. The analysis registry has the mark removed from the
rev(X, Y) : true >->• true entry and the are rev(X,Y) : true —>• app(X,Y,Z) :
true is added to the inter-module dependency graph.

Compiling module app we obtain answer pattern app(X, Y, Z) : trae ^ (I A
Y) +* Z. This replaces the entry in the registry and the entry for rev(X,Y) :
true i->- true is marked.

During analysis of main the new cali pattern rev(X,Y) : X is generated,
which causes an entry rev(X, Y) : X !->•• true (rev(X,Y) : true) to be added
to the registry. The answer main(X) : true >->• true overwrites the previ­
ously marked versión while the inter-module dependency main(X) : true —>•
rev(X, Y) : X is added to the inter-module dependency graph. At this point we
could link together an executable.

Recompiling rev is described in Example 2. An executable could be produced
also at this point, where calis to app(X, Y,Z) : X A Y will be linked to the code
for app(X, Y, Z) : true.

Recompiling main only changes its registry entry to main(X) : true >-> X.
Recompiling app replaces entry

app(X, Y, Z) : X A Y ^ * (X A Y) «• Z (app(X, Y, Z) : true)

by
app(X, Y,Z):XAY^XAYAZ

and marks entry rev(X, V) : l 4 XAY. An optimized versión for app(X, Y, Z) :
X A Y is produced. Recompiling rev produces no changes. The program is now
completely optimized. •

4 The compilation model in the edit-compile-test eyele

Editing a module might invalídate the analysis information appearing in the reg­
istry. Henee, we need to be able to recover a correct state for the program. In this
section we provide an algorithm which guarantees that the analysis information
for all modules in the program is correctly updated after editing a module.

Given a sensible interface between modules we believe that, for many analy-
ses, even substantial changes to a module are unlikely to invalídate the answer
patterns in the analysis registry. Henee many edits will not cause the invalidation
of information previously used in other modules and thus often it will require
recompilation of few or no modules to regain a correct state.

4.1 Recompiling an edited module

Recompilation of an edited module is almost identical to the simple compilation
described in Section 3.1 above. The only changes are that the initial cali patterns
used are all those P : CP appearing in the analysis registry2 rather than just
marked ones, and that the analysis registry is updated differently.

The updating of the analysis registry is as follows. As before, for each initial
cali pattern P : CP the entry P : CP >->• AP in the registry is replaced by the
answer pattern P : CP >->• AP' appearing in the answer table for module M. As
before, any mark or additional versión cali pattern of the entry is removed. If
AP' -< AP, then, as before, for each P\ : CP\ -¥ P : CP appearing in the inter-
module dependency graph the entry for P\ : CP\ is marked. If AP' ¿ AP the
answer pattern has changed in a way that invalidates oíd information. Then, for
each P2 : CP2 such that there is an are P2 : CP2 —> P : CP in the inter-module
dependency graph, the entry P2 : CP2 >-> AP2 is changed to P2 : CP2 *-^± AP2

to indicate that the current specialized procedure is invalid.
The algorithm update.registry below describes how the registry is updated

from answer table Answers, obtained by having analysed module M.

update.registry (Answer s)
foreach P : CP >->• AP' in Answers

let e = P : CP i->- AP (P : CP') be the matching entry in registry
replace e in registry by P : CP i-> AP
if AP' -¡ AP

foreach Pi : CP\ —> P : CP in inter-module dependency graph
mark the entry Pi : CP\ i->- AP\ with a •

else if AP < AP'
foreach P2 : CP2 —> P : CP in inter-module dependency graph

mark the entry P2 : CP2 M- AP2 with a _L

Example 6 Consider what happens if module app is changed to

: - module app.
appCX.Y.Z) : - X = [] , Y = Z.
appCX.Y.Z) : - X = [A], Z = [A].

Recompilation ñnds information app(X, Y, Z) : true >->• (l A (F f > Z)) V X ++ Z
and app(X, Y,Z) : l A F 4 l A F A Z . Because of the change in the answer
pattern for app(X, Y, Z) : true the entry rev(X, Y) : true >->• true is updated to
rev(X,Y) : true i-^1- true. The entry for rev(X,Y) : X remains unchanged. •

By comparing the original and edited versions of the module we could determine the
procedures P that might have been affected by the edits and only reanalyse them.
Of course, this would require us to have saved the previous versión of the module
code, as well as the answer table of the last analysis. If we also had saved the (intra-
module) dependency graph, then incremental analysis can be used to reanalyse the
module (see [7]).

mi

\ ^
\
\
\

m2

"
m3

/
m4

Fig. 1. Two example inter-module dependency graphs, one with a cycle

Note that any specialized procedure P' : CP' from where there is a path
to P : CP in the inter-module dependency graph is potentially invalidated. We
do not mark them all since we may be able to determine that they are not
invalidated and prevent additional work.

Example 7 Consider the module import graph on the left of Figure 1. An are
from module m to m' indicates that module m imports module m'. If module
m4 is edited then modules mi and m3 may have entries marked as invalid. It
may also mean that some procedures in module m2 are invalid, but we will defer
marking them until we have recompiled m2> to determine if the invalidation of
m4 has actually invalidated answer patterns in m3. •

4.2 Recompiling an invalidated module

Recompilation of an invalidated module is similar to normal compilation. The
important difference is that care must be taken in order to avoid using invalid
analysis information. An invalidated module can be recompiled if there are no
paths in the inter-module dependency graph from its invalidated cali patterns
to other invalidated cali patterns. Clearly for such modules we will not use (even
indirectly) any invalidated information in the analysis registry, and henee the
result of the recompilation will be guaranteed to be correct.

The recompilation procedure is as for an edited module but only marked
entries (marked with either • or ±) are used as initial cali patterns.

Example 8 Continuing Example 7, the first module to be recompiled must be
m3, assuming mi has a path to an invalid procedure in m3. For the eyelie import
graph on the right there may be no module that can be recompiled ñrst after
m6 is edited. •

Example 9 Continuing after the edit made in Example 6 module rev must be
recompiled. The only invalidated cali pattern is rev : true and the same answer
pattern rev : true >-> true is found. Since it matches the oíd answer no further
invalidation is required and the program is again in a correct state. •

The process of recompilation must continué until there are no entries marked
± in the registry before we can rebuild a valid executable.

4.3 Cyclic inter-module dependencies

If there are no cycles in the inter-module dependency graph (true if, for exam-
ple, there are no cycles in the module import graph) then there is always an
invalidated cali pattern which does not depend on another invalidated cali pat-
tern. But if cycles exists we cannot simply recompile a single module; instead a
different approach must be taken.

The simplest solution is to throw away all the possibly invalid information.
For each P : CP in the strongly connected component that contains an inval­
idated entry, we can reset the analysis registry entry to P : CP >->•• T (we
could do better than this with some care). For each P' : CP' not in the strongly
connected component with an are P' : CP' —>• P : CP, we mark the entry as
invalid. Each module involved in the strongly connected component can now be
recompiled, since they now do not depend on invalid information. Note that for
simplicity we may treat cycles in the import graph as an overestimation of cycles
in the inter-module dependency graph (as we do in the examples below).

Example 10 Consider the module import graph on the right of Figure 1. If m6
is edited then m5 is invalidated and (assuming the eyele exists at the procedure
level) all procedures in m3, mA and m5 must be reset to T and the calling
procedures in mi and m2 invalidated to achieve a correct state. •

The above approach is simple, but may lead to considerably more recompi­
lation than is really required. A better approach is to break a eyele by choosing
a module to start (re)analyse from. We then "zero" the information for those
modules which it depends on and which have invalid information. We repeat
this, choosing modules that depend on modules that have just been reanalysed.

Example 11 Consider again the import graph illustrated on the right of Fig­
ure 1. If mQ is edited causing an invalidation of oíd information, then all the
other modules are now potentially invalidated. By resetting all the answer infor­
mation in m2> (instead of m3, m4 and m5) to T we could now safely recompile
m5, since it does not depend on any invalid information. Since there is no longer
a eyele of invalidated information we can continué as in Section 4.2. •

5 Implementation

We now show the first results of very preliminary experimentation with the
implementation of our modular analysis system. The aim of this section is not
to report on a complete evaluation, but rather to show the feasibility of the
approach and the possible advantages in terms of (memory) performance.

The modular analysis has been integrated in the Plai analysis system, written
in Ciao Prolog. The current implementation uses a global analysis registry, which

is kept in memory throughout the analysis of a program until a fixpoint is reached
(memory consumption could be optimised by keeping the analysis registry entries
for each module in a sepárate file). The registry entries are asserted in the Prolog
datábase. They include answer patterns (without versión cali patterns) but no
cali dependencies; instead, dependencies are stored at the module level, that is,
when a new answer pattern is found in module M, all exported procedures of
each module M' importing M are marked for re-analysis. This results in more
processing than required, since only a few (or none) of the procedures of module
M' may depend on the procedures in M which actually changed.

The registry is initially empty, but the analyser assumes a topmost answer
when no applicable entry can be found in the registry, which is equivalent to
initializing the registry with topmost answer patterns for all exported procedures
in the program.

The current implementation's use of a single global registry is for simplicity.
It would be better if the analysis registry and inter-module dependency graph
was stored as a sepárate info file associated with each module. The info file for
module M stores, for procedures P defined in M, answer patterns of the form
P : CP i-> AP, as well as the cali dependencies of the form P' : CP' —> P : CP
where P' is a procedure from another module M'. When compiling module M
we then update the answer patterns in its info file and add the new cali patterns
that may have appeared to the info files of the imported modules. To determine
when a module needs be recompiled, we simply examine its info file for marked
entries. Note that using this arrangement, all the information required to compile
a module M is found in its info files and those of the modules it imports. Our
implementation works with this storage methodology. However, info files are
cached in memory, so that the overall effect is that of a global analysis registry,
as mentioned before.

In our experiment we analyse a set of benchmarks3 using our modular ap-
proach: during the first iteration each module is analysed; in following iterations
only those modules which have marked entries in their info files will be analysed,
until no marked entry remains. This approach is compared to that of analysing
the whole program at once. The comparison has been carried out on three anal­
ysis domains, namely shf (set-sharing and freeness information, see [9]), son
(pair-sharing and linearity information, see [18]), and deí (a simplified versión
of the Pos domain, see [1]).

The following table shows size statistics for each benchmark program: the
number of predicates, clauses and literals in the program as well as the average
and máximum number of variables per literal. The analysis results given are the
the analysis time of the whole non-modular program (Whole) and of the modular
program (Module) in seconds, the number of iterations of the modular analysis
(#IT) and the number of modules analysed in each iteration (#Mods); the first
of these numbers is the number of modules forming the complete program. The
analysis times shown in the table are an average of the analysis (wall-) times for
10 executions of the analyser, performed in a PC with two Intel PII processors at

3 The benchmarks used are available at h t tp : / /www.cl ip .dia . f i .upm.es /bueno.

http://www.clip.dia.fi.upm.es/bueno

400MHz, SuperMicro motherboard at 100MHz, 512Mb ram, and running Red
Hat Linux 6.2. Note that we do not take into account any Ciao libraries the
benchmarks might use, i.e., the libraries are assumed to be previously analysed
and thus do not contribute to the analysis time.

Program

boyer

wms2

chat80

icost

Preds

29

Clauses

144

Lits

64

Vars/Cls
Ave Max

3 6

63 1339 269 6 22

459 2822 1416 6 27

1159 2681 6203 6 100

Dom

shf
son
def
shf
son
def
shf
son
def
shf
son
def

Whole

1
0.5
0.6
-
-

5.1
-
-
-
-
-
-

Module

1.8
0.8
0.8
-

12.6
32.5

-
-

34.4
-
-

219.6

I T

2
2
2

3
2

2

4

#Mods

3-2
3-2
3-2

7-5-1
7-2

21-8

12-12-12-2

The size of the programs vary considerably, and the complexity of each pro­
gram is also different. The core of boyer is a pair of recursive predicates, one of
which is also mutually recursive with a third one. In wms2, the central part is a
multiply recursive predicate based on another two multiply recursive predicates;
there is no mutual recursion. Programs chat80 and i cos t have a large number
of multiply and mutually recursive predicates.

Regarding the modular versions, only chat80 and i cos t have cycles in the
module import graph (which the implementation takes as an overestimation of
the inter-module dependency graph). There is only one cycle in chat80, which
includes two modules. In contrast, in i cos t there are many cycles, which basi-
cally amounts to ten of the twelve modules being included in a single strongly
connected component.

The program boyer is a simplified versión of the Boyer-Moore theorem prover
(written by Evan Tick). The core part of the program has been divided in two
sepárate modules (plus a third one providing data to both these). These two
modules need a second iteration of modular analysis to complete. Obviously
there is overhead in the modular analysis of a program that can be analysed all
at once. The boyer benchmark shows that this is not overwhelming.

The program wms2 solves a job allocation problem (written by Kish Shen).
Analysis of the whole program with domains shf and son runs out of memory.
However, a simple modularization (i.e., taking the tables of data to different
modules) allows analysis with the son domain. The difficulty in analysing the
whole program seems simply to be the large amount of code to analyse.

On the other hand, having the data in different modules increases the over­
head in modular analysis in the case of domain def, compared to that of boyer.
In this domain, the lack of information on the data slows down the analysis of

the core part of the algorithm in the first iteration. In the second iteration, once
the data modules are analyzed, this does not happen.

The program chat80 is the famous natural language query answering system
of F. Pereira and D. H. D. Warren. Again in this case, the analysis of the whole
program runs out of memory. Converting each of the original ñles in the program
in a different module, the program can now be analysed in two iterations. The
difficulty in this program seems to be the amount of analysis information that
needs be handled: It can be handled separately for each module, but not when
it is put together.

A similar thing happens with program icos t . This one is a versión of Caslog,
originally developed by Nai-Wei Lin, which has been further developed by Pedro
López. In this case, every subpart of the original program has been converted
into a module (which includes the time complexity, size, number of solutions,
dependency and determinacy analyses which are part of the functionality of the
program). This allows modular analysis with domain def, while the analysis of
the whole program was not possible.

6 Conclusión

We have presented a simple algorithm for context sensitive analysis and opti-
mization of modular programs. It is efficient in the sense that it keeps track of
which information can be improved through reanalysis, and only performs this
reanalysis. It has the advantage that correct executables can be produced after
compiling each module just once and, if there are no cycles in the import graph,
the final result from repeated recompilation is as accurate as analyzing the en-
tire program globally. Our experimental results illustrate that modular analysis
allows global optimization to be applied to much larger programs than if we
are forced to analyse the whole program at once. To our knowledge, this is the
first generic proposal for a context sensitive analysis that truly allows sepárate
compilation of modules.

The technique may produce múltiple versions of predicates to allow different
optimizations. It may appear that the proliferation of different specialized ver­
sions will result in an excessive program size. However, in our experience with the
CLP(R) optimizing compiler [8] and the Ciao Prolog parallelizing compiler [10]
the resulting sizes are reasonable. Also, it is easy to modify the approach to
only allow two versions of a procedure P, the most general P : T and a single
specialized versión P : CP. Whenever a new cali pattern P : CP' is generated it
is compared with the (unique) specialized versión in the registry P : CP >->• AP.
If CP1 •< CP then there is no change. Otherwise, the entry is replaced with
P : (CPU CP') H-* AP-j (P : T) where APT is the answer pattern for P : T.

Although throughout the paper we have used logic programs as our exam-
ples, the approach is relatively independent of the underlying language. The
same approach is applicable to context sensitive analysis of other programming
languages with a clean separation of exported and private parts of a module.
Of course other issues which complícate the context sensitive analysis, such as

tracking global s tate, dynamic scheduling and higher-order function calis, may
require considerable additional machinery to handle.

References

1. T. Armstrong, K. Marriott, P.J. Schachte, and H. S0ndergaard. Boolean func-
tions for dependency analysis: Algebraic properties and efñcient representation. In
Proceedings of the Ist International Static Analysis Symposium, B. Le Charlier, Ed.
Lecture Notes in Computer Science, vol. 864. Springer-Verlag, Berlin, 266-280, 1994.

2. F. Bueno, M. García de la Banda, M. Hermenegildo, K. Marriott, G. Puebla, and
P.J. Stuckey. ínter-module Analysis and Optimizing Compilation. Department of
Computer Science and Software Engineering, University of Melbourne, Forthcoming
Technical Report, 2001.

3. F. Bueno, M. García de la Banda, M. Hermenegildo, and K. Muthukumar. Auto­
matic compile-time parallelization of logic programs for restricted, goal-level, inde-
pendent and-parallelism. Journal of Logic Programming 38, 2, 165-218.

4. M. Codish, S.K. Debray, and R. Giacobazzi. Compositional analysis of modular logic
programs. In ACM SIGPLAN-SIGACT Symposium on Principies of Programming
Languages POPL'93, pages 451-464, Charleston, South Carolina, 1993. ACM.

5. P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM
Symposium on Principies of Programming Languages, 238-252, 1977.

6. S.I. Feldman. Make-a program for maintaining computer programs. Software -
Practice and Experience, 1979.

7. M. Hermenegildo, G. Puebla, K. Marriott, and P.J. Stuckey. Incremental analysis
of constraint logic programs. ACM Transactions on Programming Languages and
Systems, 22(2): 187-223, 2000.

8. A. Kelly, A. Macdonald, K. Marriott, H. S0ndergaard, and P.J. Stuckey. Optimiz­
ing compilation for CLP(72.). ACM Transactions on Programming Languages and
Systems, 20(6):1223-1250, 1998.

9. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen­
dency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315-
347, July 1992.

10. G. Puebla and M. Hermenegildo. Abstract múltiple specialization and its applica-
tion to program parallelization. J. of Logic Programming. Special Issue on Synthesis,
Transformation and Analysis of Logic Programs, 41(2&3):279-316, 1999.

11. G. Puebla and M. Hermenegildo. Some issues in analysis and specialization of
modular Ciao-Prolog programs. In [20].

12. A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments.
In Proceedings of ESEC/FSE '99, volume 1687 of LNCS, pages 235-252. Springer-
Verlag, 1999.

13. Z. Shao and A. Appel. Smartest recompilation. In ACM SIGPLAN-SIGACT
Symposium on Principies of Programming Languages POPL'93, pages 439-450,
Charleston, South Carolina, 1993. ACM.

14. R.W. Schwanke and G.E. Kaiser. Smarter recompilation. ACM TVansactions on
Programming Languages and Systems, 10(4):627-632, 1988.

15. Z. Somogyi, F. Henderson and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. Journal of Logic Pro­
gramming, 29(l-3):17-64, 1996.

16. W. Tichy. Smart recompilation. ACM TVansactions on Programming Languages
and Systems, 8(3):273-291, 1986.

17. W. Vanhoof and M. Bruynooghe. Towards modular binding-time analysis for first-
order Mercury. In [20].

18. H. Sondergaard. An application of abstract interpretation of logic programs: occur
check reduction. In European Symposium on Programming, LNCS 123, pages 327-
338. Springer-Verlag, 1986.

19. W. Winsborough. Múltiple specialization using minimal-function graph semantics.
Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

20. Special Issue on Optimization and Implementation of Declarative Programming
Languages, volume 30 of Electronic Notes in Theoretical Computer Science. Elsevier
- North Holland, March 2000.

