Skip to main content

Combinatorial Auctions, Knapsack Problems, and Hill-Climbing Search

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2056))

Abstract

This paper examines the performance of hill-climbing algorithms on standard test problems for combinatorial auctions (CAs). On single-unit CAs, deterministic hill-climbers are found to perform well, and their performance can be improved significantly by randomizing them and restarting them several times, or by using them collectively. For some problems this good performance is shown to be no better than chancel; on others it is due to a well-chosen scoring function. The paper draws attention to the fact that multi-unit CAs have been studied widely under a different name: multidimensional knapsack problems (MDKP). On standard test problems for MDKP, one of the deterministic hill-climbers generates solutions that are on average 99% of the best known solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Arkin and R. Hassin. On local search for weighted packing problems. Mathematics of Operations Research, 23:640–648, 1998.

    MATH  MathSciNet  Google Scholar 

  2. R. Battiti and G. Tecchiolli. Local search with memory: Benchmarking RTS. Operations Research Spectrum, 17(2/3):67–86, 1995.

    Article  MATH  Google Scholar 

  3. J. E. Beasley. OR-library: distributing test problems by electronic mail. Journal of the Operational Research Society, 41(11):1069–1072, 1990.

    Article  Google Scholar 

  4. M. Bertocchi, I. Brandolini, L. Slominski, and J. Sobczynska. A monte-carlo approach for 0-1 programming problems. Computing, 48:259–274, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bertocchi, A. Butti, L. Slominski, and J. Sobczynska. Probabilistic and deterministic local search for solving the binary multiknapsack problem. Optimization, 33:155–166, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms for knapsack problems with cardinality constraints. European Journal of Operational Research, 123:333–345, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. Barun Chandra and Magnus M. Halldorsson. Greedy local improvement and weighted set packing approximation. Proceedings of the tenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 169–176, 1999.

    Google Scholar 

  8. P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4:63–86, 1998.

    Article  MATH  Google Scholar 

  9. Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization problems. http://www.nada.kth.se/~viggo/wwwcompendium.

  10. Sven de Vries and R. Vohra. Combinatorial auctions: A survey. Technical Report (discussion paper) no. 1296, The Center for Mathematical Studies in Economics and Management Science, Northwestern University, 2000.

    Google Scholar 

  11. A. Drexl. A simulated annealing approach to the multiconstraint zero-one knapsack problem. Computing, 40:1-, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.E. Dyer and A. M. Frieze. Probabilistic analysis of the multidimensional knapsack problem. Maths. of Operations Research, 14(1):162-76, 1989.

    MathSciNet  Google Scholar 

  13. FCC. Public notice DA00-1075: Auction of licenses in the 747-762 and 777-792 MHZ bands scheduled for September 6, 2000: Comment sought on modifying the simultaneous multiple round auction design to allow combinatorial (package) bidding.

    Google Scholar 

  14. A. Freville and G. Plateau. Hard 0-1 multiknapsack test problems for size reduction methods. Investigation Operativa, 1:251-70, 1990.

    Google Scholar 

  15. A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses. European Journal of Operational Research, 15:100–109, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Gavish and H. Pirkul. Effecient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Mathematical Programming, 31:78–105, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  17. Rica Gonen and Daniel Lehmann. Optimal solutions for multi-unit combinatorial auctions: Branch and bound heuristics. Proceedings of the Second ACM Conference on Electronic Commerce (EC-00), pages 13–20, 2000.

    Google Scholar 

  18. M. M. Halldorsson. Approximations of weighted independent set and hereditary subset problems. J. Graph Algorithms and Applications, 4(1):1–16, 2000.

    MathSciNet  Google Scholar 

  19. S. Hanafi and A. Freville. An effecient tabu search approach for the 0-1 multidimensional knapsack problem. European Journal of Operational Research, 106(2-3):663–697, 1998.

    Article  Google Scholar 

  20. Christian Haul and Stefan Voss. Using surrogate constraints in genetic algorithms for solving multidimensional knapsack problems. In David L. Woodruff, editor, Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search: Interfaces in Computer Science and Operations Research, chapter 9, pages 235–251. 1998.

    Google Scholar 

  21. Luke Hunsberger and Barbara J. Grosz. A combinatorial auction for collaborative planning. Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS-2000), pages 151–158, 2000.

    Google Scholar 

  22. Joni L. Jones. Incompletely specified combinatorial auction: An alternative allocation mechanism for business-to-business negotiations (Ph.D. thesis).

    Google Scholar 

  23. A. H. G. Rinnooy Kan, L. Stougie, and C. Vercellis. A class of generalized greedy algorithms for the multi-knapsack problem. Discrete Applied Mathematics, 42:279–290, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Khuri, T. Back, and J. Heitkotter. The zero/one multiple knapsack problem and genetic algorithms. Proceedings of the ACM Symposium of Applied Computation, pages 188–193, 1993.

    Google Scholar 

  25. Erhan Kutanoglu and S. David Wu. On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. Technical report, Lehigh University, April, 1998.

    Google Scholar 

  26. K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combinatorial auctions algorithms. Proceedings of the Second ACM Conference on Electronic Commerce (EC-00), pages 66–76, 2000.

    Google Scholar 

  27. K. Leyton-Brown, Y. Shoham, and M. Tennenholtz. An algorithm for multi-unit combinatorial auctions. Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 56–61, 2000.

    Google Scholar 

  28. R. Loulou and E. Michaelides. New greedy-like heuristics for the multidimensional 0-1 knapsack problem. Operations Research, 27:1101–1114, 1979.

    MATH  MathSciNet  Google Scholar 

  29. Michael J. Magazine and Maw-Sheng Chern. A note on approximation schemes for multidimensional knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

    MATH  MathSciNet  Google Scholar 

  30. M. Ohlsson, C. Peterson, and B. Soderberg. Neural networks for optimization problems with inequality constraints-the knapsack problem. Technical Report LU TP 92-11, Dept. of Theoretical Physics, Univ. of Lund, 1992.

    Google Scholar 

  31. C. C. Petersen. Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Management Science, 13(9):736–750, 1967.

    Google Scholar 

  32. S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics, 13:402–417, 1982.

    Article  Google Scholar 

  33. M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable combinatorial auctions. Management Science, 44(8):1131–1147, 1998.

    MATH  Google Scholar 

  34. Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. A note on greedy algorithms for maximum weighted independent set problem. http://minnie.comp.cs.gunma-u.ac.jp/ koichi/TecRep/gamis.ps.

  35. Tuomas Sandholm and Subhash Suri. Improved algorithms for optimal winner determination in combinatorial auctions and generalizations. Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 90–97, 2000.

    Google Scholar 

  36. S. Senju and Y. Toyoda. An approach to linear programming with 0-1 variables. Management Science, 11:B196–B207, 1967.

    Google Scholar 

  37. Wei Shih. A branch and bound method for the multiconstraint zero one knapsack problem. J. Operational Research Society, 30(4):369–378, 1979.

    Article  MATH  Google Scholar 

  38. Krzysztof Szkatula. On the growth of multi-constraint random knapsacks with various right-hand sides of the constraints. European Journal of Operational Research, 73:199–204, 1994.

    Article  MATH  Google Scholar 

  39. J. Thiel and S. Voss. Some experiences on solving multiconstraint zero-one knapsack problems with genetic algorithms. INFOR, 32(4):226–242, 1994.

    MATH  Google Scholar 

  40. Y. Toyoda. A simplified algorithm for obtaining approximate solution to zero-one programming problems. Management Science, 21:1417–1427, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. M. Weingartner and D. N. Ness. Methods for the solution of the multidimensional 0/1 knapsack problem. Operations Research, 15:83–103, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holte, R.C. (2001). Combinatorial Auctions, Knapsack Problems, and Hill-Climbing Search. In: Stroulia, E., Matwin, S. (eds) Advances in Artificial Intelligence. Canadian AI 2001. Lecture Notes in Computer Science(), vol 2056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45153-6_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45153-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42144-3

  • Online ISBN: 978-3-540-45153-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics