
Wrapper Generation via Grammar Induction

Boris Chidlovskii1, Jon Ragetli2�, and Maarten de Rijke2��

1 Xerox Research Centre Europe
6, Chemin de Maupertuis, 38240 Meylan, France

chidlovskii@xrce.xerox.com
2 ILLC, University of Amsterdam

Pl. Muidergracht 24, 1018 TV Amsterdam, The Netherlands
{ragetli,mdr}@wins.uva.nl

Abstract. To facilitate effective search on the World Wide Web, meta
search engines have been developed which do not search the Web them-
selves, but use available search engines to find the required information.
By means of wrappers, meta search engines retrieve information from
the pages returned by search engines. We present an approach to au-
tomatically create such wrappers by means of an incremental grammar
induction algorithm. The algorithm uses an adaptation of the string edit
distance. Our method performs well; it is quick, can be used for several
types of result pages and requires a minimal amount of user interaction.

Keywords: inductive learning, information retrieval and learning, web
navigation and mining, grammatical inference, wrapper generation, meta
search engines.

1 Introduction

As the amount of information available on the World Wide Web continues to
grow, conventional search engines expose limitations when assisting users in
searching information. To overcome these limitations, mediators and meta search
engines (MSEs) have been developed [2,6,7]. Instead of searching the Web them-
selves, MSEs exploit existing search engines to retrieve information. This relieves
the user from having to contact those search engines manually. Furthermore, the
user formulates queries using the query language of the MSE — knowing the na-
tive query languages of the connected search engines is not necessary. The MSE
combines the results of the connected search engines and presents them in a
uniform way.

MSEs are connected to search engines by means of so-called wrappers : pro-
grams that take care of the source-specific aspects of an MSE. For every search
engine connected to the MSE, there is a wrapper which translates a user’s query
into the native query language and format of the search engine. The wrapper
also takes care of extracting the relevant information from the results returned

� Supported by the Logic and Language Links project funded by Elsevier Science.
�� Supported by the Spinoza project ‘Logic in Action.’

R. López de Mántaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 96–108, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Wrapper Generation via Grammar Induction 97

Fig. 1. Sample result page

by the search engine. We will refer to the latter as ‘wrapper’ and do not discuss
the query translation (see [5] for a good overview). An HTML result page from
a search engine contains zero or more ‘answer items’, where an answer item is a
group of coherent information making up one answer to the query. A wrapper
returns each answer item as a tuple consisting of attribute/value pairs. For ex-
ample, from the result page in Fig. 1 three tuples can be extracted, the first of
which is displayed in Fig. 2. A wrapper discards irrelevant information such as
layout instructions and advertisements; it extracts information relevant to the
user query from the textual content and attributes of certain tags (e.g., the href
attribute of the <A> tag).

Manually programming wrappers is a cumbersome and tedious task [4], and
since the presentation of the search results of search engines changes often, it
has to be done frequently. To address this, there have been various attempts to
automate this task [3,9,10,12,13]. Our approach is based on a simple incremental
grammar induction algorithm. As input, our algorithm requires one result page
of a search engine, in which the first answer item is labeled: the start and end
of the answer need to be indicated, as well as the attributes to be extracted.
After this, the incremental learning of the item grammar starts, and with an
adapted version of the edit distance measure further answer items on the page
are found and updates to the extraction grammar are carried out. Once all
items have been found and the grammar has been adapted accordingly, some
post-processing takes place, and the algorithm returns a wrapper for the entire

〈 url = "http://www.wrapper.org",˜title = "Number One Wrapper

Generator",˜description = "Welcome to the wrapper generating

organization",˜relevance = "1000" 〉

Fig. 2. An item extracted



98 Boris Chidlovskii et al.

page. The key features of our approach are limited user interaction (labeling only
one answer item) and good performance: for a lot of search engines it generates
working wrappers, and it does so very quickly.

The paper is organized as follows. In the next section we show how to use
grammar induction for the construction of wrappers. After that we describe our
wrapper learning algorithm. We then present experimental results, comparisons
and conclusions. Full details can be found in [14].

2 Using Grammar Induction

We view labeled HTML files as strings over the alphabet Σ∪A, where every σ ∈ Σ
denotes an HTML tag, and every ai ∈ A (i = 1, 2, . . .) denotes an attribute to be
extracted. The symbol a0 in A represents the special attribute void, that should
not be extracted; Σ and A are disjoint. For example, the HTML fragment

<title>Wrapper Induction</title>

might correspond to the string ta1t, where t and t are symbols of Σ which denote
tags <title> and </title>, respectively. The text Wrapper Induction has to
be extracted as the value of attribute a1 ∈ A.1

We aim to construct a wrapper that is able to extract all relevant information
from a given labeled page and unseen pages from the same source. We solve the
problem by decomposing it into two simpler subtasks. The first one is to find an
expression that locates the beginning (Start) and the end (End) of the list of
answer items. The second subtask is to induce a grammar Item that can extract
all the relevant information from every single item on the page. The grammar
describing the entire page will then be of the form Start (Item)∗ End. The
Start and End expressions can easily be found. The grammar induction takes
place when the grammar for the items is generated. Here, the item grammar is
learned from a number of samples from (Σ ∪A)+, corresponding to the answer
items on the page. Besides learning the grammar, our algorithm also finds the
samples on the HTML page that it uses to learn the grammar.

Preprocessing the HTML Page. All known approaches for automatically gener-
ating wrappers require as input one or more labeled HTML pages: all or some
of the attributes to be extracted have to be marked by the user or some labeling
program. As it is hard to create labeling programs for the heterogeneous set of
search engines that an MSE must be connected to, and the labeling is a boring
and time-consuming job, we have restricted the labeling for our algorithm to a
single answer item only. Figure 3 shows the labeled source for the HTML page
in Fig. 1. The labeling consists of an indication of the begin (^BEGIN^) and end
(^END^) of the first answer item, the names of the attributes (e.g. ^URL^), and
the end of the attributes (^^). After the item has been labeled, it is abstracted
by our algorithm to turn it into a string over Σ ∪ A.
1 This representation is somewhat simplified. The program can also extract tag at-
tributes, such as the href attribute for the A tag, or split element contents with
conventional string separators. Due to space limitations, we omit details.



Wrapper Generation via Grammar Induction 99

<HTML><HEAD><TITLE>Search results for query: wrapper</TITLE></HEAD>

<BODY bgcolor = "white" text= "black">

<H3>Search results for query: wrapper</H3>

<dl>

^BEGIN^ <dt> ^URL^ <a href="http://www.wrapper.org/"> ^^
^TITLE^ Number One Wrapper Generator ^^ </a><br>

<dd><i>Description:</i> ^DESCR^ Welcome to the wrapper

generating organisation. ^^ <br>

<font size="-3"><I> ^REL^ 1000 ^^ </I>;

http://www.wrapper.org/</font> ^END^
</dl>

<dl>

<dt><a href="http://www.candy.com/wrappers/">

Buy our candy bar wrapper collection </a><br>
...

<font size="-3"><I>312</I>;

http://www.freehomepages.com/~maestro/</font>

</dl>

</BODY></HTML>

Fig. 3. Labeled HTML source of result page

The Item Grammar. The item grammar has to be learned from merely positive
examples; this cannot be done efficiently for regular expressions with the full
expressive power of Finite State Automata (FSAs) [15]. We aim to learn a very
restricted kind of grammar, which we will first describe as a simple form of FSA,
called sFSA, where transitions labeled with an attribute ai ∈ A (except a0) also
produce output: the attribute name and the token consumed. After that we show
how those sFSAs correspond with a simple form of regular expression. We start
by defining an extremely simple class of FSAs.

Definition 1 (Linear FSA). A sequence of nodes n1 . . . nm, where every node
ni (1 ≤ i < m) is connected to ni+1 by one edge ei,i+1 labeled with elements
from Σ ∪A, is a linear FSA if it is the case that whenever ei,i+1 is labeled with
an element a ∈ A, then ei−1,i and ei+1,i+2 are labeled with elements from Σ.

The fact that the attribute a in Definition 1 is surrounded by HTML tags
(from Σ) allows us to extract the attribute. Fig. 4 shows a linear FSA that can
only extract the attributes from one type of item: an item that has an attribute

n1 n2 n3 n4
<B> name </B>

Fig. 4. A linear FSA



100 Boris Chidlovskii et al.

n1 n2 n3 n4 n5 n6 n7 n8
<B> name </B> <IMG> <I> address </I>

ε
ε

Fig. 5. An sFSA

name between <B> and </B> tags (symbols in Σ, like <B> and </B> in Fig. 4,
represent tokens for abstracted tags). Therefore, it is not very useful. The sFSAs
that we employ to learn the structure of items, are a bit more complex.

Definition 2 (simple FSA). A linear FSA that also has ε-transitions si,j

(transitions labeled with ε) from node ni to node nj (i < j) is called a sim-
ple FSA (sFSA) if

– whenever there is an ε-transition si,j there is no ε-transition sk,l with i ≤
k ≤ j, or i ≤ l ≤ j, and

– whenever there is an ε-transition si,j , and ej,j+1 is labeled with an element
from A, ei−1,i is labeled with an element from Σ.

The first condition demands that ε-transitions do not overlap or subsume each
other. The second condition states that when an ε-transition ends at a node with
an outgoing edge with a label from A (i.e., the abstracted content), it has to
start at a node with an incoming edge with a label from Σ (i.e., an abstracted
HTML tag). The latter guarantees that an attribute is always surrounded by
HTML tags, no matter what path is followed through the automaton.

Figure 5 shows an sFSA that can extract names and addresses from items,
where some items do not contain the address between <I> and </I>, and there
may be an image (<IMG>) after the name that is enclosed by <B> and </B> tags.
The ε-transitions of the sFSA make it more expressive than a linear FSA, but
sFSAs are less expressive than FSAs, since sFSAs do not contain cyclic patterns.

Where do grammars come in? One can represent the language defined by
an sFSA by a simple kind of regular expression with fixed and optional parts.
Using brackets to indicate optional parts, the sFSA of Fig. 5 can be represented
as <B>name</B>[<IMG>][<I>address</I>]. This expression acts as a grammar
defining the same sequences of abstracted tags and content as the sFSA. We
refer to this representation as item grammar or simply grammar. The grammar
can be this simple, because the HTML pages for which they are created are
created dynamically upon user requests and therefore have a regular structure.

3 Inducing the Item Grammar

Our grammar induction algorithm is incremental; item grammar Gn, based on
the first n items, is adapted on encountering item n + 1, resulting in gram-
mar Gn+1. The update of the grammar is based on an algorithm calculating the
string edit distance [1].



Wrapper Generation via Grammar Induction 101

item grammar a b – d
string a b c d
new item gr. a b [c] d

(a)

item grammar a b [c] d
string a b c –
new item gr. a b [c] [d]

(b)

item grammar a b – d
string a – c d
new item gr. a [b] [c] [b] d

(c)

Fig. 6. Three alignments

Definition 3 (Edit distance). The edit distance D(s1 , s2 ) between two strings
of symbols s1 and s2 is the minimal number of insertions or deletions of symbols,
needed to transform s1 into s2 .

For example, D(abcd , abide) = 3: to transform abcd into abide at least three
insertion or deletion operations have to be performed. Here, and in the examples
below, the characters are symbols from Σ ∪ A. The algorithm that we use to
calculate the edit distance also returns a so-called alignment, indicating the
differences between the strings. For abcd and abide the alignment is the following:

a b c – d –
a b – i d e

The dashes indicate the insertion and deletion operations; see [1,14] for more
details. We have adapted the edit distance algorithm in a way that permits to
calculate the distance between an item grammar — a string of symbols with
optional parts — and an item. The adaptation amounts to first simplifying the
item grammar by removing all brackets, while remembering their position. Now
the edit distance between the item and the simplified grammar can be calculated
as usual. Using the alignment and the remembered position of the brackets, the
new grammar is calculated. We have also adapted the edit distance algorithm
to deal with labeled attributes in the grammar, that correspond with unlabeled
content in the item; we omit details here.

The algorithm detects and processes different cases in the alignment be-
tween Gn and the n+1-th item. Since the full algorithm description is extensive
and space is limited, we can only indicate how it works with the some examples.
As the item grammar in Fig. 6 (a) does not contain c, whereas the string to
be covered does, the resulting item grammar has an optional c in it, so that it
covers both abd and abcd . Now suppose the string abc has to be covered by the
new item grammar (Fig. 6 (b)). The reason for making d optional is that it does
not occur in the new string. The new item grammar covers ab, abc, abd and
abcd , which is a larger generalization than simply ‘remembering’ the examples.
In Fig. 6 (c), the new item grammar a[b][c][b]d is a large generalization; besides
abd and acd it covers ad , abcd , acbd and abcbd , i.e., five other strings besides
the original item grammar and the example. The reason we decided to have a
large generalization is that based on the examples we can at least conclude that
b and c are optional, but they may co-occur in any order.



102 Boris Chidlovskii et al.

1. Dnewlocal := 998, Dlocal := 999, Dbest := 1000
2. ib, ie := 0
3. local-best-item := ∅, best-item := ∅
WHILE Dlocal < Dbest and not at end of page

4. Dbest := Dlocal

5. best-item := local-best-item

6. ib := next occurrence begin tag(s)

WHILE Dnewlocal < Dlocal

7. Dlocal := Dnewlocal

8. local-best-item := (ib, ie)
9. ie := next occurrence end tag(s)

10. Dnewlocal := D(item grammar, (ib, ie))
11. IF Dbest > Threshold THEN best-item := ∅
12. return best-item and Dbest

• Dnewlocal stores the distance of the item grammar to the part of the page
between the latest found occurrence of the begin and end tag(s)
• Dlocal stores the distance of the item grammar to local-best-item

• Dbest stores the distance of the item grammar to best-item

• ib, ie are the indexes of the begin and end of a (potential) item
• local-best-item stores the potential item starting at ib that has the lowest
distance to the item grammar of the potential items starting at ib
• best-item stores the potential item that has the smallest distance to the
item grammar so far

Fig. 7. The Local Optimum Method

4 Finding Answer Items

So far, we have discussed the learning of the grammar based on the answer items
on the HTML page. As only the first answer item on the page has been indicated
by its labeling, the other items have to be found. For this, we use the distance
calculated by the adapted edit distance algorithm. We have implemented three
different strategies for finding the answer items on the page, but as space is
limited we will only describe the best and most general one: the Local Optimum
Method (LOM). The other two are simpler and usually quicker, but even with
the LOM a wrapper is quickly generated; see Section 6.

Our methods for finding items are based on an important assumption: all
items on the page have the same begin and end tag(s). As a consequence we can
view the task of finding items on a page as finding substrings on the page below
the labeled item that start and end with the same delimiters as the first labeled
item. The user can decide for how many tags this assumption holds by setting
the parameter SeparatorLength. If more begin or end tags are used, it will be
easier to find the items on the page; there is less chance of finding for example
a sequence of two tags than only one tag. However, setting the parameter too
high will result in too simple a grammar without any variation.



Wrapper Generation via Grammar Induction 103

The LOM tries to find items on the page that are local, i.e., below and close
to the item that was found last, and optimal in the sense that their distance
to the item grammar is low. Figure 7 shows the algorithm. In the first three
steps, a number of variables are initialized. As to the outermost while loop,
once the previous item has been found, or the first labeled item, the LOM looks
for the next occurrence of the begin delimiter, and then it looks for the first
occurrence of the end delimiter. Material between those delimiters is a potential
item; this is checked by calculating its edit distance to the item grammar. Below
the last found end delimiter, the LOM looks at the next occurrence of the end
delimiter. This is a new potential item to consider, so the distance between the
item grammar and this potential item is measured. If this distance is lower than
the previous distance, another occurrence of the end delimiter is considered. If
not, the previous potential item is stored as the local-best-item, and potential
items a bit lower on the page are considered next. The process of considering
new end delimiters starts again, resulting in a new local-best-item. Now the two
local-best-items are compared. If the second one was better than the first one,
LOM will seek the next occurrence of the begin delimiter. If not, the previous
local-best-item is returned as the local-optimal item.

In step 11 of the algorithm, a Threshold is mentioned. If the distance of
the best candidate item exceeds Threshold, the algorithm will return ∅ instead
of this item; this prevents the grammar to be adjusted to cover the item, and
the process of finding the item stops. Threshold is the product of two values:
HighDistance and Variation. HighDistance is the maximum distance of any item
incorporated so far. Its initial value is set by the user, and it is incremented
whenever an item is incorporated whose distance is higher than HighDistance; it
can be used to compensate for the simplicity of the distance measure. Variation
is a value that is not adapted during the process of finding the items.

5 The Entire Wrapper Generating Algorithm

We have discussed the two most important components of our wrapper genera-
tor: learning the grammar, and finding the items. In Fig. 8 the entire wrapper
generating algorithm is described; below we discuss some components.

The first step, abstract, abstracts LP , the page labeled by the user, into a
sequence of symbols AP ∈ (Σ ∪ A)+; see Section 2. The second step initializes
the grammar G to the first, labeled item. In the third step, find-next-item
is the algorithm for finding items, as described in Section 4; in the fourth step
incorporate-item adjusts the grammar in the way we described in Section 3.
In the fifth step, the grammar G is used to make a grammar for the whole page.
The user might have labeled the first item smaller than it actually is. By the
assumption that all items on the page have the same begin and end tags, the
found items (and the resulting grammar) will also be too small. Therefore, the
item grammar will be extended if possible. If there is a common suffix of the
HTML between the items covered and the HTML before the first item, this suffix
is appended to the beginning of the item grammar. If there is a common prefix



104 Boris Chidlovskii et al.

1. AP := abstract(LP)

2. G := initialize(AP)

REPEAT

3. I := find-next-item(AP, G)

4. IF I �= ∅ THEN G := incorporate-item(G, I)
UNTIL I = ∅
5. GP := expression-whole-page(G, AP)

6. W := translate-to-wrapper(GP)

7. return W

• LP is the labeled HTML page
• AP is the abstracted page
• G is the item grammar
• I is an item
• GP is a grammar for the entire page
• W is the same grammar, translated into a working wrapper

Fig. 8. The wrapper generating algorithm

of the HTML between the items, and the HTML below the last found item, it is
appended to the end of the item grammar. Besides this, expressions for Start
and End, as discussed in Section 2, are also generated in this fifth step. This is
easy: the expression for Start is the smallest fragment of AP just before the
labeled item that does not occur before in AP . End is recognized implicitly, by
the fact that no items can be recognized anymore.

For skipping the useless HTML in the item list, another grammar is con-
structed — the Trash grammar. It does not contain attributes to be extracted,
so the trash grammar will consist of symbols in Σ∪{a0}. The indices of the items
found have been stored, so this process is a repetition of incorporate-item.
Once the trash grammar has been constructed, it is appended to the end of the
item grammar. Once the item and trash grammars have been generated, our al-
gorithm will detect repetitions, and it will generalize the grammars accordingly.

After all these processing steps, we have an abstract wrapper of the form
Start (Item Trash)+, that is an expression for the beginning of the item list,
followed by one or more repetitions of a sequence of the item grammar and the
trash grammar. The last step of the algorithm in Fig. 8 is the conversion of the
abstract grammar into a working wrapper. In our implementation we translate
the abstract grammar into a JavaCC parser [11], as the meta searcher Knowledge
Brokers, developed at Xerox Research Centre Europe, is programmed in Java.

6 Experimental Results

We have tested our wrapper generating algorithm on 22 different search engines.
This is a random selection of sources to which Knowledge Brokers had already
been connected manually. It was quite successful, as it created working wrappers



Wrapper Generation via Grammar Induction 105

Table 1. Experimental results

Successfully generated wrappers
source URL size NI time

(kB) (sec)
ACM www.acm.org/search 12 10 8.0
Elsevier Science www.elsevier.nl/homepage/search.htt 11 11 2.6
NCSTRL www.ncstrl.org 9 8 32.5
IBM Patent Search www.patents.ibm.com/boolquery.html 19 50 5.3
IEEE computer.org/search.htm 26 20 3.7
COS U.S. Patents patents.cos.com 17 25 5.4
Springer Science Online www.springer-ny.com/search.html 36 100 32.1
British Library Online www.bl.uk 5 10 2.6
LeMonde Diplomatique www.monde-diplomatique.fr/md/index.html 6 4 2.5
IMF www.imf.org/external/search/search.html 10 50 5.3
Calliope sSs.imag.fr∗ 22 71 4.1
UseNix Association www.usenix.org/Excite/AT-usenixquery.html 16 20 4.3
Microsoft www.microsoft.com/search 26 10 4.5
BusinessWeek bwarchive.businessweek.com 13 20 3.9
Sun www.sun.com 20 10 3.7
AltaVista www.altavista.com 19 10 4.1

Sources for which the algorithm failed to generate a wrapper
source URL
Excite www.excite.com
CS Bibliography (Trier) www.informatik.uni-trier.de/˜ley/db/index.html
Library of Congress lcweb.loc.gov
FtpSearch shin.belnet.be:8000/ftpsearch
CS Bibliography (Karlsruhe) liinwww.ira.uka.de/bibliography/index.html
IICM www.iicm.edu

∗ Only accessible to members of the Calliope library group.

for 16 of the 22 sources. For 2 other sources the generated incorrect wrappers
could easily be corrected. The working wrappers were created with only one an-
swer item labeled. This means that good generalizations are being made when
inducing the grammar for the items; labeling only one item of one page is suf-
ficient to create wrappers for many other items and pages. Table 1 summarizes
our experimental results; the fourth column, labeled NI, contains the total num-
ber of items on the page. The times displayed in Table 1 were measured on a
modest computer (PC AMD 200MMX/32 RAM). Still, the time to generate a
wrapper is very short; it took at most 32.5 seconds, with the average time being
7.8 seconds. Together with the small amount of labeling that has to be done,
this makes our approach to generating wrappers a very rapid one.

Increasing the SeparatorLength value (see Section 4) makes our algorithm
faster, as fewer fragments of HTML are taken into account. For NCSTRL, the
time to generate a wrapper is shown with a SeparatorLength of 1 (32.5 seconds),
as 1 is the default SeparatorLength. However, with a SeparatorLength of 2, it
takes 22.5 seconds, with 3 it takes 21.4 seconds, and with 4 17.1 seconds.

Robustness of the Wrappers. An important aspect of the generated wrappers is
the extent to which the result pages of the search services may change without
the wrapper breaking down. The wrappers we generate are not very robust. Little
is allowed to change in the list with search results, because the wrapper for that
list is generated so as to closely resemble the original HTML code. But even if



106 Boris Chidlovskii et al.

the wrappers are not very robust, it is easy to create a new wrapper whenever
the search engine’s result pages change. Our algorithm is fast and does not need
much interaction, which makes it unproblematic to generate a new wrapper.

Incorrect Wrappers. There are various reasons why our algorithm failed to pro-
duce working wrappers for the six sources mentioned in Table 1. In some cases
the HTML of the result pages was incorrect (Excite, IICM). In another case
attributes were only separated by textual separators and not by HTML tags,
making it impossible to create a wrapper for it with our algorithm (Library of
Congress). In some cases the algorithm failed to create a working wrapper be-
cause the right items were not found due to too much variation in the items
(Computer Science Bibliography Trier, FtpSearch). And in another case there
was too much variation in the items and in the hierarchical way in which they
were presented (Computer Science Bibliography Karlsruhe).

Grammar Evaluation. How do we determine that an induced grammar is correct?
Like in all other approaches, the grammar induction is called successful if the
grammar extracts correctly all items from the example page. For certain sources,
one result page was insufficient and more pages were needed to learn all structural
variations and induce the working wrappers. However, in all these cases, once
the grammar was successfully induced for the initial, labeled page, it was always
possible to extend it to new result pages, without additional labeling.

In the general case, the Probably Approximate Correct (PAC) technique is
used to estimate the grammar accuracy; however, since our method is really fast
at incorporating new structural variations, we found that it is easier to keep
incorporating forever; we omit details here.

Comparison to Other Approaches. Most alternative approaches differ from ours
in significant ways. Some are far simpler [8], or specify wrappers manually at a far
more abstract level [6]. Others differ in that they are based on static templates
instead on learning the structure of result pages [12]. Still others are based on
assumptions about the structure and lay-out cues [3,16]. Some approaches need
much more user interaction as the user has to label several entire pages [13].
The approach of Hsu, Chang and Dung [9,10] is the one that is most similar
to ours. Their finite-state transducers, called single-pass SoftMealy extractors,
resemble the grammars that we generate, although they abstract pages in a
more fine-grained way. In their approach, textual content is further divided,
e.g., in numeric strings and punctuation symbols. The approach seems to create
more robust wrappers than ours, but at the price of more extensive user input.
Further comparisons — empirical and analytic — of the approaches are needed
to understand the trade-off between user interaction and quality of the wrappers.

7 Conclusion and Further Work

We have presented an approach to automatically generate wrappers. Our method
uses grammar induction based on an adapted form of the edit distance. Our



Wrapper Generation via Grammar Induction 107

wrapper generator is language independent, because it relies on the structure
of the HTML code to build the wrappers. Experimental results show that our
approach is accurate — 73% (allowing minor modifications: 82%) of the wrappers
generated are correct. Our generator is quick, as it takes less than 10 seconds
to generate a wrapper for most sources. The most important advantage of our
approach is that it requires minimal user input; it suffices to label only one item
on the page for which the wrapper has to be generated; the other items are found
by the wrapper generator itself.

Although our wrapper generator works well, it can be extended and improved
in several ways. For a start, it would be useful if the user could label attributes in
a graphical interface that hides the HTML code. Second, we need to extend the
wrapper to generate code to handle no result pages. Also, we would like to exper-
iment with relaxing our assumption that all attributes are separated by HTML
tags. Further, if a lot of search engines for a specific domain have to be connected
to a meta searcher, it may be worthwhile to create recognizers [12], modules that
find and label the attributes on the page. Finally, we have deliberately inves-
tigated the power of our method with minimal user input, but conjecture that
labeling more answer items and selecting them carefully improves performance.

References

1. Aho, Alfred V. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 255–300, Elsevier, 1990. 100,
101

2. Andreoli, J.-M., Borghoff, U., Chevalier, P-Y., Chidlovskii, B., Pareschi, R., and
Willamowski, J. The Constraint-Based Knowledge Broker System. Proc. of the
13th Int’l Conf. on Data Engineering, 1997. 96

3. Ashish, N., and Knoblock, C. Wrapper Generation for Semi-structured Internet
Sources. SIGMOD Record 26(4):8–15, 1997. 97, 106

4. Chidlovskii, B., Borghoff, U., Chevalier, P.-Y. Chevalier. Toward Sophisticated
Wrapping of Web-based Information Repositories. Proc. 5th RIAO Conference,
Montreal, Canada, pages 123–135, 1997. 97

5. Florescu, D., Levy, A., and Mendelzon, A. Database techniques for the World-Wide
Web: A Survey. SIGMOD Record 27(3):59–74, 1998. 97

6. Garcia-Molina, H., Hammer, J., and Ireland, K. Accessing Heterogeneous Infor-
mation Sources in TSIMMIS. AAAI Symp. Inform. Gathering, pages 61–64, 1995.
96, 106

7. Gauch, S., Wang, G., Gomez, M. ProFusion: Intelligent Fusion from Multiple Dis-
tributed Search Engines. J. Universal Computer Science, 2(9): 637–649, 1996. 96

8. Hammer, J. Garcia-Molina, H., Cho, J., Aranha, R., and Crespo, A. Extracting
Semistructured Information from the Web. Proceedings of the Workshop on Man-
agement of Semistructured Data, 1997. 106

9. Hsu, C.-N., and Chang, C.-C. Finite-State Transducers for Semi-Structured Text
Mining. Proc. IJCAI-99 Workshop on Text Mining, 1999. 97, 106

10. Hsu, C.-N., and Dung, M.-T., Generating finite-state transducers for semistruc-
tured data extraction from the web. Information Systems, 23(8):521–538, 1998.
97, 106



108 Boris Chidlovskii et al.

11. JavaCC – The Java parser generator. URL: http://www.metamata.com/JavaCC/ .
104

12. Kushmerick, N., Weld, D.S., and Doorenbos, R., Wrapper Induction for Informa-
tion Extraction. Proc. IJCAI-97: 729–737, 1997. 97, 106, 107

13. Muslea, I., Minton, S., Knoblock, C. STALKER. AAAI Workshop on AI & Infor-
mation Integration, 1998. 97, 106

14. Ragetli, H.J.N. Semi-automatic Parser Generation for Information Extraction from
the WWW. Master’s Thesis, Faculteit WINS, Universiteit van Amsterdam, 1998.
98, 101

15. Sakakibara, Y. Recent advances of grammatical inference. Theoretical Computer
Science 185:15–45, 1997. 99

16. Soderland, S. Learning to Extract Text-based Information from the World Wide
Web. Proc. KDD-97, pages 251–254, 1997. 106

http://www.metamata.com/JavaCC/

	Wrapper Generation via Grammar Induction
	Introduction
	Using Grammar Induction
	Inducing the Item Grammar
	Finding Answer Items
	The Entire Wrapper Generating Algorithm
	Experimental Results
	Conclusion and Further Work
	References




