A Multiple Model Cost-Sensitive Approach for
Intrusion Detection

Wei Fan', Wenke Lee?, Salvatore J. Stolfo!, and Matthew Miller!

! Department of Computer Science, Columbia University
1214 Amsterdam Avenue Room 450, New York, NY 10027-7003, USA
{wfan,sal,mmiller}@cs.columbia.edu
2 Department of Computer Science, North Carolina State University
Raleigh, NC 27695-7550, USA
wenke@csc.ncsu.edu

Abstract. Intrusion detection systems (IDSs) need to maximize secu-
rity while minimizing costs. In this paper, we study the problem of
building cost-sensitive intrusion detection models to be used for real-
time detection. We briefly discuss the major cost factors in IDS, includ-
ing consequential and operational costs. We propose a multiple model
cost-sensitive machine learning technique to produce models that are
optimized for user-defined cost metrics. Empirical experiments in off-
line analysis show a reduction of approximately 97% in operational cost
over a single model approach, and a reduction of approximately 30% in
consequential cost over a pure accuracy-based approach.

1 Introduction

Intrusion Detection (ID) is an important component of infrastructure protection
mechanisms. Many intrusion detection systems (IDSs) are emerging in the mar-
ket place, following research and development efforts in the past two decades.
They are, however, far from the ideal security solutions for customers. Invest-
ment in IDSs should bring the highest possible benefit and maximize user-defined
security goals while minimizing costs. This requires ID models to be sensitive to
cost factors. Currently these cost factors are ignored as unwanted complexities
in the development process of IDSs.

We developed a data mining framework for building intrusion detection mod-
els. It uses data mining algorithms to compute activity patterns and extract pre-
dictive features, and applies machine learning algorithms to generate detection
rules [7]. In this paper, we report the initial results of our current research in
extending our data mining framework to build cost-sensitive models for intru-
sion detection. We briefly examine the relevant cost factors, models and metrics
related to IDSs. We propose a multiple model cost-sensitive machine learning
technique that can automatically construct detection models optimized for given
cost metrics. Our models are learned from training data which was acquired
from an environment similar to one in which a real-time detection tool may
be deployed. Our data consists of network connection records processed from

R. Lépez de Méntaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 142—-154, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Multiple Model Cost-Sensitive Approach for Intrusion Detection 143

raw tcpdump [5] files using MADAM ID (a system for Mining Audit Data for
Automated Models for Intrusion Detection) [7].

The rest of the paper is organized as follows: Section 2 examines major cost
factors related to IDSs and outlines problems inherent in modeling and mea-
suring the relationships among these factors. Section 3 describes our multiple
model approach to reducing operational cost and a MetaCost [3] procedure for
reducing damage cost and response cost. In Section 4, we evaluate this proposed
approach using the 1998 DARPA Intrusion Detection Evaluation dataset. Sec-
tion 5 reviews related work in cost-sensitive learning and discusses extensions
of our approach to other domains and machine learning algorithms. Section 6
offers conclusive remarks and discusses areas of future work.

2 Cost Factors, Models, and Metrics in IDSs

2.1 Cost Factors

There are three major cost factors involved in the deployment of an IDS. Damage
cost, DCost, characterizes the maximum amount of damage inflicted by an at-
tack when intrusion detection is unavailable or completely ineffective. Response
cost, RCost, is the cost to take action when a potential intrusion is detected.
Consequential cost, CCost, is the total cost caused by a connection and includes
DCost and RCost as described in detail in Section 2.2. The operational cost,
OpCost, is the cost inherent in running an IDS.

2.2 Cost Models

The cost model of an IDS formulates the total expected cost of the IDS. In this
paper, we consider a simple approach in which a prediction made by a given
model will always result in some action being taken. We examine the cumulative
cost associated with each of these outcomes: false negative (FN), false positive
(FP), true positive (TP), true negative (TN), and misclassified hits. These costs
are known as consequential costs (CCost), and are outlined in Table 1.

FN Cost is the cost of not detecting an intrusion. It is therefore defined as
the damage cost associated with the particular type of intrusion i;, DCost(iz).

TP Cost is the cost incurred when an intrusion is detected and some action
is taken. We assume that the IDS acts quickly enough to prevent the damage of
the detected intrusion, and therefore only pay RCost(i;).

FP Cost is the cost incurred when an IDS falsely classifies a normal con-
nection as intrusive. In this case, a response will ensue and we therefore pay
RCost(i), where i is the detected intrusion.

TN Cost is always 0, as we are not penalized for correct normal classification.

Misclassified Hit Cost is the cost incurred when one intrusion is incorrectly
classified as a different intrusion — when ¢ is detected instead of i;. We take a
pessimistic approach that our action will not prevent the damage of the intrusion
at all. Since this simplified model assumes that we always respond to a predicted
intrusion, we also include the response cost of the detected intrusion, RCost(i).

144 Wei Fan et al.

Table 1. Consequential Cost (CCost) Matrix

Outcome CCost(c)
Miss (FN) DCost (i)
False Alarm (F'P) RCost(i)
Hit (TP) RCost (i)

Normal (TN) 0
Misclassified Hit RCost(z) + DCost (i)
c: connection, i;: true class, i: predicted class

2.3 Cost Metrics

Cost-sensitive models can only be constructed and evaluated using given cost
metrics. Qualitative analysis is applied to measure the relative magnitudes of
the cost factors, as it is difficult to reduce all factors to a common unit of
measurement (such as dollars). We have thus chosen to measure and minimize
CCost and OpCost in two orthogonal dimensions.

An intrusion taxonomy must be used to determine the damage and response
cost metrics which are used in the formulation of CCost. A more detailed study
of these cost metrics can be found in our on-going work [8]. Our taxonomy is
the same as that used in the DARPA evaluation, and consists of four types
of intrusions: probing (PRB), denial of service (DOS), remotely gaining illegal
local access (R2L), and a user gaining illegal root access (U2R). All attacks in
the same category are assumed to have the same DCost and RCost. The relative
scale or metrics chosen are shown in Table 2a.

Table 2. Cost Metrics of Intrusion Classes and Feature Categories

Category DCost RCost Category OpCost
U2R 100 40 Level 1 1lorb
R2L 50 40 Level 2 10
DOS 20 20 Level 3 100
PRB 2 20

normal 0 0

(a) (b)

The operational cost of running an IDS is derived from an analysis of the com-
putational cost of computing the features required for evaluating classification
rules. Based on this computational cost and the added complexity of extracting
and constructing predictive features from network audit data, features are cate-
gorized into three relative levels. Level 1 features are computed using at most the
first three packets of a connection. Level 2 features are computed in the middle of
or near the end of a connection using information of the current connection only.
Level 3 features are computed using information from all connections within a

A Multiple Model Cost-Sensitive Approach for Intrusion Detection 145

given time window of the current connection. Relative magnitudes are assigned
to these features to represent the different computational costs as measured in
a prototype system we have developed using NFR [10]. These costs are shown
in Table 2b. The cost metrics chosen incorporate the computational cost as well
as the availability delay of these features. It is important to note that level 1
and level 2 features must be computed individually. However, because all level
3 features require iteration through the entire set of connections in a given time
window, all level 3 features can be computed at the same time, in a single iter-
ation. This saves operational cost when multiple level 3 features are computed
for analysis of a given connection.

3 Cost-Sensitive Modeling

In the previous section, we discussed the consequential and operational costs
involved in deploying an IDS. We now explain our cost-sensitive machine learning
methods for reducing these costs.

3.1 Reducing Operational Cost

In order to reduce the operational cost of an IDS, the detection rules need to
use low cost features as often as possible while maintaining a desired accuracy
level. Our approach is to build multiple rulesets, each of which uses features from
different cost levels. Low cost rules are always evaluated first by the IDS, and
high cost rules are used only when low cost rules can not predict with sufficient
accuracy. We propose a multiple ruleset approach based on RIPPER, a popular
rule induction algorithm [2].

Before discussing the details of our approach, it is necessary to outline the
advantages and disadvantages of two major forms of rulesets that RIPPER
computes, ordered and un-ordered. An ordered ruleset has the form if rule;
then intrusion; elseif rules; then intrusions, ..., else normal. To generate
an ordered ruleset, RIPPER sorts class labels according to their frequency in the
training data. The first rule classifies the most infrequent class, and the end of
the ruleset signifies prediction of the most frequent (or default) class, normal,
for all previously unpredicted instances. An ordered ruleset is usually succinct
and efficient, and there is no rule generated for the most frequent class. Eval-
uation of an entire ordered ruleset does not require each rule to be tested, but
proceeds from the top of the ruleset to the bottom until any rule evaluates to
true. The features used by each rule can be computed one by one as evaluation
proceeds. An un-ordered ruleset, on the other hand, has at least one rule for each
class and there are usually many rules for frequently occurring classes. There is
also a default class which is used for prediction when none of these rules are
satisfied. Unlike ordered rulesets, all rules are evaluated during prediction and
all features used in the ruleset must be computed before evaluation. Ties are
broken by using the most accurate rule. Un-ordered rulesets are less efficient in
execution, but there are usually several rules of varying precision for the most

146 Wei Fan et al.

frequent class, normal. Some of these normal rules are usually more accurate
than the default rule for the equivalent ordered ruleset.

With the advantages and disadvantages of ordered and un-ordered rulesets
in mind, we propose the following multiple ruleset approach:

We first generate multiple training sets 77_4 using different feature sub-
sets. T} uses only cost 1 features. Th uses features of costs 1 and 5, and so
forth, up to T4, which uses all available features.

— Rulesets R;1_4 are learned using their respective training sets. Ry is learned
as an ordered ruleset for its efficiency, as it may contain the most costly fea-
tures. R1_3 are learned as un-ordered rulesets, as they will contain accurate
rules for classifying normal connections.

— A precision measurement p,' is computed for every rule, r, except for the

rules in Ry.

A threshold value 7; is obtained for every single class, and determines the

tolerable precision required in order for a classification to be made by any

ruleset except for Ry.

In real-time execution, the feature computation and rule evaluation proceed
as follows:

— All cost 1 features used in R; are computed for the connection being exam-
ined. R; is then evaluated and a prediction ¢ is made.

— If p, > 7, the prediction ¢ will be fired. In this case, no more features will
be computed and the system will examine the next connection. Otherwise,
additional features required by Rs are computed and Rs will be evaluated
in the same manner as R;.

— Evaluation will continue with Rj, followed by Ry, until a prediction is made.

— When R4 (an ordered ruleset) is reached, it computes features as needed
while evaluation proceeds from the top of the ruleset to the bottom. The
evaluation of R4 does not require any firing condition and will always gen-
erate a prediction.

The OpCost for a connection is the total computational cost of all unique
features used before a prediction is made. If any level 3 features (of cost 100) are
used at all, the cost is counted only once since all level 3 features are calculated
in one function call.

This evaluation scheme is further motivation for our choice of learning Ry _3
as un-ordered rulesets. If R;_3 were learned as ordered rulesets, a normal con-
nection could not be predicted until R4 since the default normal rules of these
rulesets would be less accurate than the default rule of R4. OpCost is thus re-
duced, resulting in greater system throughput, by only using low cost features
to predict normal connections.

.. . C L. PAW
I Precision describes how accurate a prediction is. Precision is defined as p = ‘ Pl l,

where P is the set of predictions with label i, and W is the set of all instances with
label ¢ in the data set.

A Multiple Model Cost-Sensitive Approach for Intrusion Detection 147

The precision and threshold values can be obtained during model training
from either the training set or a separate hold-out validation set. Threshold
values are set to the precisions of R4 on that dataset. Precision of a rule can be
obtained easily from the positive, p, and negative, n, counts of a rule, #. The
threshold value will, on average, ensure that the predictions emitted by the first

three rulesets are not less accurate than using R, as the only hypothesis.

3.2 Reducing Consequential Cost

The MetaCost algorithm, introduced by Domingos [3], has been applied to reduce
CCost. MetaCost re-labels the training set according to the cost-matrix and de-
cision boundaries of RIPPER. Instances of intrusions with DCost(i) < RCost (i)
or a low probability of being learned correctly will be re-labeled as normal.

Table 3. Intrusions, Categories and Sampling

U2R R2L DOS PRB
buffer_overflow|1|ftp_write 4|back 1 |ipsweep |1
loadmodule 2|guess_passwd|1|land 1 |nmap 1
multihop 6|imap 2|neptune 21—0 portsweep|1
perl 6|phf 3|pod 1 [satan 1
rootkit 2|spy 8|smurf 21—0

warezclient |1|teardrop|l
warezmaster |1

4 Experiments

4.1 Design

Our experiments use data that were distributed by the 1998 DARPA evaluation,
which was conducted by MIT Lincoln Lab. The data were gathered from a
military network with a wide variety of intrusions injected into the network over
a period of 7 weeks. The data were then processed into connection records using
MADAM ID. The processed records are available from the UCI KDD repository
as the 1999 KDD Cup Dataset [11]. A 10% sample was taken which maintained
the same distribution of intrusions and normal connections as the original data.?
We used 80% of this sample as training data. For infrequent intrusions in the
training data, those connections were repeatedly injected to prevent the learning
algorithm from neglecting them as statistically insignificant and not generating
rules for them. For overwhelmingly frequent intrusions, only 1 out of 20 records

2 The full dataset is around 743M. It is very difficult to process and learn over the
complete dataset in a reasonable amount of time with limited resources given the fact
that RIPPER is memory-based and MetaCost must learn multiple bagging models
to estimate probabilities.

148 Wei Fan et al.

were included in the training data. This is an ad hoc approach, but produced a
reasonable ruleset. The remaining 20% of our sample data were left unaltered and
used as test data for evaluation of learned models. Table 3 shows the different
intrusions present in the data, the category within our taxonomy that each
belongs to, and their sampling rates in the training data.

We used the training set to calculate the precision for each rule and the
threshold value for each class label. We experimented with the use of a hold-out
validation set to calculate precisions and thresholds. The results (not shown) are
similar to those reported below.

4.2 Measurements

We measure expected operational and consequential costs in our experiments.
The expected OpCost over all occurrences of each connection class and the aver-
ZCeS‘ OpCost(c)

age OpCost per connection over the entire test set are defined as EA
2 .cs OpCost(e)
and CEST, respectively, where S is the entire test set, ¢ is a connection

class, and S; represents all occurrences of ¢ in S. In all of our reported results,
OpCost(c) is computed as the sum of the feature computation costs of all unique
features used by all rules evaluated until a prediction is made for connection c.
CCost is computed as the cumulative sum of the cost matrix entries, defined in
Table 1, for all predictions made over the test set.

4.3 Results

In all discussion of our results, including all tables, “RIPPER” is the single model
learned over the original dataset, “Multi-RIPPER” is the respective multiple
model, “MetaCost” is the single model learned using RIPPER with a MetaCost
re-labeled dataset, and “Multi-MetaCost” is the respective multiple model.

As shown in Table 5, the average OpCost per connection of the single Meta-
Cost model is 191, while the Multi-MetaCost model has an average OpCost of
5.78. This is equivalent to the cost of computing only a few level 1 features per
connection and offers a reduction of 97% from the single ruleset approach. The
single MetaCost model is 33 times more expensive. This means that in practice
we can classify most connections by examining the first three packets of the con-
nection at most 6 times. Additional comparison shows that the average OpCost
of the Multi-RIPPER model is approximately half as much as that of the single
RIPPER model. This significant reduction by Multi-MetaCost is due to the fact
that R;_3 accurately filter normal connections (including low-cost intrusions re-
labeled as normal), and a majority of connections in real network environments
are normal. Our multiple model approach thus computes more costly features
only when they are needed to detect intrusions with DCost > RCost. Table 4
lists the detailed average OpCost for each connection class. It is important to
note that the difference in OpCost between RIPPER and MetaCost models is
explainable by the fact that MetaCost models do not contain (possibly costly)
rules to classify intrusions with DCost < RCost.

A Multiple Model Cost-Sensitive Approach for Intrusion Detection

Table 4. Average OpCost per Connection Class

Multi- Multi-
IDS RIPPER RIPPER MetaCost MetaCost
back 223 143 191 1
buffer_overflow|172 125.8 175 91.6
ftp_write 172 113 146 71.25
guess_passwd [198.36 143 191 87
imap 172 107.17 |181 108.08
ipsweep 222,98 100.17 {191 1
land 132 2 191 1
loadmodule 155.33 104.78 |168.78 87
multihop 183.43 118.43 |182.43 100.14
neptune 223 100 191 1
nmap 217 119.63 (191 1
normal 222,99 111.14 [190.99 4.99
perl 142 143 151 87
phf 21 143 191 1
pod 223 23 191 1
portsweep 223 117.721 (191 1
rootkit 162 100.7 155 63.5
satan 223 102.84 [191 1
smurf 223 143 191 1
Spy 131 100 191 46.5
teardrop 223 23 191 1
warezclient 223 140.72 [191 86.98
warezmaster |89.4 48.6 191 87
Table 5. Average OpCost per Connection
RIPPER Multi-RIPPER|MetaCost Multi-MetaCost
OpCost|222.73 110.64 190.93 5.78
Table 6. CCost and Error Rate
RIPPER Multi-RIPPER [MetaCost Multi-MetaCost
CCost|42026 41850 29866 28026
Error |0.0847% 0.1318% 8.24% 7.23%

149

150

Wei Fan et al.

Table 7. Precision and Recall for Each Connection Class

Multi- Multi-
RIPPER RIPPER MetaCost MetaCost

back TP[1.0 1.0 0.0 0.0
p |1.0 1.0 na na

TP{1.0 1.0 0.8 0.6
buffer_overflow » |10 10 0.67 0.75
ftp_write TP[1.0 0.88 0.25 0.25
- p |1.0 1.0 1.0 1.0
TP|0.91 0.91 0.0 0.0

guess_passwd » |10 1.0 na na
imap TP|1.0 0.83 1.0 0.92
p |1.0 1.0 1.0 1.0

ipsweep TP|0.99 0.99 0.0 0.0
p |1.0 1.0 na na

TP|1.0 1.0 0.0 0.0

land p |1.0 1.0 na na
. TP|1.0 1.0 0.44 0.67
load_-module » |09 10 1.0 1.0
. TP|1.0 1.0 1.0 0.86

Itih

multihop » l0.88 088 |08 1.0
neptune TP(1.0 1.0 na na
P p |1.0 1.0 na na
nmap TP[1.0 1.0 0.0 0.0
p (1.0 1.0 na na
normal TP|(0.99 0.99 0.99 0.99
p [0.99 0.99 0.92 0.93

erl TP(1.0 1.0 1.0 1.0
p p |1.0 1.0 1.0 1.0
phf TP[1.0 1.0 0.0 0.0
p |1.0 1.0 na na

pod TP[1.0 1.0 0.0 0.0
p [0.98 0.98 na na

portsweep TP|0.99 0.99 0.0 0.0
p |1.0 1.0 na na

. TP|1.0 0.6 0.5 0.2
rootkit p |0.77 1.0 0.83 1.0
Ny TP|1.0 0.98 0.0 0.0
satan p 0.99 0.99 na na
smurf TP|1.0 1.0 0.0 0.0
p |1.0 1.0 na na

s TP|1.0 1.0 0.0 0.0
24 p |1.0 1.0 na na
. TP|1.0 1.0 0.0 0.0
teardrop p [1.0 1.0 na na
lont TP|0.99 0.99 0.0 0.9
warezchien p |10 1.0 na 1.0
. TP|0.6 0.6 0.0 0.0
warezmaster » [1.0 1.0 na na

Table 8. Comparison with fcs-RIPPER

Multi- fcs-RIPPER
MetaCost|| Me2CS =T T3 T AT 5T 6178910
OpCost|| 5.78 191 151 |171]191]181]181]161|161[171[171]171

A Multiple Model Cost-Sensitive Approach for Intrusion Detection 151

Our CCost measurements are shown in Table 6. As expected, both MetaCost
and Multi-MetaCost models yield a significant reduction in CCost over RIPPER
and Multi-RIPPER models. These reductions are both approximately 30%. The
consequential costs of the Multi-MetaCost and Multi-RIPPER models are also
slightly lower than those of the single MetaCost and RIPPER models.

The detailed precision and TP? rates of all four models are shown in Table 7
for different connection classes. The values for the single classifier and multiple
classifier methods are very close to each other. This shows that the coverages
of the multiple classifier methods are identical to those of the respective single
classifier methods. It is interesting to point out that MetaCost fails to detect
warezclient, but Multi-MetaCost is highly accurate. The reason is that R4 com-
pletely ignores all occurrences of warezclient and classifies them as normal.

The error rates of all four models are also shown in Table 6. The error rates
of MetaCost and Multi-MetaCost are much higher than those of RIPPER and
Multi-RIPPER. This is because many intrusions with DCost < RCost are re-
labeled as normal by the MetaCost procedure. Multi-RIPPER misclassified such
intrusions more often than RIPPER, which results in its slightly lower CCost
and slightly higher error rate. Multi-MetaCost classifies more intrusions correctly
(warezclient, for example) and has a lower CCost and error rate than MetaCost.

4.4 Comparison with fcs-RIPPER

In previous work, we introduced a feature cost-sensitive method, “fcs-RIPPER”,
to reduce OpCost [3,9]. This method favors less costly features when constructing
a ruleset. Cost sensitivity is controlled by the variable w € [0,1] and sensitivity
increases with the value of w. We generated a single ordered ruleset using differ-
ent values of w with fcs-RIPPER. In Table 8, we compare the average OpCost
over the entire test set for the proposed multiple classifier method with that of
fcs-RIPPER. We see that fcs-RIPPER reduces the operational cost by approxi-
mately 10%, whereas Multi-MetaCost reduces this value by approximately 97%.
The expected cost of Multi-MetaCost is approximately 30 times lower than that
of fcs-RIPPER, RIPPER, and MetaCost. This difference is significant.

5 Related Work

Much research has been done in cost-sensitive learning, as indicated by Tur-
ney’s online bibliography [13]. Within the subset of this research which focuses
on multiple models, Chan and Stolfo proposed a meta-learning approach to re-
duce consequential cost in credit card fraud detection [1]. MetaCost is another
approach which uses bagging to estimate probabilities. Fan et al. proposed a

3 Unlike precision, TP rate describes the fraction of occurrences of a connection class
that were correctly labeled. Using the same notation as in the definition of precision,
TP = PNW

= o,

152 Wei Fan et al.

variant of AdaBoost for misclassification cost-sensitive learning [4]. Within re-
search on feature-cost-sensitive learning, Lavrac et al. applied a hybrid genetic
algorithm effective for feature elimination [6].

Credit card fraud detection, cellular phone fraud detection and medical diag-
nosis are related to intrusion detection because they deal with detecting abnor-
mal behavior, are motivated by cost-saving, and thus use cost-sensitive modeling
techniques. Our multiple model approach is not limited to IDSs and is applicable
in these domains as well.

In our study, we chose to use an inductive rule learner, RIPPER. However,
the multiple model approach is not restricted to this learning method and can
be applied to any algorithm that outputs a precision along with its prediction.

6 Conclusion and Future Work

Our results using a multiple model approach on off-line network traffic analy-
sis show significant improvements in both operational cost (a reduction of 97%
over a single monolithic model) and consequential costs (a reduction of 30% over
accuracy-based model). The operational cost of our proposed multiple model ap-
proach is significantly lower than that of our previously proposed fcs-RIPPER
approach. However, it is desirable to implement this multiple model approach in
a real-time IDS to get a practical measure of its performance. Since the average
operational cost is close to computing at most 6 level 1 features, we expect effi-
cient real-time performance. The moral of the story is that computing a number
of specialized models that are accurate and cost-effective for particular subclasses
is demonstrably better than building one monolithic ID model.

6.1 Future Work

It was noted in Section 2.2 that we only consider the case where a prediction
made by a given model will always result in an action being taken. We have
performed initial investigation into the utility of using an additional decision
module to determine whether action is necessary based upon whether DCost >
RCost for the predicted intrusion. Such a method would allow for customizable
cost matrices to be used, but may result in higher OpCost, as the learned model
would make cost-insensitive predictions.

In off-line experiments, rulesets are evaluated using formatted connection
records such that rulesets are evaluated after all connections have terminated.
In real-time execution of ID models, a major consideration is to evaluate rulesets
as soon as possible for timely detection and response. In other words, we need to
minimize the detection delay. To achieve this, we can first translate each of the
rulesets produced by our multiple model approach, each using different levels
of features, into multiple modules of a real-time IDS. Since features of different
levels are available and computed at different stages of a connection, we can
evaluate our multiple models in the following manner: as the first packets arrive,
level 1 features are computed and R; rules are evaluated; if a rule evaluates to

A Multiple Model Cost-Sensitive Approach for Intrusion Detection 153

true and that rule has sufficient precision, then no other checking for the con-
nection is done. Otherwise, as the connection proceeds, either on a per-packet
basis or multi-packet basis, level 2 features are computed and Rs rules are eval-
uated. This process will continue through the evaluation of R4 until a prediction
is made. Our current single model approach computes features and evaluates
rulesets at the end of a connection. It is thus apparent that this multiple model
approach will significantly reduce the detection delay associated with the single
model approach. However, it remains to be seen whether additional operational
cost will be incurred because we must trigger the computation of various features
at different points throughout a connection. We plan to experiment in the real-
time evaluation of our multiple model approach using both NFR, and Bro [12],
two network monitoring tools used for real-time intrusion detection.

References

1. P. Chan and S. Stolfo. Towards scalable learning with non-uniform class and
cost distribution: A case study in credit card fraud detection. In Proceedings of
the Fourth International Conference on Knowledge Discovery and Data Mining
(KDD-98), August 1999. 151

2. W. W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth Inter-
national Conference on Machine Learning, pages 115-123, Lake Taho, CA, 1995.
Morgan Kaufmann. 145

3. P. Domingos. MetaCost: A general method for making classifiers cost-sensitive.
In Proc. of the Fifth ACM SIGKDD Int’l. Conf. on Knowledge Discovery & Data
Mining, pages 155-164, San Diego, CA, 1999. ACM. 143, 147

4. W. Fan, S. Stolfo, J. X. Zhang, and P. K. Chan. Adacost: misclassification cost-
sensitive learning. In Proceedings of the Sizteenth International Conference on
Machine Learning, pages 97105, Bled, Slovenia, 1999. Morgan Kaufmann. 152

5. V. Jacobson, C. Leres, and S. McCanne. tcpdump. available via anonymous ftp to
ftp.ee.lbl.gov, June 1989. 143

6. N. Lavrac, D. Gamberger, and P. Turney. Cost-sensitive feature reduction applied
to a hybrid genetic algorithm. In Proceedings of the Seventh International Work-
shop on Algorithmic Learning Theory, pages 127-134, Sydney, Australia, 1996.
152

7. W. Lee. A Data Mining Framework for Constructing Features and Models for
Intrusion Detection Systems. PhD thesis, Columbia University, June 1999. 142,
143

8. W. Lee, M. Miller, and S. Stolfo et al. Toward cost-sensitive modeling for in-
trusion detection. Technical Report CUCS-002-00, Computer Science, Columbia
University, 2000. 144, 151

9. M. Miller. Learning cost-senstitive classification rules for network intrusion detec-
tion using ripper. Technical Report CUCS-035-99, Computer Science Department,
Columbia University, December 1999. 151

10. Network Flight Recorder Inc. Network flight recorder. http://www.nfr.com/, 1997.
145

11. University of California at Irvine. UCI KDD archive. http://kdd.ics.uci.edu/. 147

12. V. Paxson. Bro: A system for detecting network intruders in real-time. In Proc.
of the Seventh USENIX Security Symposium, San Antonion, TX, 1998. 153

154 Wei Fan et al.

13. P. Turney. Cost-sensitive learning bibliographies.
http://ai.iit.nrc.ca/bibiographies/cost-sensitive.html. 151

	A Multiple Model Cost-Sensitive Approach for Intrusion Detection
	Introduction
	Cost Factors, Models, and Metrics in IDSs
	Cost Factors
	Cost Models
	Cost Metrics

	Cost-Sensitive Modeling
	Reducing Operational Cost
	Reducing Consequential Cost

	Experiments
	Design
	Measurements
	Results
	Comparison with fcs-RIPPER

	Related Work
	Conclusion and Future Work
	Future Work

	References

