
Learning Context-Free Grammars

with a Simplicity Bias

Pat Langley and Sean Stromsten

DaimlerChrysler Research and Technology Center
1510 Page Mill Road, Palo Alto, CA 94304 USA

langley@isle.org

sean@psych.stanford.edu

Abstract. We examine the role of simplicity in directing the induction
of context-free grammars from sample sentences. We present a rational
reconstruction of Wolff’s SNPR – the Grids system – which incorporates
a bias toward grammars that minimize description length. The algorithm
alternates between merging existing nonterminal symbols and creating
new symbols, using a beam search to move from complex to simpler
grammars. Experiments suggest that this approach can induce accurate
grammars and that it scales reasonably to more difficult domains.

1 Introduction

In this paper we focus on the task of inducing context-free grammars from train-
ing sentences. Much recent work on this topic has dealt with learning finite-state
structures, but there is considerable evidence that human language involves more
powerful grammatical representations. In context-free grammar induction, the
learner must find not only a set of grammatical rewrite rules but also the non-
terminal symbols used in those rules. For example, in addition to deciding that
an English sentence can be composed of a noun phrase and a verb phrase, it
must also create definitions for these intermediate concepts.

A central challenge of grammar induction involves the generative nature of
language. The learner must somehow create a knowledge structure that produces
an infinite number of sentences from a finite set of training cases. Typically, this
requires recursive or iterative structures, which can cause overgeneralizations. Ef-
fective induction of context-free grammars requires strong constraints on search
through the space of candidates. One that often recurs in the literature is a bias
toward simple grammars.

This bias helps avoid one sort of trivial grammar that has a separate rule
for each training sentence and that does not generalize at all to new sentences.
However, a naive notion of simplicity leads to another sort of trivial grammar
that admits any string of words and overgeneralizes drastically. A more useful
variation on this idea views the grammar as a code and seeks to compress the
sample sentences, minimizing the summed description length of the grammar
and it derivations of training sentences. By ‘simplicity’ then, we mean that of
the grammar and the derivations of the training sentences under the grammar.

R. López de Mántaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 220–228, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Learning Context-Free Grammars with a Simplicity Bias 221

In the following pages, we examine the extent to which this notion of simplic-
ity can successfully direct the grammar-induction process. We explore this idea
in the context of Grids, a rational reconstruction of Wolff’s (1982) SNPR sys-
tem. We first describe Grids’ representation, performance component, learning
algorithm, and evaluation function, then present experimental studies designed
to evaluate the system’s learning behavior. In closing, we discuss related work
on grammar induction and outline directions for future research.

2 Grammar Induction Driven by Simplicity

As noted above,Grids represents grammatical knowledge as context-free rewrite
rules, using a top-level symbol (S), a set of nonterminals, and a set of terminal
symbols corresponding to words. Each rewrite rule includes one nonterminal
symbol on the left-hand side and one or more symbols on the right, indicating
that one can replace the former with the latter in recognizing or generating a
sentence. Following VanLehn and Ball (1987), we restrict Grids’ grammars so
that no rule has an empty right-hand side, the only rules of the form X → Y
are those in which Y is a terminal symbol, and every nonterminal appears in
the derivation of some sentence. This restriction does not limit representational
power, as one can transform any context-free grammar into this form.

The performance component of Grids is a top-down, depth-first parser that
repeatedly substitutes the first nonterminal X in its string with the right-hand
side of a rewrite rule having X on the left. We do not view this performance
algorithm as part of our theoretical framework, and its implementation is far
from efficient. However, it does let Grids determine whether a given grammar
parses a given string of words, and thus whether that grammar is overly general,
overly specific, or accurate for the language at hand.

2.1 Learning Operators and Search Organization

Grids’ approach to grammar induction, as in Wolff’s earlier system, relies on
two learning operators. The first creates a nonterminal symbol X and an as-
sociated rewrite rule that decomposes X into its constituents. In grammars for
natural languages, such symbols and their rules correspond to specific phrases
and clauses. The introduction of phrasal terms should be useful when certain
combinations of symbols tend to occur together in sentences. Table 1 (a) gives
a simple example of this operator’s effect.

The second operator involves merging two nonterminal symbols into a single
symbol. The resulting sets of rules with the same left-hand side correspond, in
grammars for natural languages, to word classes (e.g., nouns and verbs) and
phrasal classes (e.g., noun phrases). Their introduction should be useful when
certain symbols tend to occur in similar contexts within the language. We should
note one important side effect of the merge operator. Given the rewrite rule
X → Y . . . Z, merging X and Z produces the rule X → Y . . . X , which involves
a recursive call. Table 1 (b) illustrates this outcome in a simple grammar, though
merging can also produce indirect recursions.



222 Pat Langley and Sean Stromsten

Table 1. The learning operators used in Grids include (a) creating a new
symbol and rewrite rule based on two existing symbols, and (b) merging two
existing symbols, which can lead to redundant (and thus removed) rules, as well
as to recursive grammars

(a) Creating symbol AP1 (b) Merging AP1 and AP2

NP → ART AP1
NP → ART ADJ NOUN NP → ART AP2
NP → ART ADJ ADJ NOUN AP1 → ADJ NOUN

AP2 → ADJ AP1

⇓ ⇓
NP → ART AP1 NP → ART AP1
NP → ART ADJ AP1 AP1 → ADJ NOUN
AP1 → ADJ NOUN AP1 → ADJ AP1

Grids starts by transforming the sample sentences into an initial ‘flat’ gram-
mar that contains only rules of the form S → X . . . Y (one for each observed
sentence) and X → W (for each word W ). Thus, each S rewrite rule and its
associated word rules correspond to a single training instance, so that the initial
grammar covers all (and only) the training sentences. Symbol creation does not
change the coverage of a grammar, and symbol merging can never decrease the
coverage. Thus, as Grids proceeds, it only considers grammars with the same
or greater generality than the current hypothesis. The current version uses beam
search, with a beam size of three, to control its steps through the resulting space.

The learning process in Grids alternates between two modes, each relying
on a different operator. First the system considers all ways of merging pairs
of nonterminal symbols in each current grammar, producing a set of successor
grammars. When this action produces a new grammar that contains identical
rewrite rules, all but one of the redundant rules are removed. Next the system
uses an evaluation function, which we will discuss shortly, to select the best b
grammars from the successors, breaking ties among candidates at random. If
the evaluation metric indicates that at least one of the successors constitutes
an improvement over the current best grammar, the new grammars become the
current best set and the system continues in this mode.

However, if none of the new grammars scores better than the current best
candidate, Grids switches from ‘merge’ mode into ‘create’ mode. Here the al-
gorithm considers all ways of creating new terms, and their associated rules,
from pairs of nonterminal symbols that occur in sequence within the grammars.
Grids then substitutes the new term for all occurrences of the sequence in the
prospective grammar. Again, it selects the best alternatives and, if some score
better than the current best grammar, the best b candidates become the current
set and the program continues in ‘create’ mode; if not, Grids changes modes



Learning Context-Free Grammars with a Simplicity Bias 223

and again considers merging. The algorithm continues in this manner, alternat-
ing between modes until neither leads to improvement, in which case it halts.

2.2 Directing Search with Description Length

We have seen that Grids carries out a beam search through the space of context-
free grammars, starting with a specific grammar based on training sentences and
moving toward more general candidates. However, the space of grammars is large
and the system needs some evaluation metric to direct search toward promising
candidates. To this end, it applies the principle of minimum description length,
measuring the simplicity of each candidate grammarG in terms of the description
length for G plus that for the training sentences, encoded as derivations in G.

In this formulation, a hypothetical ‘receiver’ must know how to interpret
the string of bits that encode the model and data. Grids encodes the rules of
the grammar as strings of symbols separated by tokens of a stop symbol. Each
nonterminal token requires log(N+1) bits, where N is the number of nonterminal
types, and the terminals each require logPi, where Pi is the number of words
with the same part of speech. The derivations are strings of rewrite rules. The
left-hand side of each is known, at each point, given the previous rules, so it need
only distinguish among the R right-hand sides, which requires logR bits.

Intuitively, this measure should shun large grammars with overly specific
rules, despite their short derivations, because other grammars will have smaller
descriptions and do nearly as well on the derivations. The measure avoids very
small, overly general grammars because they can describe too many unobserved
strings, so that bits must be wasted in encoding the derivations of actual sen-
tences just to distinguish them from these nonsentences. In general, a good code
assigns long encodings to rare strings and short encodings to common ones. In
our case, a good grammar may also forfeit entirely the ability to encode some
(unobserved) strings in exchange for the ability to encode others (observed train-
ing sentences) more efficiently.

3 Experimental Studies of Grids’ Behavior

The central hypothesis in our work was that simplicity, as measured by descrip-
tion length, is a powerful bias for constraining the process of grammar induction.
To evaluate this hypothesis, we carried out a number of experiments, which we
report after considering their design and the domains used therein.

3.1 Grammatical Domains and Experimental Design

We decided to use artificial grammars in our experiments, since they let us
both control characteristics of the domain and measure the correctness of the
induced knowledge structures. In particular, we designed the two subsets of En-
glish grammar shown in Table 2. The first (a) includes declarative sentences with
arbitrarily long strings of adjectives and both transitive and intransitive verbs,
but no relative clauses, prepositional phrases, adverbs, or inflections. The second



224 Pat Langley and Sean Stromsten

Table 2. Two grammars used to generate training and test sentences for ex-
periments with the Grids algorithm. The first grammar (a) includes arbitrary
strings of adjectives, whereas the second (b) supports arbitrarily embedded rel-
ative clauses

(a) (b)

S → NP VP S → NP VP
VP → VERBI VP → V NP
VP → VERBT NP NP → ART NOUN
NP → the NOUN NP → ART NOUN RC
NP → the AP NOUN RC → REL VP
AP → ADJ VERB → saw
AP → ADJ AP VERB → heard
VERBI → ate NOUN → cat
VERBI → slept NOUN → dog
VERBT → saw NOUN → mouse
VERBT → heard ART → a
NOUN → cat ART → the
NOUN → dog REL → that
ADJ → big
ADJ → old

grammar (b) contains declarative sentences with arbitrarily embedded relative
clauses, but has no adjectives, adverbs, prepositional phrases, or inflections.

These two grammars are unsophisticated compared to those required for
natural languages, but they involve recursion and generate an infinite class of
sentences, thus providing tests of Grids’ ability to generalize correctly. However,
one can also state both grammars as finite-state machines, which involve itera-
tion but not recursion, so we also examined two languages that required center
embedding. One involved sentences with a string of a’s followed by an equal
number of b’s, whereas the other involved strings of balanced parentheses. Both
languages have been used as testbeds in earlier efforts on grammar induction.

For the two English subsets, we created 20 training sets with enough strings
in each for the program to reach asymptotic performance, with instances for the
adjective phrase domain having a length of ten or less and those for the rela-
tive clause grammar length 15 or less. For the parenthesis-balancing and (ab)n

languages, we used the same strategy to generate training sets with maximum
lengths of ten and 20, respectively.

The measurement paradigms typically used for supervised learning tasks do
not apply directly to grammatical domains. A grammar-induction system can
infer the right word classes with relative ease, making the real test whether it
forms recursive rules that let it correctly generalize to sentences longer than
those in the training sample. Thus, in generating our test sets, we used maxi-
mum lengths of 15 and 20 for the adjective phrase and relative clause domains,
respectively. For the parenthesis language, we generated all 65 legal strings of



Learning Context-Free Grammars with a Simplicity Bias 225

0 20 40 60 80 100 120

Number of training sentences

(a)
0.

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y 

of
 p

ar
si

ng
 a

 le
ga

l s
en

te
nc

e

0 20 40 60 80 100 120

Number of training sentences

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 g

en
er

at
in

g 
a 

le
ga

l s
en

te
nc

e

Fig. 1. Average learning curves for the adjective phrase grammar from Table 2,
with (a) measuring the probability of parsing a legal test sentence and (b) the
probability of generating a legal sentence

length 12 or less as positive test cases, and enumerated all 15 sentences of length
30 or less for the (ab)n language.

Another issue concerns the need to distinguish errors of omission (failures to
parse sentences in the target language), which indicate an undergeneral gram-
mar, from errors of commission (failures to generate only sentences in the target
language), which indicate an overgeneral one. To estimate these terms, we used
the target grammar T and each learned grammar L to generate sentence sam-
ples, and then determined their overlap. We estimated errors of omission from
the fraction of sentences generated by T that were parsed by L, and errors of
commission from the fraction of sentences generated by L that were parsed by T .
On the average, an undergeneral grammar will produce a low score on the first
measure, whereas an overgeneral one will produce a low score on the second.

3.2 Experimental Results

We intended our initial study to show that Grids could actually induce accurate
grammars for all four domains. However, we were also interested in the rate of
learning, so we explicitly varied the number of training sentences available to
the system, at each level measuring the two accuracies of the learned grammar,
averaged over 20 different training sets.

Figure 1 presents the learning curves for the adjective phrase grammar from
Table 2, with (a) showing results on the first measure, the probability of parsing
a legal test sentence, and (b) showing those for the second, the probability of
generating a sentence parsed by the target grammar. The curves show both the
average accuracy and 95% confidence intervals as a function of different numbers
of training sentences. After 120 training cases, the learned grammars cover 95%
of the positive test set, and all generated strings are legal.

Somewhat different results occurred with the relative clause language, as
shown in Figure 2. As before, the probability of parsing the 500 legal test sen-
tences increases with experience, though with many fewer examples, reaching



226 Pat Langley and Sean Stromsten

0 10 20 30 40 50

Number of training sentences

(a)
0.

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y 

of
 p

ar
si

ng
 a

 le
ga

l s
en

te
nc

e

large vocabulary

medium vocabulary

small vocabulary

0 10 20 30 40 50 60 70 80

Number of training sentences

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1

P
ro

ba
bi

lit
y 

of
 g

en
er

at
in

g 
a 

le
ga

l s
en

te
nc

e

large vocabulary

medium vocabulary

small vocabulary

Fig. 2. Learning curves for the relative clause grammar from Table 2, and for
analogous grammars that involve larger word classes, with (a) measuring the
probability of parsing a legal test sentence and (b) the probability of generating
a legal sentence

100% after only 15 training items. However, in this case Grids’ probability of
generating a legal sentence starts at 100%, falls to below 60% by the fourth case,
then rebounds to perfect accuracy after processing 11 training sentences.

Experimental results for the parenthesis balancing language (not shown here)
are analogous to those for adjective phrases, and the learning curves for the (ab)n

language follow a very similar pattern, though the slopes are different. Clearly,
one goal of future research should be to explain the underlying causes of these
distinctive patterns, as well as the widely differing rates of learning.

Although our test grammars are simple compared to those encountered in
natural languages, their complexity is comparable to others reported in the lit-
erature. Nevertheless, it would be good to understand the ability of the methods
embodied in Grids to scale to more difficult induction tasks. To this end, we
carried out an additional experiment in which we increased the size of word
classes. In particular, we extended the relative clause grammar from Table 2,
which included two verbs, three nouns, and one relative pronoun, by doubling
and tripling the number of words in each of these categories.

Figure 2 compares the learning curves for these domains, using the two per-
formance measures described earlier. Although increasing the size of the word
classes slows down the learning process, the reduction in learning rate seems
quite reasonable. Specifically, the number of training sentences required to reach
perfect accuracy appears to be no more than linear in the size of the word classes.
Also, this factor seems to affect both performance measures equally.

4 Discussion

Our approach to learning shares some of its central features with earlier work
on grammar induction. We have already noted Grids’ debt to Wolff’s (1982)
SNPR system, which also carried out heuristic search using operators for creating
and merging symbols, and which used an evaluation function that traded off



Learning Context-Free Grammars with a Simplicity Bias 227

a grammar’s simplicity and its ability to ‘compress’ the training data. Cook,
Rosenfeld, and Aronson’s (1976) early work grammar induction also used an
operator for creating nonterminal symbols, combined with hill-climbing search
directed by a evaluation function similar in spirit to Wolff’s.

Stolcke (1994) has carried out more recent research along similar lines, inde-
pendently developing a grammar-induction algorithm that shares Grids’ start-
ing representation and its operations for symbol merging and creation. His sys-
tem’s evaluation metric also trades off a grammar’s simplicity with its ability
to account for observed sentences, but it learns probabilistic context-free gram-
mars and processes training sentences incrementally. Grünwald (1996) has also
developed an algorithm that uses a description-length score to direct search for
‘partial’ grammars, again invoking operators for term creation and merging.

The bias toward simplicity has arisen in other grammar-induction research,
some quite different in overall control structure. Examples include enumerative
algorithms that consider simpler grammars before more complex ones, as well as
methods that start with a randomly generated grammar and invoke simplicity
measures to direct hill-climbing search. Not all work on grammar induction relies
on the simplicity bias, but the idea plays a recurring role in the literature. The
literature also contains many formal claims about language ‘learnability’ under
various conditions. Neither positive or negative results of this sort are relevant
to our work, since we care not about guarantees but about practical methods.

Undoubtedly, we can improve the Grids algorithm along many fronts. For
instance, it assumes that each word belongs to only one category, whereas in
natural languages the same word can serve as several parts of speech. Also, an
impediment to larger-scale studies is that the run time of the initial ‘merge’ op-
erations increases with the square of the number of words. One strategy for deal-
ing with the many possible merges involves trying only pairs with high scores on
some heuristic measure, perhaps computed over co-occurrence statistics. Another
response would be to develop an incremental version of Grids that processes
only a few training sentences at a time and expands the grammar as necessary.
We plan to explore both approaches to improving computational efficiency.

We cannot yet draw final conclusions about the role played by Grids’ sim-
plicity bias, as there exist other formulations of this idea not covered by our
experimental evaluation. Nor can we yet tell whether other operators, or other
organizations of the search process, will yield better or worse results. Clearly,
more work remains to be done, but the results to date suggest the notion of sim-
plicity has an important role to play in the acquisition of grammatical knowledge.

References

1. Cook, C. M., Rosenfeld, A., & Aronson, A. (1976). Grammatical inference by hill
climbing. Informational Sciences, 10 , 59–80.

2. Grünwald, P. (1996). A minimum description length approach to grammar infer-
ence. In S. Wermter, E. Riloff, & G. Scheler (Eds.) Connectionist, statistical and
symbolic approaches to learning for natural language processing. Lecture Notes in
Computer Science, 1040. Berlin: Springer-Verlag.



228 Pat Langley and Sean Stromsten

3. Stolcke, A. (1994). Bayesian learning of probabilistic language models. Doctoral
dissertation, Division of Computer Science, University of California, Berkeley.

4. VanLehn, K., & Ball, W. (1987). A version space approach to learning context-free
grammars. Machine Learning , 2 , 39–74.

5. Wolff, J. G. (1982). Language acquisition, data compression and generalization.
Language & Communication, 2 , 57–89.


	Learning Context-Free Grammars with a Simplicity Bias 
	Introduction
	Grammar Induction Driven by Simplicity
	Learning Operators and Search Organization
	Directing Search with Description Length

	Experimental Studies of Grids' Behavior
	Grammatical Domains and Experimental Design
	Experimental Results

	Discussion
	References




