Relative Unsupervised Discretization for
Regression Problems

Marcus-Christopher Ludl' and Gerhard Widmer!:?2

! Austrian Research Institute for Artificial Intelligence, Vienna
2 Department of Medical Cybernetics and Artificial Intelligence,
University of Vienna, Austria

Abstract. The paper describes a new, context-sensitive discretization
algorithm that combines aspects of unsupervised (class-blind) and super-
vised methods. The algorithm is applicable to a wide range of machine
learning and data mining problems where continuous attributes need to
be discretized. In this paper, we evaluate its utility in a regression-by-
classification setting. Preliminary experimental results indicate that the
decision trees induced using this discretization strategy are significantly
smaller and thus more comprehensible than those learned with standard
discretization methods, while losing only minimally in numerical predic-
tion accuracy. This may be a considerable advantage in machine learning
and data mining applications where comprehensibility is an issue.

1 Introduction

In the area of classification learning, there has been quite some research on at-
tribute discretization in recent years, both regarding unsupervised (class-blind)
and supervised methods — see, e.g., [1,5,6,9,11,13]. Some authors have also pro-
duced detailed studies of different discretization criteria used in “on-the-fly” dis-
cretization in induction, for instance, in decision tree learning algorithms [2] or
in Bayesian classifiers [3]. While discretization is strictly necessary for induction
algorithms that cannot handle numeric attributes directly (e.g., decision table
algorithms or simple Bayesian classifiers), it has been shown that pre-discretizing
continuous attributes — even when used in induction algorithms that can actu-
ally handle continuous features — can improve both the classification accuracy
and the interpretability of the induced models.

Whereas in unsupervised discretization the attribute in question is discretized
with simple, class-blind procedures, supervised discretization also takes class
information into account, thereby possibly constructing split points that might
be missed by a class-blind algorithm. [1] gives a good overview.

Recently, there have also been some investigations into the use of discretiza-
tion for a regression-by-classification paradigm [12], where regression is converted
into a classification problem by abstracting the continuous target attribute into
discrete intervals. The work presented here falls into this latter category. We
describe a new, context-sensitive discretization algorithm that can be used in
both supervised and unsupervised settings. We evaluate the algorithm by using

R. Lépez de Méntaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 246-254, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Relative Unsupervised Discretization for Regression Problems 247

it as the basis for a regression-by-classification system. Preliminary experimental
results to be presented in section 4 demonstrate that the decision trees induced
using this discretization strategy are significantly smaller than those learned
with standard discretization methods, while losing only minimally in prediction
accuracy (measured in terms of numeric error). We think this can be a con-
siderable advantage in machine learning and data mining applications where
comprehensibility is an issue.

2 Regression via Classification

The regression problem is usually seen as the task of predicting a (more or less)
exact numeric target value for previously unseen examples. Thus, the target
attribute is not specified by discrete symbols, but by many distinct values from
a fixed range. Specialized algorithms have been invented for this task, but the
question arises whether algorithms capable of doing classification (i.e. predicting
discrete symbols) couldn’t possibly be applied here as well. The basic idea would
be to discretize the target attribute by splitting its range into some pre-defined
number of intervals, and learn to classify examples with a classification learner
(like C4.5). Then, instead of just predicting the class label of an unseen example,
an exact value from the according interval can be predicted (e.g. the mean or
the median). [12] is one of the first detailed studies in this direction.

Unfortunately it seems that there is a theoretical limit as to what can be
achieved by this approach to the regression problem (in terms of a lowering of
the summed errors): Increasing the number of intervals usually means that the
deviations within the intervals become smaller, but also that the accuracy of
the class predictions decreases. Decreasing the number of intervals on the other
hand usually goes along with higher intra-interval deviations.

What shall be shown in this paper is that by using RUDE, a method that
is capable of projecting the structure of source attributes onto the continuous
target attribute without demanding discreteness (as supervised methods do),
we can improve the regression behaviour of the learning step in comparison
to unsupervised methods. This improvement can be seen in terms of absolute
deviation and/or tree size (readability).

3 RUDE — Relative Unsupervised Discretization

3.1 Goals

Originally, the algorithm RUDE described in this paper was developed as a strat-
egy for discretizing datasets where a specified target attribute does not exist
(like, e.g. when inducing functional dependencies) or where the target attribute
itself is continuous. RUDE combines aspects of both unsupervised and super-
vised discretization algorithms. What sets RUDE apart from other supervised
discretization algorithms is that it is not constrained to using information from
only one discrete (class) attribute when deciding how to split the attribute in

248 Marcus-Christopher Ludl and Gerhard Widmer

question (see section 3.2). “RUDE” is actually short for Relative Unsupervised
DiscrEtization, which quite exactly summarizes what this procedure does: The
procedure may be called unsupervised in the sense that there is no need to spec-
ify one particular class attribute beforehand, nonetheless the split points are not
constructed independently of the “other” attributes (hence “relative”).

3.2 RUDE — The Top-Level

The basic idea when discretizing a given attribute (the target) is to use infor-
mation about the value distribution of all attributes other than the target (the
source attributes). Intuitively, a “good” discretization would be one that has
split points that correlate strongly with changes in the value distributions of the
source attributes. The process that tries to accomplish this (the central compo-
nent of RUDE) is called structure projection. Here is the top level of RUDE:

1. Preprocessing: Discretize (via some unsupervised method) all source at-
tributes that are continuous (see section 3.3);

2. Structure Projection: Project the structure of each source attribute a
onto the target attribute ¢:
(a) Filter the dataset by the different values of attribute a.
(b) For each such filtering perform a clustering procedure on values of ¢

(see section 3.4) and gather the split points thereby created.
3. Postprocessing: Merge the split points found.

The time complexity of the RUDE algorithm (discretizing one continuous at-
tribute) is O(nmlogm), with n the number of attributes and m the number of
examples. A complete discretization of all continuous attributes can therefore be

performed in time O(n?mlogm). Please refer to [7] for the proof.

3.3 The Main Step: Structure Projection

The intuition behind the concept of structure projection is best illustrated with
an example (see Figure 1). Suppose we are to discretize a target attribute ¢ with
a range of, say, [0..1], which happens to be uniformly distributed in our case. The
values of ¢ in our learning examples have been drawn along the lowest line in
Figure 1. The two lines above indicate the same examples when filtered for the
values 1 and 2, respectively, of some particular binary source attribute a. Given
the distribution of ¢, any unsupervised discretizer would return a rather arbitrary
segmentation of ¢ that would not reflect the (to us) obvious distribution changes
in the source attribute a. The idea of structure projection is to find points where
the distribution of the values of a changes drastically, and then to map these
“edges” onto the target t. The algorithm we have developed for that purpose was
in fact inspired by the concept of edge detection in grey-scale image processing
(see section 3.4). The basic discretization algorithm can now be stated in Fig. 2.

RUDE successively maps the “structure” of all source attributes onto the
sequence of t’s values, thereby creating split points only at positions where some

Relative Unsupervised Discretization for Regression Problems 249

0.0 0.1 02 ' '03 0.4 0.5 0.6' ' 0.7 0.8 0.9 1.0

Fig. 1. Structure Projection: An Example

Given:
— a database containing our training examples;
— a set of (possibly continuous) source attributes a1, ..., an
— information on what attribute should be discretized (the target t);

The algorithm:
1. Sort the database in ascending order according to attribute ¢.
2. For each attribute a; with a; # ¢ do the following:
(a) If continuous, discretize attribute a; by equal width
(b) For each symbolic value (interval) v thereby created do the following:
i. Filter the database for value v in attribute a;.
ii. Perform clustering on the corresponding values of ¢ in the filtered database.
iii. Gather the split points thereby created in a split point list for attribute .

Fig. 2. RUDE — The basic discretization algorithm

significant distribution changes occur in some of the a;. For pre-discretizing
continuous source attributes in item 2(a) above, we have decided to use equal-
width discretization, because it not only provides a most efficient (linear) method,
but also has some desirable statistical properties (see [7] for details).

The critical component in all this is the clustering algorithm that groups
values of the target ¢ into segments that are characterized by more or less com-
mon values of some source attribute a;. Such segments correspond to relatively
densely populated areas in the range of ¢t when filtered for some value of a; (see
Figure 1). Thus, an essential property of this algorithm must be that it tightly
delimits such dense areas in a given sequence of values.

3.4 A Characterizing Clustering Algorithm

The clustering algorithm we developed for this purpose has its roots in the con-
cept of edge detection in grayscale image processing ([8]). The central problem
in edge detection is to find boundaries between areas of markedly different de-
grees of darkness. Typical edge detection algorithms amplify the contrast where
it exceeds a certain threshold. The analogy to our clustering problem is fairly
obvious and has led us to develop an algorithm that basically works by opening

250 Marcus-Christopher Ludl and Gerhard Widmer

Given:
— A split point list s1, s2,. ...
— A merging parameter (minimal difference s).

The algorithm:
1. Sort the sequence of split points in ascending order.
2. Run through the sequence until you find split points s; and s;+1 with s;4+1—s; < s.
3. Starting at i+1 run through the sequence until you find two split points s; and s;41
with sj11 —s; > s.

4. Calculate the median m of [s;, ..., s;].
— If s; — s; < s merge all split points in [s;, ..., s;] to m.
— If s; — s; > s triple the set of split points in [s;, ..., s;] to {si,m, s;}.

5. Start at s;41 and go back to step 2.
Fig. 3. Merging the split points

a “window” of a fixed size around each of the values in an ordered sequence and
determining whether this value lies at an “edge”, i.e. whether one half of the win-
dow is “rather empty” and the other is “rather full”. The notions of “rather full”
and “rather empty” are operationalized by some user-defined parameters. One
advantage of the algorithm is that it autonomously determines the appropriate
number of clusters/splits, which is in contrast to simpler clustering methods like,
e.g., k-means clustering. The details of the algorithm are described in [7].

3.5 Post-processing: Merging the Split Points

Of course, due to the fact that RUDE projects multiple source attributes onto
a single target attribute, usually many “similar” split points will be formed
during the projections. It is therefore necessary to merge the split points in a
post-processing phase. Figure 3 shows an algorithm for doing that. At step 3 we
have found a subset of split points with successive differences lower than or equal
to a certain pre-defined value s. Now, if all these split points lie closer than s
(very dense), they are merged down to only one point (the median). If not, the
region is characterized by the median and the two outer borders.

4 Experimental Results

Generally, evaluating discretization algorithms is not a straightforward task, as
the quality of the discretization per se can hardly be measured. Therefore, anal-
ogously to [12], we have chosen to apply RUDE to the problem of regression.
We measure the mean average deviation as well as the mean tree size that can
be achieved by applying RUDE to a dataset with a continuous target attribute,
learning a decision tree via C4.5 [10], and using the median of a predicted in-
terval as the numeric class label for test examples. The results are compared to
those achievable by Equal Width and K-Means discretization with the same clas-
sification learner. Table 1 summarizes the databases used for the experiments.

Relative Unsupervised Discretization for Regression Problems 251

Table 1. The UCI datasets used in the experiments

attributes
Dataset |size|continuous nominal
Abalone 4177 7 1
Auto-mpg| 398 4 3
Housing | 506 12 1
Machine | 209 6 0
Servo 167 0 4

All results were achieved by 10-fold cross-validation. Within each of the 10
runs, a discretization of the target attribute (i.e. a split point list and the ac-
cording medians) was learned on the training set, these intervals were applied
to the test set, and C4.5 was run on these transformed files. We report results
in terms of mean average deviation (MAD) and mean tree size.

For each method, different parameter settings were tried. Table 2 shows se-
lected results for runs with the same number of intervals: The best RUDE run
(in terms of MAD) was compared to the values achieved by equal width (EW)
and k-means (KM), when set to the same number of intervals.

In table 3, the “best” results achievable by each algorithm are compared.
However, simply defining the “best” runs by the lowest MAD value would have
resulted in the observation that the deviations achieved by RUDE are nearly
always slightly higher than with EW or KM, but the tree sizes are drastically
lower! Therefore this figure shows runs with slightly higher deviations than nec-
essary, but much better tree sizes — a good compromise was intended.

Table 2. Selected results from running EW, KM and RUDE on the same
datasets, comparing values for the same number of intervals (best RUDE run)
against each other. The values in bold print are the best ones (differences are
not necessarily significant)

Dataset EW KM RUDE Intervals
MAD & Size | MAD & Size| MAD & Size

Abalone 1.95 £ 0.04 | 1.94 £ 0.06 | 1.93 £ 0.08 7
871.3 £ 35.3 |1444.9 + 47.3|1497.8 + 408.4

Auto-MPG|2.76 + 0.43| 2.85 + 0.36 3.47 4+ 0.36 8
153.2 +£ 89 | 163.6 = 5.4 | 129.7 + 15.3

Housing 3.08 + 0.34| 3.13 = 0.30 3.32 £ 0.41 9

167.6 £ 4.7 | 197.6 £ 13.5 | 138.0 £ 28.6
Machine |57.91 £ 22.03|61.91 + 32.52|45.59 + 15.14 7
36.4 £ 10.8|129.9 £ 16.2| 86.9 £ 25.0
Servo 0.44 £ 0.17 |0.34 £ 0.13| 0.39 £ 0.15 6
35.0 £ 0.0 | 60.0 £ 4.0 62.0 £ 4.0

252 Marcus-Christopher Ludl and Gerhard Widmer
Table 3. Comparing the “best” runs of EW, KM and RUDE

Dataset EW KM RUDE
MAD, Size |# Ints.| MAD, Size |# Ints.| MAD, Size |# Ints.

Abalone 2.31 £ 0.05 2 2.10 £+ 0.06 2 2.13 £ 0.09 4
133.6 4+ 16.2 259.1 £ 27.7 32.8 + 58.64

Auto-MPG|2.83 + 0.33 6 3.59 4+ 0.32 3 3.96 + 0.34 3
133.4 + 6.4 76.4 + 13.68 51.4 + 3.32

Housing 4.27 + 0.36 4 4.00 + 0.33 3 4.07 + 0.34 4
66.8 + 9.04 71.0 £ 6.8 65.8 + 6.96

Machine [49.80 4+ 13.10 4 39.63 + 7.80 4 51.49 £ 16.25 5
13.6 + 9.76 59.5 4+ 14.8 32.8 + 8.72

Servo 0.44 4+ 0.16 2 0.44 4+ 0.16 2 0.44 4+ 0.16 3
20.0 £ 0.0 20.5 £ 0.9 21.5 + 2.1

As can be seen, the mean average deviation achieved by RUDE is usually
slightly higher than with the other two methods (or about equal). The reason
for this could be that there is a theoretical limit as to what can be achieved
by applying classification methods to regression problems; equal width usually
achieves low numeric error, because the medians are quite equally distributed,
even though the classification accuracy might not be very high (resulting in a
higher tree size). With RUDE, on the other hand, tree size usually decreases
significantly. This effect is apparently more visible the larger the dataset is.

In summary, RUDE seems to be able to tune the interval boundaries better
than the two unsupervised methods compared here. With the same number of
intervals, RUDE creates better split points (with regard to lower tree sizes and
thus better understandability), even compared to k-means. Comparing the lowest
MAD achieved (not caring about the number of intervals), RUDE admittedly
loses. Nonetheless, even in these cases, RUDE can improve readability.

5 Discussion

What we have presented is a new method for discretizing continuous attributes
by using information about the “structure” of multiple source attributes. Pre-
liminary experimental results show that in a regression-by-classification setting,
this algorithm does not improve the summed numerical error of the predictions,
but can lower the tree sizes substantially, especially in large databases.

One of the main problems with the current system is that the user-specified
parameters still need to be fine-tuned when dealing with a new dataset. Up
to now there is no good standard set of parameter settings that works well
every time. Also, unfortunately some of the parameters represent absolute values;
the problem of defining relative threshold measures (like percentages) is also a
current research topic.

RUDE was originally designed with association rules and functional depen-
dencies in mind. Algorithms for inducing the latter type of knowledge can, by

Relative Unsupervised Discretization for Regression Problems 253

definition, only work on nominal data, which makes them unsuitable for numer-
ical databases. We are currently testing the efficacy of RUDE in this setting.
Devising quantitative measures of success in such applications is a non-trivial
problem, which we are currently trying to solve.

Acknowledgments

This research is supported by the Austrian Fonds zur Forderung der Wissen-
schaftlichen Forschung (FWF) under grant no. P12645-INF. We would like to
thank Johannes Fiirnkranz and Bernhard Pfahringer for invaluable suggestions.

References

10.

11.

12.

. Dougherty J., Kohavi R., Sahami M.: Supervised and Unsupervised Discretization

of Continuous Features. In Proceedings of the 12th International Conference on
Machine Learning (ML95), Morgan Kaufmann, San Francisco, CA, 1995. 246
Fayyad U., Irani K.: Multi-Interval Discretization of Continuous-Valued Attributes
for Classification Learning. In Proc. of the 15th International Joint Conference on
Artificial Intelligence (IJCAI’93), Morgan Kaufmann, San Francisco, 1993. 246
Friedman N., Goldszmidt M., Lee T.J.: Bayesian Network Classification with Con-
tinuous Attributes: Getting the Best of Both Discretization and Parametric Fit-
ting. In Proceedings of the 15th International Conference on Machine Learning
(ICML’98), Morgan Kaufmann, San Francisco, CA, pp.179-187, 1998. 246

Jun B.H., Kim C.S., Song H.Y., Kim J.: A New Criterion in Selection and Dis-
cretization of Attributes for the Generation of Decision Trees, IEEE Transactions
on Pattern Analysis and Machine Intelligence 19(12), 1371- 1375, 1997.

Kerber R.: ChiMerge: Discretization of Numeric Attributes. In Proceedings of the
10th National Conference on Artificial Intelligence (AAAI’92), AAAI Press, Menlo
Park, 1992. 246

Kohavi R., Sahami M.: Error-Based and Entropy-Based Discretization of Continu-
ous Features. In KDD-96: Proceedings 2nd International Conference on Knowledge
Discovery and Data Mining, AAAT Press, Menlo Park, CA, pp.114-119, 1996. 246
Ludl M.-C.: Relative Unsupervised Discretisation of Continuous Attributes. Mas-
ter’s thesis, Department of Medical Cybernetics and Artificial Intelligence, Univer-
sity of Vienna, 2000 (forthcoming). 248, 249, 250

Pavlidis T.: Algorithms for Graphics and Image Processing, Computer Science
Press, Inc., Rockville, Maryland USA, 1982. 249

Pfahringer B.: Compression-Based Discretization of Continuous Attributes, in Pro-
ceedings of the 12'" International Conference on Machine Learning (ML95), Mor-
gan Kaufmann, San Francisco, CA, 1995. 246

Quinlan, J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, San Ma-
teo, CA, 1993. 250

Richeldi M., Rossotto M.: Class-Driven Statistical Discretization of Continuous
Attributes. In Machine Learning: ECML-95, Springer, Berlin, pp.335-338, 1995.
246

Torgo, M., Gama, J.: Regression Using Classification Algorithms. Intelligent Data
Analysis 1, 275-292, 1997. 246, 247, 250

254 Marcus-Christopher Ludl and Gerhard Widmer

13. Wang K., Goh H.C.: Minimum Splits Based Discretization for Continuous Features.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI’97), Morgan Kaufmann, San Francisco, CA, pp.942-951, 1997. 246

	Relative Unsupervised Discretization for Regression Problems
	Introduction
	Regression via Classification
	RUDE-Relative Unsupervised Discretization
	Goals
	RUDE - The Top-Level
	The Main Step: Structure Projection
	A Characterizing Clustering Algorithm
	Post-processing: Merging the Split Points

	Experimental Results
	Discussion
	References

