
R. López de Mántaras, E. Plaza (Eds.): ECML 2000, LNAI 1810, pp. 323-330, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Learning Patterns of Behavior by Observing System
Events

Marlon Núñez

Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga
Campus de Teatinos s/n, Málaga 29071, Spain

mnunez@lcc.uma.es

Abstract. The proposed algorithm (BPL) induces behavior patterns from events
taking into account characteristics of observed systems and their environment.
The main strategy of this method consists on building summaries of the
behaviour of a system as events arrive, and take these summaries as training
examples. BPL constructs summaries with new features from events, like
duration of current event values, repetitions of an event in a period of time,
amongst others. This algorithm has been tested in learning faulty behavior of
networks with the purpose of continuously predicting alarms.

1 Introduction

The learning of behavior patterns is important for all intelligent entities and it is also
useful for those researchers who want to know behavior patterns of a group of
systems. This knowledge is useful in several fields. This paper is mainly focused in
applying behavior knowledge for predicting events and explaining patterns.
Applications can cover the control of systems, system imitation, customer behavior
analysis, and alarm analysis, amongst other fields.

The techniques that could be considered nearer to this field are those related to the
learning of patterns of sequences. Those technics are adapted to the analysis of
unordered sets of examples. Basically, such data can be viewed as a sequence of
events, where each event has an associated time of occurrence. When discovering
episodes in a network alarm log, the aim is to find relationships between alarms. Such
relationships can then be used in an on-line analysis of the incoming alarm stream,
e.g., to better explain the problem that causes alarms, to suppress redundant alarms,
and to predict severe faults.

Technical problems related to the recognition of episodes have been researched in
several fields. A problem of discovering frequent episodes in a sequence of events
was presented in [5]. Their patterns are arbitrary directed acyclic graphs, where each
vertex corresponds to a single event (or item). An edge from event A to event B
denotes that A occurred before B. They move a time window across the input
sequence, and find all patterns that occur in some user-specified percentage of
windows. An algorithm is designed for counting the number of occurrences of a
pattern when moving a window across a single sequence. In a different approach [8]
the problem is how to discover all sequential patterns with a user-specified minimum

324 Marlon Núñez

support. Each sequence is a list of transactions ordered by transaction-time, and each
transaction is a set of items. In Bioinformatics, the problem is to discover patterns
common to a set of related protein or amino acid sequences [3].

2 BPL Algorithm

The general strategy of the BPL algorithm is to transform a problem that is seemingly
not supervised, like a series of successive events in the time, into a supervised
problem, where the training examples are mainly behavior summaries. Each summary
will have several labels that are the temporal distances from the moment of the
summary to the occurrence of each target event. Since these labels are numeric
values, the Behavior Pattern Learner (BPL) algorithm generates regression trees, one
for each target event that is wanted to be predicted.

The algorithm learns the behavior in terms of several groups of rules. Each group
of rules is used for predicting a target event as well as explaining the prediction. The
purpose of learning groups of rules is allowing the specialization of knowledge for
each target event and improving the precision due to this specialization.

During the inference, several rules might fire simultaneously, predicting different
target events, their expected intervals of time and their confidence. As the time gets
closer to the expected occurrence of the target events, other rules might fire to predict
the same target events for a shorter time interval; it is also possible that hypotheses
change and previous hypothesis may be substituted by new hypothesis with different
intervals of time, depending on the new events that have arrived.

Two important concepts used by BPL algorithm must be defined: events and
BehaviorSummaries.

2.1 Events

An event indicates a change of value of an object attribute, as well as the time in
which this change took place. An event is represented as [Object. Attribute: Value,
Time of occurrence] where object is the identifier of an observed system. Attribute is
the identifier of the variable that changes its value. Value is the new value of Attribute
that changed at the specified time of occurrence. An examples of events is [CAR122.
Clutch: "pressed", 14:00] which indicates that in the CAR122, the clutch was
pressed at 14:00. Another example: [PC1234. Alarm: CommunicationProblem,
12:00] indicates that the PC1234 emitted the event alarm = "Communication
Problem" at 12:00. If we are talking about an event in general without specifying the
object, the notation [Clutch: "pressed"] is used.

2.2 BehaviorSummaries

The system learns from training examples called Behavior Summaries, made up of
three kinds of preconditions and its consequences. The precondition types are Event
Characteristics, SystemCharacteristics and Environment Characteristics. The possible

Learning Patterns of Behavior by Observing System Events 325

consequences of those characteristics are described in terms of the times of
occurrence from that summary to target events.

2.2.1 EventCharacteristics
EventCharacteristics are new features calculated from events:
- Duration [StillValidEvent]: The duration of the validity of an event that occurred

in the past but is still valid: Duration [StillValidEvent] =
time[BehaviorSummary] - time[StillValidEvent]

- Latency [PastEventNoLongerValid]: There is a probability > 0 that
PastEventNoLongerValid continues having a latent effect during a certain time
interval. The time of latency is the time past since PastEventNoLongerValid
occurred. But there should be a limit. This limit is a time window called
LatencyWindow [Event]. After this user-defined window time the event is
supposed not to have any effect.

- Repetitions [PastEvent]: the number of repetitions of PastEvents in a period of
time equal to the LatencyWindow[PastEvent].

These are the most useful new event characteristics. But some others can be used,
like PastDuration [PastEventNoLongerValid] or LatencyOfRepetition [PastEvenNo
LongerValid].

User has to provide his knowledge about the LatencyWindow of every event,
namely, the maximum time of influence of every value of a variable. E.g. the event
[car. clutch:"pressed"], has a LatencyWindow, that could be, say, 20 seconds, at most,
which means that whatever happened to the car behavior will not be influenced by a
past event [car. clutch: "pressed"] after 20 seconds. On the other hand, an event [car.
brakeAlarm: " "low level"] will influence future events of the car for a running period
of, say, one month [car. brakeAlarm: "low level"]. That is to say: 30x60x60x24x30
seconds.

2.2.2 SystemCharacteristics
Set of characteristics of the system that generated the events (The
SystemCharacteristicsi are all the values that describe the system that generated the
event in time time[BehaviorSummaryi]). There are special events, called state events,
which might update values of system attributes.

2.2.3 EnvironmentCharacteristics
Set of characteristics of the environment of the system (all the values that describe the
environment in a time time[BehaviorSummaryi], that is to say, the instant of the
BehaviorSummaryi).

2.2.4 Possible Consequences
The BehaviorSummary also registers the possible consequences of a situation. The
Possible Consequences is a list of occurrence times from the BehaviorSummary to
each target event: Then, PossibleConsequencei = (time[targetEvent1],
time[targetEvent2],... time[Target Eventk]), where time[Target Eventi], is the time of
the next occurrence of the TargetEventi.

326 Marlon Núñez

2.3 Description of the BPL Algorithm

BPL algorithm has two phases: BehaviorSummary creation and learning phase.
During the BehaviorSummary creation, BPL receives events. Each event generates
several BehaviorSummaries to allow analysis of its consequences. During learning
phase, BehaviorSummaries are used to grow regression trees, one for each target
event. Every tree constructs a group of behavior rules. Table 1 illustrates BPL
algorithm. Basic BPL algorithm, is independent of the regression tree method used.

2.3.1 Construction of BehaviorSummaries from Events
As it was mentioned previously the system learns from behavior summaries labeled
with continuous classes. When an event arrives, all these variables (duration,
repetition, and latency, among others) are updated in a table called Instant
BehaviorSummary (IBS) table. There will be an IBS table for each observed system.
When there is an order for constructing a behavior summary with an older time than
the time of arrived event, a summary is constructed using values of attributes at the
order time and calculated attributes like duration, repetitions and latency of events.

2.3.2 Scheduling Summary Orders
BehaviorSummaries are not generated periodically. Each event generates a schedule
of summary orders that force the learning program to monitor its consequences in
terms of occurrence of each Target Event.

An event at time time[event] generates several summary orders inserting them in
chronological order in the SummaryOrdersList until a temporal position
time[event] + LatencyWindow[event]. The Summary Orders are being scheduled
ordered by time in the SummaryOrdersList. Once an event arrives, BPL algorithm
analyses if constructing a Summary by consulting the top of the SummaryOrdersList.
If the time of the incoming event is greater than that time of the summary order, then
the summary is constructed. This way, BPL will not have to update IBS table
continuously, but only when an event arrives.

2.3.3 Creation and Labeling of Behavior Summaries
When an event arrives, among other steps explained above, a SummaryOrder

might be executed. Then BPL constructs a Behaviour summary, updating the IBS
table calculating duration, repetition and latency according to the time of the
BehaviorSummary. A BehaviorSummary will have as many numeric classes (also
called labels) as target events are declared. Initially, BehaviorSummary labels are
empty, pending on being filled in. To label a BehaviorSummary, BPL has to wait
until a target event occurs. When one of the target events arrives it forces labeling the
pending summaries. The label of each pending summary will be the time between that
BehaviorSummary and the target event. If a target event did not arrive during a
LatencyWindow (the largest one), the label is "it did not happen", namely, d.n.h. This
value is set in the regression analysis as a specific negative value. In other words,
there is a special label of BehaviorSummaries which means that a target event did not
arrive or it did arrived at a time greater that the largest LatencyWindow of events.
Attributes also have a special value: n.a. which stands for "not applicable". If the field

Learning Patterns of Behavior by Observing System Events 327

duration, for instance, has the value n.a, it means that the event occurred in the past
and it is no longer valid, therefore it does not make sense to have any value. This
value is also set as a specific negative value.

Table 1. BPL algorithm

Input: Events, list of Target Events1...n, LatencyWindows, N (Minimum new Behavior
Summaries), and minimum support.

Output: Behavior rules to predict/explain Target Events 1...n

Continually insert incoming events in the eventLog

// Behavior Summary creation Phase

While there exist not analyzed events in the eventLog,

Read the oldest not analyzed event. Consider it as AnalizedEvent

While time[AnalizedEvent]>time[top (BehaviorSummaryOrder List)]

Create a BehaviorSummary based on the InstantBehaviorSummary table. Insert it
in BehaviorSummaryLog.

Extract the order at the Top of the BehaviorSummaryOrdersList

If AnalizedEvent is a target event

Label each BehaviorSummaryi whose label is pending on update, with
time[AnalizedEvent] - time[BS i]

Based on the AnalizedEvent, update their event characteristics in the
InstantBehaviorSummary (IBS) table (number of repetitions, Duration/Latency, etc.)

Based on the AnalizedEvent, schedule a set of SummaryOrders inserting them into
the SummaryOrdersList ordered by time until LatencyWindow AnalizedEvent

// Learning phase

If there exist N new BehaviorSummaries with labels of a target eventi

Grow a Regression Treei based on BehaviorSummaryLog

Construct Behavior Rules for target eventi and replace previously learnt rules.

2.3.4 Learning Time Intervals
When there are N new BehaviorSummaries already labeled with a target event, BPL
uses all summaries to generate knowledge to predict the target event. It learns as
many regression trees as continuous classes, namely, target events. Although BPL can
use any regression tree algorithm [1], [4], it has been tested with the EGR method [7].

EGR selects the best variable, analyzing the mixture of the data in every possible
split, calculating the mean µ, standard deviation σ, and weight π of the components of
the mixture, [(µ1,σ1,π1), (µ2,σ2,π2)... (µn,σn,πn)]. EGR learns regression trees using
background knowledge (taxonomies and cost) associated to attributes, in a similar
way that EG2 [6] for induction of decision trees.

328 Marlon Núñez

2.3.5 Construction of Behavior Rules
Regression trees do not show target events. They handle special negative numeric
information, meaning n.a. and d.n.h., this step pursues the following transformations:
− Every regression tree is transformed into a group of rules with a consequence in

which the target event and the statistical support is expressed
− Negative numeric value in attributes, previously illustrated as n.a., into symbolic

values meaning "not applicable".
− Negative numeric value in classes, previously illustrated as d.n.h, into symbolic

values meaning "it will not happen".

2.4 An Example

Let us suppose that we have systems. The first one is of Type A and the second one is
of type B. Two variables will be observed: Var1 and Var2. The values of Var1 are A,
R and S. The values of the attribute Var2 are W and F. Figure 2 illustrates a time-line
detailed by the symbols: (.), (~) and (/). The symbol (.) indicates a minute with no
events; symbol (~) indicates a minute in which the last value of the attribute did not
change; symbol (/) indicates an hour in which the last value of the attribute did not
change. Vertical gray lines indicate BehaviorSummaries. Let's say that the target
events are [Var1: A].

Event Dur. Lat. Rep.

Var1: A n.a. 400* 1

Var1: U n.a. 74 1

Var1: S 1 n.a. 5

Var1: R n.a. 1 4

Var2: W n.a. 11 1

Var2: F n.a. 74 1

System1
Type: A

Var1: US/~~~~RSRSRSRS~~~~~A/SUS/~~~~RS~~
Var2: F./W.............W.../.../W.......

Activity: 0000000000000000000001111222222222
Time 0066666667777777777884444000011111

Activity: 1234567890123456789012345678901234
Food
System2

Type: B

Var1: A/US/.SRSRSRSRSRSS/~~~A/SUS/~~~~~~
Var2: ./../W............/WW../.../W.....
Activity: 5555555555555555555556666777777777

Time 0066666667777777777884444000011111
Activity: 1234567890123456789012345678901234

Fig. 1. Evolution of attribute values and the BehaviorSummary at minute 75

Events from minute 1 to minute 75 update the ISB table. Figure1 also shows the
calculated EventCharacteristics for System1 at minute 75. The asterisk "*" means that
last time system1. Var1 changed its value to A was 400 minutes ago, that is to say,
outside the timeline. Let's see what happen when event [Var2: W] arrives at time 78,
and it is considered as the analyzed event. Then time[analyzed Event] >

EventCharacteristics at minute 75

Learning Patterns of Behavior by Observing System Events 329

top[BehaviorSummary Order] since minute 78 > minute 75. Therefore the While
instruction applies. Consequently a BehaviorSummary is created from ISB table. This
new BehaviorSummary is inserted in a log, without label yet, because its
consequences are not known yet. Since the event [Var2: W] is a target event, it labels
the BehaviorSummary with the distance time from the behavior summary (minute 75)
to the time of the target Event (minute 78), that is to say, 3. The BehaviorSummary is
a record of 20 fields: two with the current values of attributes (Var1 and Var2) and the
other 18 fields reg ntCharacteristic marized that situation. This
training example h umeric class. T ss explained above goes on
continuously. When there are N new behavior summaries, then they become training
instance of a ion tree m igure 2 shows parts of the two regression trees
generated, o ch target

3 Experi

Basic BPL
domain was
network is m
with six eve

We analy
Windows N
problems. W
recent 30%

BPL gen
that 48% of
describe the
future (max
analyzing th
in the predi
[25-30] min
more inform

B

(65−80)

Latency [Var1: U]

Numbe
f
e

c

regress
ne for ea
F

menta

has bee
the fa
ade up

nt logs
zed 45
T admi
e took
or testi
rated 5
behavi
precon

. of La
ese rule
tion. F

utes an
ation a

Typ

(3-

r of Rep
arding Eve
as one n
ig. 2. Re

tion

n evaluate
ulty behav
of a Serv

of operatin
0 errors a
nistration.
the oldes

ng.
2 behavio

or rules ha
ditions for
tencyWind
s, we real
or examp
d target ev
bout the ne

e

8)

(63-78

(4-10)

A

etitions [Va
ethod. F
event.
gression tree for

d trying to find
ior of a PC Ne

er, three Workst
g system (Wind
nd warnings me
We selected 5

t 70% of consec

r rules for pred
ve "will not hap
predicting that
ows). The amo
ized that there w
le, if we say tha
ent Y will not o
twork.

)

(122−138)

(0-2)

r1:R]
s that sum
he proce
predicting [Var1: A]

faulty-behavior patterns. An analyzed
twork in terms of its alarms. The PC

ations and a LAN. The system was feed
owsNT Server and Workstation).
ssages, corresponding to 10 months of
target events mostly related to network
utive events for training and the most

icting 5 target events. It was surprising
pen" value as a consequent. These rules
a target event will not occur in the near
unt of rules of this kind is large; after
ere very useful for being more specific

t target event X will probably occur in
ccur in [320+] minutes, we are giving

(310+)

(4-10)

330 Marlon Núñez

Latency Windows affects directly the rules learnt. If LatencyWindows are too
small, BPL can not recognize true consequences of Alarm "Netlogon" because this
event does not generate SummaryOrders to a future time when these consequences
really occur. On the other hand, too big LatencyWindows adds many patterns not
related to the problem, which does not help to find true patterns.

4 Conclusions

An important characteristic of the BPL algorithm is that periodic analysis does not
exist. Generation of regression trees is carried out every time that N new
BehaviorSummary arrives, which allows not to be necessary to establish a certain
learning rhythm. If there are target events with short effect and, simultaneously, other
target events with long effect, BPL will generate each tree with different rhythm and
different time intervals. On the other hand, an important finding, ignored by sequence
pattern learning approaches, is the importance of the characteristics of systems and
environment how these factors affect systems behavior.

Acknowledgments

Special thanks to Rafael Morales for giving comments and support to this research
work. I would also thank Nohelia Barreiro, Raúl Fidalgo and Ignacio Ballesteros for
developing, and testing some modules. I would also thank José L. Pérez who helped
with some logistical support. This work has been partially supported by project FACA
PB98-0937-C04-01 of the CICYT, Spain. FACA is a part of the FRESCO project.

References

1. Breiman, L., Friedman, J.H., Olsen, R.A., & Stone, C.J., (1984). Classification and
Regression Trees, Wadsworth Int. Group, Belmont, California.

2. Grossi, R and Luccio, F. (1989). Simple and efficient string matching with k mismatches.
Information Processing Letters, 33:113 – 120, 1989.

3. Jonassen I., Collins J.F. and Higins D. Finding flexible patterns in unaligned protein
sequences. Protein Science, 4 (8): 1587 - 1595, 1995.

4. Karalic A. (1992) Employing Linear regression in regression trees leaves. In Technical
Report IJS DP-6450, Jozef Stefan Institute, Ljubljana, Slovenia.

5. Manila, H., Toivonen H., and Verkamo Inkeri (1997) Technical Report C-1997-15,
Departament of Computer Science, University of Helsinki.

6. Núñez, M. (1991) The Use of Background Knowledge in Decision Tree Induction. Machine
Learning (Vol. 6, Nº3). Los Altos, CA. Morgan Kaufman.

7. Núñez, M. (2000). Generalised Regression Trees, accepted paper for the 14
th

Intl.
Conference of Statistical Computing (Compstat), The Netherlands.

8. Srikant, R. and Agrawal R (1996). Mining Sequential Patterns: Generalization and
Performance Improvements. In Proceedings of the 5th International Conference EDBT-96,
Avignon, France.

	Learning Patterns of Behavior by Observing System Events
	1 Introduction
	2 BPL Algorithm
	2.1 Events
	2.2 BehaviorSummaries
	2.2.1 EventCharacteristics
	2.2.2 SystemCharacteristics
	2.2.3 EnvironmentCharacteristics
	2.2.4 Possible Consequences

	2.3 Description of the BPL Algorithm
	2.3.1 Construction of BehaviorSummaries from Events
	2.3.2 Scheduling Summary Orders
	2.3.3 Creation and Labeling of Behavior Summaries
	2.3.4 Learning Time Intervals
	2.3.5 Construction of Behavior Rules

	2.4 An Example

	3 Experimentation
	4 Conclusions
	Acknowledgments
	References

