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Abstract. We discuss the problem of choosing the complexity of a de-
cision tree (measured in the number of leaf nodes) that gives us highest
generalization performance. We first discuss an analysis of the general-
ization error of decision trees that gives us a new perspective on the regu-
larization parameter that is inherent to any regularization (e.g., pruning)
algorithm. There is an optimal setting of this parameter for every learn-
ing problem; a setting that does well for one problem will inevitably
do poorly for others. We will see that the optimal setting can in fact be
estimated from the sample, without “trying out” various settings on hold-
out data. This leads us to a nonparametric decision tree regularization
algorithm that can, in principle, work well for all learning problems.

1 Introduction

Decision tree algorithms (e.g., [14,3]) have to solve two distinct problems: they
need to identify the size of the tree that leads to optimal generalization perfor-
mance and, subject to these size constraints, they have to minimize the empirical
error rate. The problem of choosing the appropriate tree size is in essence a prob-
lem of estimating the misclassification probability of the best decision tree of a
given size.

A quick clarification of some notational details is useful for further discussion.
Let Hi be the class of all decision trees with exactly i leaf nodes over some fixed
set of possible tests. h ∈ Hi is then a decision tree and maps instances x to
class labels y. A learning problem is given by an (unknown) density p(x, y).
The generalization error rate of h with respect to this problem (which we want
to minimize) is then ε(h) =

∫ ∑
y 	(h(x), y)p(x, y)dx, where 	(·, ·) is the zero-

one loss function. Given a sample S consisting of m independent examples,
drawn according to p(x, y), the empirical (or sample) error rate of h is e(h) =
1
m

∑
(x,y)∈S 	(h(x), y). It is important to distinguish between generalization error

ε (which we really want to minimize) and empirical error e (which we are able
to measure and minimize using the sample) throughout this paper.

Many decision tree algorithms try to minimize the generalization error by
minimizing a regularization function f(e(h), c(Hi)) that depends on the empir-
ical error e(h) and some complexity measure c(Hi) of the hypothesis class Hi

which the hypothesis tree h came from. In other words, the complexity (or size)
of the decision tree is getting penalized. Technically, this is often realized by
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employing some pruning rule that trades off a lower empirical error rate against
the number of branches required to achieve this gain in empirical accuracy. Such
complexity regularization techniques will in fact lead to a low generalization
error rate if and only if f(e(h), c(Hi)) is a “reasonable” estimate of ε(h), the
generalization error rate. This raises the question whether there is a regulariza-
tion function f(e, c(Hi)) that maps an empirical error rate and some measure of
the complexity of a class of decision trees Hi to a “reasonable” estimate of ε(h).

We can use (PAC-style) Chernoff bounds to bound the greatest possible
difference between true and empirical error rate of any hypothesis in Hi and
then conclude that, with high probability, the generalization error rate of h is
no more than e(h) + bound(m, |Hi|), where |Hi| is the size (alternatively, the
VC-dimension) of Hi. However, the actual error rate may lie anywhere between
0 and the worst-case bound, depending on characteristics of the given learning
problem. We can easily construct two learning problems (one with an error rate
that increases steeply when |Hi| grows and one with a slowly increasing error
curve) such that any regularization function f(e, c(Hi)) fails (i.e., incurs an
additional error of λ > 0 that does not vanish when the sample size grows)
for at last one of them [9]. This means that the empirical error rate e(h) and
the complexity of Hi do not suffice to determine the actual error rate; some
information is missing. Obviously, we can determine a near optimal setting for
the regularization parameter for each single problem by trying out many values
and assessing the resulting decision tree on holdout data. Alternatively, we can
use cross validation to select the optimal number of leaves in the first place, like,
for instance, the CART algorithm does [3]. The primary disadvantage of n-fold
cross validation [19] lies in its unsatisfactory efficiency caused by the necessity
of invoking the learner n times for each considered number of leaves.

We will pursue a different approach. We will take a careful look at the gen-
eralization error rate of decision trees and study just what information regular-
ization functions are missing – i.e., what other information than e(h) and the
complexity of Hi do we need o obtain a reliable estimate of ε(h) for all possible
problems, without assessing hypotheses on holdout data. We will identify this
missing information and discuss how it can be acquired efficiently in many cases.
In Section 2, we simplify the expected error analysis of [18] slightly and apply
it to the problem of choosing the optimal decision tree complexity. The original
analysis is restricted to exhaustive learners while decision tree algorithms are
usually greedy. Our main theoretical result (Section 3) is an extension of the
analysis to greedy learning algorithms. In Section 4 we discuss a nonparametric
regularization algorithm which we study empirically in Section 5.

2 Error Rate of Exhaustive Decision Tree Learners

In this section, we assume that, given a number i of leaf nodes, the learning algo-
rithm determines the hypothesis hL

i with least empirical error that has exactly i
leaf nodes. When there are several hypotheses with the same low empirical er-
ror, we assume the learner to break ties by drawing at random under uniform
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distribution. Let us assume that the sample size m is fixed and given in advance,
whereas the sample S itself is a random variable, governed by the distribution
(p(x, y))m. We will now study E(ε(hL

i )|Hi,m), the expected generalization er-
ror of the returned hypothesis hL

i given the sample size m and the number of
leaves i. In order to determine the expected true error (expected over all sam-
ples) of hL

i (the decision tree with i leaf nodes that incurs the least empirical
error rate), we factorize the hypothesis h that the learner returns (Equation 1).
Since we assume the learner to break ties between hypotheses with equally small
empirical error at random, all hypotheses with equal true error rates ε have an
exactly equal prior probability of becoming hL

i . We re-arrange Equation 1 such
that all hypotheses hε with true error ε are grouped together. π(ε|Hi) is the
density of decision trees with error rate ε among all the decision trees with i
leaf nodes (with respect to the given learning problem). Intuitively, if we would
draw a decision tree with i leaf nodes at random under uniform distribution from
all decision trees Hi, π(ε|Hi) would be the chance of the resulting decision tree
incurring an error rate of ε for the given problem. This takes us to Equation 2.

E(ε(hL
i )|Hi,m) =

∫
h

ε(h)P (hL
i = h|Hi,m)dh (1)

=
∫

ε

εP (hL
i = hε|ε,Hi,m)π(ε|Hi)dε (2)

Let H∗
i = argminh∈Hi

{e(h)} be the set of hypotheses in Hi which incur the least
empirical error rate with respect to some sample S. Note that H∗

i is a random
variable because only the sample size m is fixed whereas the sample S itself
(on which H∗

i depends) is a random variable. In order to determine the chance
that hε (an arbitrary hypothesis with true error rate ε) is selected as hL

i , we first
factorize the chance that hε lies inH∗

i , the empirical error minimizing hypotheses
ofHi (Equation 3). A hypothesis that does not lie inH∗

i has a zero probability of
becoming hL

i (Equation 4). In Equation 5, we factorize the cardinality of |H∗
i |.

When this set is of size n, then each hypothesis in H∗
i has a chance of 1

n of
becoming hL

i (the learner breaks ties at random) (Equation 6). In Equation 7,
we factorize the least empirical error e and, in Equation 8, we simply split up
the conjuction (like p(a, b) = p(a)p(b|a)).

P (hL = hε|ε,Hi,m)
= P (hL = hε|Hi,m, hε ∈ H∗

i )P (hε ∈ H∗
i ) (3)

+P (hL = hε|Hi,m, hε �∈ H∗
i )(1 − P (hε ∈ H∗

i ))
= P (hL = hε|Hi,m, hε ∈ H∗

i )P (hε ∈ H∗
i ) (4)

=
∑

n

P
(
hL = hε

∣∣Hi,m, hε ∈ H∗
i , |H∗

i | = n
)
P (hε ∈ H∗

i , |H∗
i | = n) (5)

=
∑

n

1
n
P (hε ∈ H∗

i , |H∗
i | = n) (6)

=
∑

e

∑
n

1
n
P
(
hε ∈ H∗

i , |H∗
i | = n

∣∣e(hε) = e
)
P (e(hε) = e|ε,m) (7)
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=
∑

e

∑
n

1
n
P (hε ∈ H∗

i |e(hε) = e,m)P
(|H∗

i | = n
∣∣hε ∈ H∗

i , e(hε) = e
)

P (e(hε) = e|ε,m) (8)

By inserting Equation 8 into Equation 2 we get

E(ε(hL)|Hi,m) (9)

=
∫

ε

ε

(∑
e

∑
n

1
n
P
(|H∗

i | = n
∣∣hε ∈ H∗

i , e(hε) = e
)
P (hε ∈ H∗

i |e(hε) = e,m)

P (e(hε) = e|ε,m)π(ε|Hi)

)
dε (10)

Assuming that the chance of the set of empirical error minimizing hypothe-
ses H∗

i being of size n when hε is known to lie in this set does not depend on
which hypothesis is known to lie in this set (formally, P

(|H∗
i | = n

∣∣h1 ∈ H∗
i

)
=

P
(|H∗

i | = n
∣∣h2 ∈ H∗

i

)
for all h1, h2) we can claim that const = P

(|H∗
i | =

n
∣∣hε ∈ H∗

i , e(hε) = e
)
is constant for all hε. Equation 10 specifies the expecta-

tion of ε(hL). The density p(ε(hL)) has to integrate to 1. const is therefore a
normalization constant which is determined uniquely.

const =

(∫
ε

∑
e

P (hε ∈ H∗
2 |e(hε) = e,m)P (e(hε) = e|ε,m)π(ε|Hi)dε

)−1

(11)

Combining Equations 10 and 11 we obtain

E(ε(hL)|Hi,m)

=

∫
ε ε (
∑

e P (hε ∈ H∗
i |e(hε) = e,m)P (e(hε) = e|ε,m)π(ε|Hi)) dε∫

ε

∑
e P (hε ∈ H∗

i |e(hε) = e,m)P (e(hε) = e|ε,m)π(ε|Hi)dε
(12)

Let us now tackle the last unknown term, P (hε ∈ H∗
i |e(hε) = e,m). A hypoth-

esis hε (with true error rate ε) lies in H∗
i when no hypothesis in Hi achieves a

lower empirical error rate. There are |Hi| many hypotheses; their true error rates
are fixed but completely arbitrary – i.e., they are neither independent nor gov-
erned by some identical distribution. These |Hi| error rates constitute the density
π(ε|Hi) which measures how often each error rate ε occurs inHi (we have already
seen this density in Equation 2). Each of these hypotheses incurs an empirical
error rate that is by itself governed by the binomial distribution B[m, ε]. (Each
example can be classified correctly or erroneously; the chance of the latter hap-
pening is ε; this leads to a binomial distribution). Let us assume that the empiri-
cal error rates of two or more hypotheses are independent given the corresponding
true error rates. Formally, P (

∧
hj∈Hi

e(hj)|ε(hj)) =
∏

hj∈Hi
P (e(hj)|ε(hj)). Now

we can quantify the chance that no hypothesis incurs an error of less than e which
makes our hypothesis h with e(h) = e a member of H∗

i . For all but extremely
small Hi (formally, p|Hi| ≈ p|Hi|−1) we can write this chance as

P (hε ∈ H∗
i |e(hε) = e,m) =

∏
ε′

P (e(h) ≥ e|ε′,m)|Hi|π(ε′|Hi). (13)
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Finally, let us determine |Hi|, the number of decision trees with i leaf nodes.
With c classes and a total of n possible tests available, there are exactly |Hi| =
τ(i) × ci decision trees with i leaf nodes (τ(i) is the number of “trunks” and
there are ci labelings of the leaf nodes), where τ(1) = 1 and τ(i) =

∑i−1
j=1 n ×

τ(j) × τ(i− j). Intuitively, at each test node there are n possible tests and j of
the remaining i leaf nodes can be placed in the left subtree while the remaining
j− i leaf nodes go into the right subtree (for all possible j between 1 and i− 1).

What have we achieved so far? Equations 12 and 13 quantify the expected
generalization error of hL

i for a given problem in terms of three quantities: the
number of decision trees |Hi| (can easily be computed), the sample size m (which
is known), and the density of error rates in Hi, π(ε|Hi). Note that, for Equa-
tions 12 to give us the expected error ε(hL

i ), it is not necessary to actually run
the learner and determine e(hL

i ). Let us also emphasize that we are not talk-
ing about bounds on the error rate for a class of possible problems.Subject to
the mentioned independence assumptions, Equations 12 and 13 quantify the ex-
pected generalization error of an empirical error minimizing hypothesis for a
particular, given learning problem. When only the sample size m and |Hi| are
given, it is impossible to determine where in the interval specified by the Chernoff
bound the actual error rate lies which motivates the negative result of Kearns et
al. [9] on the performance of complexity regularization algorithms. Additionally
given the density π(ε|Hi), however, we can determine the actual density that
governs the generalization error, and thereby also the expected generalization
error. We have therefore identified the information that complexity penalization
algorithms are missing as being π(ε|Hi). If there was a feasible way to estimate
π(ε|Hi) we could construct a regularization algorithm that uses this additional
information and circumvents the negative result of Kearns et al.. But before we
discuss how π can be estimated, let us look at the generalization error of greedy
decision tree learners.

3 Greedy Decision Tree Algorithms

The solution presented so far quantifies the generalization error of the decision
tree with i leaf nodes that incurs the least empirical error with respect to a
sample of size m. Hence, the analysis applies to exhaustive learners that are able
to always find the empirical error minimizing hypothesis. However, when the
problem requires the decision tree to have many nodes, exhausting the space of
all decision trees with that number of nodes may not be feasible and a greedy al-
gorithm (that cannot be guaranteed to find the decision tree with least empirical
error) may have to be employed. We will now discuss the expected generalization
error of a hypothesis with an empirical error rate of e, (found, for instance, by
a greedy learner) which may be distinct from the hypothesis with the globally
smallest empirical error rate. The following solution depends additionally on the
empirical error rate e of the hypothesis returned by the learner. This means that
we have to run the greedy learner and determine the resulting training set error
which was not necessary in the exhaustive analysis.



Nonparametric Regularization of Decision Trees 349

Let He
i be the subset of Hi with empirical error of e(h) = e. Let he

i be a
hypothesis drawn from He

i at random under uniform distribution – i.e., he
i is

an arbitrary hypothesis with empirical error rate of e. We start off by factoriz-
ing the hypothesis which the learner chooses as he

i (Equation 14). Similarly to
Equation 2, in Equation 15 we factorize the error rate ε, forming (for each ε)
“subgroups” of π(ε|Hi) hypotheses with equal error rate ε. In Equation 16 we
factorize the empirical error rate of he

i and then say that all empirical error rates
have probability zero, except for the value e which has a probability of 1. In
Equation 17, we factorize the cardinality of He

i and, in Equation 18, we claim
that the chance of a hypothesis hε in He

i being selected as he
i is

1
n when |He

i | = n
(remember that we assumed he

i to be drawn at random from He
i ).

The probability of He
i being of size n when we know already that one hy-

pothesis (he
i ) is in this set is equal to the chance of He

i being of size n − 1
(Equation 19), and the empirical error rate of hε is governed by the binomial
distribution with mean value ε. Now note that the sum over n in Equation 20
does not depend on ε any more – i.e., it is a constant. Since p(ε(he

i )|Hi,m, e) has
to integrate to 1 can simply normalize the expectation in Equation 21 like we
did in Equation 11. Now only π(ε|Hi) remains which means that we are done.

E(ε(he
i )|Hi,m, e)

=
∫

ε(h)P (he
i = h|Hi,m, e)dh (14)

=
∫

εP (he
i = hε|ε,Hi,m, e)π(ε|Hi)dε (15)

=
∫

εP (he
i = hε|ε,Hi,m, e)P (e(hε) = e)π(ε|Hi)dε (16)

=
∫

ε
∑

n

P
(
he

i = hε

∣∣∣|He
i | = n, ε,Hi,m, e

)
P (e(hε) = e, |He

i | = n)π(ε|Hi)dε (17)

=
∫

ε
∑

n

1
n
P (e(hε) = e)P

(
|He

i | = n
∣∣∣e(hε) = e

)
π(ε|Hi)dε (18)

=
∫

ε
∑

n

1
n
P (e(hε) = e)P (|He

i | = n− 1)π(ε|Hi)dε (19)

=
∫

εB[ε,m](e)

(∑
n

1
n
P (|He

i | = n− 1)

)
π(ε|Hi)dε (20)

=
∫
εB[ε,m](e)π(ε|Hi)dε∫
B[ε,m](e)π(ε|Hi)dε

(21)

We have now found a solution that quantifies E(ε(he
i )|Hi,m, e), the expected

generalization error of a decision tree with i leaf nodes and empirical error rate e
for a given learning problem p(x, y). In contrast to the result of Section 2, he

i is
not assumed to be the result of an exhaustive learner, it can be the outcome of
a greedy learner. This time, the solution depends on the empirical error e (i.e.,
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we need to run the learner to determine the training set error), the density of
error rates in the set of decision trees with i leaf nodes, π(ε|Hi), and the sample
size m, but it does not depend on |Hi|. Again, Equation 21 specifies the actual
error rate for the given learning problem rather than a worst-case bound that
holds for all possible learning problems (which PAC theory does). The additional
information of π(ε|Hi) makes this possible.

4 Nonparametric Decision Tree Regularization

Decision tree pruning algorithms minimize a regularization function
f(e(hL

i ), c(Hi)) (depending on the empirical error rate and some complexity
measure of Hi) which has to be a good estimate of ε(hL

i ) if we want to minimize
the right quantity. However, the influence of the complexity on the error has
to be weighted and this weight has to be chosen for each problem. If, however,
π(ε|Hi) was known, then we could construct a decision tree learner that mini-
mizes Equation 12 (for exhaustive learning) or Equation 21 (for greedy learning),
respectively. We then have a regularization function that, in principle, should
work well for all possible learning problems without having a parameter.

π(ε|Hi) cannot be measured directly since it depends on p(x, y) which is
unknown. However, there is an empirical counterpart π(e|Hi) (the density of
empirical error rates of hypotheses in Hi with respect to the sample S) which
we can record when Hi is known and a sample S is available. We can obtain
π(e|Hi) by repeatedly drawing hypotheses from Hi under uniform distribution,
or by conducting a Markov random walk in the hypothesis space with the uni-
form distribution as stationary distribution [7,12]. While the general problem of
estimating densities is very hard, the situation is not quite as bad in our spe-
cial case. Like π(ε|Hi), π(e|Hi) is one-dimensional, but is is furthermore discrete
since there are only m+ 1 possible empirical error rates when m is the sample
size. How many hypotheses of Hi do we have to look at in order to obtain a
reliable estimate of π? We want to estimate m probabilities; suppose that we
want none of these estimates to be off by more than some ε with high probability
(1 − δ). In this case, we need to draw 1

2ε2 log m
δ = O(logm) hypotheses which

is not particularly much. Although drawing O(logm) hypotheses will typically
suffice for an accurate estimate of ε(hL

i ), there are cases in which a misestima-
tion of π by some small ε can lead to an inaccurate estimate of ε(hL

i ). In this
theoretical worst-case, estimating π sufficiently accurately can be as difficult as
running a learning algorithm, see [15] for a more detailed discussion. We can
now describe a decision tree algorithm that uses the expected error analysis to
regularize the decision tree complexity.

Algorithms QDT and Greedy-QDT.

1. For i = 1 . . .maxleaves.
(a) Draw O(logm) decision trees with i leaf nodes and record their empirical

error rates, thus measuring π(e|Hi) which will serve as an estimate of
π(ε|Hi).
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(b) For exhaustive QDT: Evaluate Equation 12 to determine the estimated
expected error of ε(hL

i ).
(c) For Greedy-QDT: Minimize the empirical error greedily using exactly i

leaf nodes, the resulting hypothesis is hL
i . Determine the empirical error

e(hL
i ) on the training set. Evaluate Equation 21 to obtain an estimate

of the expected generalization error of hL
i .

2. Let i∗ be the number i which minimizes the estimated expected generaliza-
tion error of hL

i determined in step 1b or 1c, respectively.
3. For exhaustive QDT: Exhaust the space of decision trees with i∗ leaf nodes

(this takes O(ni∗)). The resulting tree is hL
i∗.

4. For Greedy-QDT: hL
i∗ has already been determined.

5. Return hL
i∗.

For a given number of leaf nodes, we use the following algorithm to minimize
the empirical error rate. When we set the threshold to i, the algorithm is almost
exhaustive while with a threshold of 1 it is completely greedy. We use the infor-
mation gain heuristic; note, however, that our complexity regularization method
can be “plugged” into almost any greedy or exhaustive decision tree learner.

Algorithm EmpiricalErrorMinimization

1. Input: Number i of nodes, Output: decision tree with least empirical error.
2. If i = 1 return leaf node with class label that minimizes the empirical error

rate.
3. For all attributes a,

(a) Find optimal split for the given attribute a,
(b) If i > threshold commit to the split. Otherwise backtrack to find the

globally optimal split.
(c) If i > threshold Then Let left : right = Hleft× # of instances in the

left branch : Hright× # of instances in right ranch (split the number
of remaining nodes according to the remaining entropy weighted by the
number of instances in the left and right branch).

(d) Otherwise backtrack to find optimal values for left and right.
i. Determine left and right subtree by invoking EmpiricalErrorMin-

imization recursively with left and right as desired number of leaf
nodes, and with the corresponding subset of the sample.

Some technical details are left for the full paper, due to lack of space. An
algorithm that records the error rates of n× |Y |i decision trees in O(n× i×m)
(required for step 1a) is described in [15].

5 Empirical Studies

In order to select an appropriate number of leaf nodes, the QDT algorithm has
to be able to predict the error rate in dependence of the number of leaf nodes
used. Therefore, in the first part of the empirical studies, we will study how the
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predicted error rate (depending on the number of leaves) relate to the error rates
measured by n-fold cross validation.

Is the error rate predicted accurately? We drew 8 learning problems that
have little (or no) missing values at random from the UCI repository [2]. For
each problem and every number of leaf nodes i, we estimate the density of error
rates π(ε|Hi) in O(i ×m). For the exhaustive version (results in Figure 1), we
evaluate Equation 12 to obtain the predicted generalization error. For the greedy
version (results in Figure 2), we run the greedy learner, measure the empirical
error e and evaluate Equation 21 to get the predicted generalization error. We
then run a 10-fold cross validation loop (for each number i). In each fold, we run
the exhaustive/greedy learner and estimate the generalization error using the
holdout set (the exhaustive learner is not completely exhaustive; due to the high
computational costs only subtrees of up to four leaves are searched exhaustively).
Figure 1 compares the predicted to the measured generalization error rates for
the exhaustive learner and Figure 2 for the greedy learner. For most measure-
ments, the predicted value lies within the standard deviation of the measured
value which indicates that the predictions are accurate. Note that, even if all
predictions were totally accurate, 14% of all predictions would lie outside their
standard deviation. Only for the Cleveland and E. Coli problem we can see sig-
nificant deviations; but there is no case in which relying on the prediction would
result in selecting a number of leaves that is significantly suboptimal. In some
cases, the greedy analysis appears to give just slightly more accurate predictions.
This might be due to the fact that the greedy analysis gets to know the result-
ing empirical error rate as additional information. In many cases, the exhaustive
learner achieves a slightly (not significantly) lower generalization error.
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Fig. 1. Predicted (expected error analysis) and measured (10-fold cross valida-
tion) generalization error rates of decision trees restricted to i leaf nodes. (a)
diabetes, (b) iris, (c) crx, (d) cmc, (e) cleveland, (f) ecoli, (g) wine, (h) iono-
sphere
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Fig. 2. Predicted and measured (10-fold cross validation) generalization error
rates of a greedy decision tree learner, restricted to i leaf nodes. (a) diabetes,
(b) iris, (c) crx, (d) cmc, (e) cleveland, (f) ecoli, (g) wine, (h) ionosphere

Does QDT better or worse than cross validation based learning? We
will now study how our regularization procedure compares to cross validation
based pruning (e.g., [3]). We wrap the learner into an outer layer of 10-fold cross
validation. In this “wrapper”, for every number of leaf nodes i we first evaluate
Equation 12 to estimate which number of leaves would be optimal. We then run
an inner loop of n-fold cross validation to find out which number of leaf nodes
the cross validation based learner would select. We assess both recommended
numbers of leaf nodes in the outer cross validation wrapper. We try this for
various n. Figure 3 shows the results. Surprisingly, using 10-fold cross validation
is in no case significantly better than using one fold (training and test with a
split ratio of 70%). In some cases (e.g., wine) this might still be the case but the
differences are not significant. The differences between QDT and 10-fold cross
validation based selection of the number of leaf nodes are not significant – in
other words, our analysis determines the optimal number of leaf nodes just as
good as n-fold cross validation (for the studied problems).

6 Discussion and Related Work

Kearns and Mansour [8] proposed a nonparametric Chernoff-based pruning rule.
Their rule removes all subtrees unless it can prove that the subtree really en-
hances the generalization performance. Therefore, the algorithm has a bias to-
wards over-pruning the tree. Bayesian or MDL-based pruning strategies (e.g.,
[11]) can also be seen as not being parametric. But they require additional in-
formation in terms of the prior probability of target densities (p(p(x, y)), in our
formalism). In a way, this prior contains even more information than π(ε|Hi) be-
cause it tells something about all learning problems whereas π(ε|Hi) is a property
of a certain given learning problem. Our experiments may slightly strengthen
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Fig. 3. Error rate (estimated by 10-fold cross validation) when either expected
error analysis or n-fold cross validation is used to determine the number of leaf
nodes. (a) diabetes, (b) iris, (c) crx, (d) cmc, (e) cleveland, (f) ecoli, (g) wine,
(h) ionosphere

the belief (but do not prove) that exhaustive learning improves generalization
slightly over greedy learning. (Relatively) fast exhaustive decision tree learners
that are restricted to balanced trees have been presented in [1,4]. Unfortunately,
exhaustive learning is not feasible when the largest considered tree possesses
many leaf nodes. However, our experiments show that a near optimal number
of leaf nodes can be determined by means of our analysis as accurately as by
10-fold cross validation in O(n × imax × m) (while exhaustive tree learning is
exponential in imax). Our analysis predicts the generalization error rate of an
exhaustive learner even when it would be far too expensive to actually run the
learner. This opens the opportunity to determine the optimal number of leaf
nodes very efficiently using our analysis and to invoke an exhaustive learner in
case the optimal number of leaves is small. The speed-up that our regularization
procedure achieves compared to n-fold cross validation is exponential when the
underling learner is exhaustive, and is roughly a factor of n for greedy learners.

The analysis of the generalization error of the empirical error minimizing
decision tree with i leaf nodes opens some new insights. Regularization algo-
rithms that penalize the complexity of decision trees cannot directly minimize
the generalization error ε(hL

i ) because empirical error and complexity do not
suffice to infer the generalization error – therefore they possess a parameter that
has to be adjusted for all problems (e.g., [13,20,14]). However, we have seen
that the missing information is contained in π(ε|Hi), a density that can often be
estimated for a given i in O(logm) when a sample is given. Our analysis is an
actual-case analysis (for a given learner and a given learning problem), rather
than a (PAC-style) worst-case analysis (for the worst possible problem). Com-
pared to earlier actual case analyses [17,16,5] our analysis is based on weaker
assumptions. Compared to [18], our analysis is considerably simpler and, most
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importantly, covers greedy learners. An actual case analysis for Naive Bayesian
classifiers that is guided by a similar idea has been presented by Langley and
Sage [10], an actual case analysis for linear neural networks is given in [6].
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