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Abstract. In behavioural cloning of the human operator’s skill, a con-
troller is usually induced directly as a classifier from system’s states into
actions. Experience shows that this often results in brittle controllers. In
this paper we explore a decomposition of the cloning problem into two
learning problems: the learning of operator’s control trajectories and the
learning of the system’s dynamics separately. We analyse advantages of
such indirect controllers. We give characterization of the learner’s error
that is plausible explanation of why this decomposition approach has
empirically proved to be usually superior to direct cloning.

1 Introduction

Controllers for dynamic systems can be designed by machine learning using
different kinds of information available to the learning system. The idea of be-
havioural cloning (a term introduced by Donald Michie (1993)) is to make use of
the operator’s skill in the development of an automatic controller. Early work in
behavioural cloning was done by Donaldson [8]) and Chambers and Michie [7].
A skilled operator’s control traces are used as examples for machine learning
to reconstruct the underlying control strategy that the operator executes sub-
consciously. The goal of behavioural cloning is not only to induce a successful
controller, but also to achieve better understanding of the human operator’s
subconscious skill [13]. Behavioural cloning was successfully used in problem do-
mains as pole balancing, production line scheduling, piloting [11] and operating
cranes. These experiments are reviewed in [6].

The usual approach is to induce a control rule as a function Action =
Action(State) where State is the state vector of the dynamic system, and Action
is the control action to be performed in State. The induced function is typically
represented by a decision or regression tree. Although successful clones have been
induced in the form of trees or rule sets, the following problems have generally
been observed with this approach:

— Typically, induced clones are brittle with respect to small changes in the
control task.

— The clone induction process typically has low yield: the proportion of suc-
cessful controllers among all the induced clones is low, typically well below
50%.
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An approach aiming at rectifying these defeciences, proposed in [14], exploits
some results from control theory. This approach considers the system’s dynamics
and automatic identification of discrete subgoals. It improves both the clones’
robustness with respect to changes in the control task, and the yield of the cloning
process. However, this approach still has difficulties in domains with significant
nonlinearities or where the operator’s control plan is not simply expressed in
terms of a few discrete subgoals.

In [17] we proposed another approach to behavioural cloning, suitable also
for strongly nonlinear domains. The trajectory the operator is trying to follow
is generalized separately from the system’s dynamics and can be viewed as a
continuous subgoal. In particular, we do not learn the trajectory in time, but
rather the constraints among the state variables in the execution trace. These
constraints determine the corresponding desired trajectory to the goal, also for
system states other than those explicitly mentioned in the operator’s execution
trace. Actions that maintain the desired trajectory are computed using knowl-
edge of the system’s dynamics, learned by nonlinear function approximators. So
the initial learning problem is decomposed into two learning problems: first, the
generalisation of the operator’s control trajectory to areas outside the example
trace, and second, the learning of the system’s dynamics.

Experiments performed in the crane domain in [17] and in the Acrobot do-
main [15] demonstrated that this decomposition approach enormously improves
the yield of the cloning process and provides a good insight in the operator’s
subcognitive skill. Qualitative strategy, generalized from the operator’s trajec-
tory, is comprehensible and offers a possibility to optimize the operator’s control
strategy.

In this paper we investigate why the proposed decomposition of the con-
troller induction task into two learning tasks (learn generalized trajectory T and
system’s dynamics D) works better than the original problem definition (learn
Action = Action(State) directly). In other words, why indirect controllers are
more robust than direct controllers.

2 Problem Decomposition and Indirect Controllers

Let us now present the details of the problem decomposition for behavioural
cloning investigated in this paper. The construction of a controller by induction
from the operator’s traces consists of three stages (see Fig. 1):

1. Learn constraints T' on operator’s trajectories, which can be formally stated
as a mapping 7"

T : States x States — {true, false} (1)

The trajectory constraints are usually represented as a function t, express-
ing a chosen state variable (dependent variable) as a function of the sys-
tem’s state. A suitable chosen dependent variable is one that is most di-
rectly affected by the available actions. For example, for the pole-cart sys-
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Fig. 1. Indirect controller can be induced from operator’s control trace by gener-
alizing the operator’s trajectory and learning the system dynamic’s model. Both
together are used to control the system

tem: & = t(m,G,é). Constraints T' define what will be called a generalized
operator’s trajectory.

2. Learn appropriate model D of the system’s dynamics. D can for example
be a function that maps system’s states and actions into acceleration, eg.:
& = f(x, &, Action).

3. Once a trajectory model T" and dynamics model D have been induced, they
are used to construct a controller which works as follows:

(a) Given a current system state xj at time point k, A = diff(x, T) denotes
the deviation between the state and the generalized operator’s trajectory.
Usually the deviation is defined simply as the difference between the
value of chosen distinguished variable defined by 7" and its current value.

(b) Use system’s dynamics model D to determine an action A which reduces
the deviation A in time. For discrete time k, this can be written as:

Ay = arg 11}1612\ diff (41,7 (2)

where zr11 = D(xk, Ar) and A is the set of possible actions. We call
this an indirect controller as opposed to a direct controller that computes
action directly as Ay = A(xy) (see Fig. 2).
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Fig. 2. Direct and indirect controller: on the left is an direct controller, and on
the right is indirect controller. Direct controller uses a direct mapping from states
to actions, whereas the indirect controller uses the trajectory constraints and the
model of the system dynamics to take the action towards the next subgoal

3 Direct and Indirect Controllers

In the following analysis we assume deterministic system’s dynamics f and dis-
crete time, i.e. xxy1 = f(ag,ur), where index k indicates successive sample
times tg, to + dt, ..., to + kdt, x denotes the state vector and u the control
action vector.

Controller observes current state = and takes corresponding action wu, i.e, it
is a function mapping states to control actions: x — wu. This controller function
can take different forms. In the case of a linear controller it is a product of the
error in state (z — z,) and a matrix K, while in the case of classical approach
to behavioral cloning, it is a regression or decision tree. Classic control theory
approach to controller design usually involves modeling of the system’s dynamics,
whereas the usual approach to behavioral cloning does not use the system’s
dynamics model and learns a direct mapping from states to actions.

To make distinction between the controllers that do and do not use a system’s
dynamics model and to compare the learnability of such controllers we define
two kinds of controllers. Direct controller corresponds to a direct mapping from
the observed state to the control action. Indirect controller uses the system’s
dynamics model and some intermediate concepts to achieve the goal-directness
of the controller and therefore corresponds to an indirect mapping from states
to actions. Approaches like BOXES [10], ASE/ACE, [3] and behavioral cloning
(reviewed in [6]) learn direct controllers. A controller using the generalized tra-
jectory [16,17] is an indirect controller. The classical linear controller ([5], for
example) can also be viewed as an indirect controller. These controllers use the
system’s dynamics model and intermediate concepts in the form of goal x, (linear
controller) or generalized trajectory. One could argue that a tree is an indirect
mapping too, because it maps state x to a generalized state represented by a leaf
in the tree and then maps this generalized state to action u. If we are lucky, the
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generalized state is an understandable intermediate concept, perhaps a region in
a state space where the operator takes similar actions. But the point is that it
does not consider the system’s dynamics and is not goal (or subgoal) directed.

In the case of a generalized trajectory, the controller is a composite of two
functions: the trajectory f7 : & — 7 and the inverse dynamics f” : x x 27 — u.
The trajectory function maps the current state xj to desired state I{+1 (note
that typically mf_ﬂ is not completely quantified; some of the state components
can be omitted or just qualitatively described). The inverse dynamics function
maps the current state x; and the desired next state I{+1 to action u; which
aims to achieve mgﬂ from x.

4 Robustness of Direct and Indirect Controllers against
the Learning Error

Here we study and compare the performance of direct and indirect controllers
learned from an operator’s execution trace ((z;”,u;"),k =0...N). Direct con-
troller generalizes the actions, while indirect controller generalizes the trajectory
((z"),k=0...N). We will show that a direct controller is prone to the depar-
ture from the trajectory and that this departure is likely to happen, due to the
learning error of the generalized action.

The operator takes the action u;” in the current state z;” that achieves the
desired next state xzjil. The learned controller mimics the operator and takes
action wug that achieves the desired next state with some error €xi1: Tx4+1 =
flag,uk) = o8| + €

Intuitively a direct controller is not likely to be successful, if the operator’s
action is applied in a state far from the operator’s trajectory. This is because a
property of many nonlinear dynamics systems is that an action applied far from
the operator’s trajectory tends to cause the system to move in a different direc-
tion than when the same action is applied on the trajectory. Since the generalized
action uf is learned with some error, and these errors are often propagated to
the next state, the trajectory is likely to diverge from the operator’s trajectory.

As opposed to the direct controller, an indirect controller’s action ui uses the
learned dynamics at the current state xj = xg + €, when aiming to approach
the next state on the trajectory mf +1- Even if the current state zy, is far from the
trajectory, the controller explicitly aims at decreasing the error at the next step.
Since the system’s dynamics model can be updated online, indirect controller
can approach the trajectory even from states not seen in the operator’s trace.

4.1 Experiment

Here we compare the robustness of direct and indirect controllers with respect to

the learning error on an example of a simple dynamic system control. We consider

a deterministic, discrete time dynamic system with the following dynamics:
Tgy1 = Tk + T

3)

. 2
Tht+1 = Thtl T URTyq + Uk
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A similar system was used in [2] as an example of a nonlinear system that is
easily controlled with the optimal linear controller (LQR) in the region near
zero, but hard to control elsewhere in the state space.

The task is to control the system to reach and maintain the goal position x, =
0.5 from the start state (zg = @o = 0). The criterion of the controller’s success
is the controller’s error c¢. Here we define ¢ as the sum of absolute errors in « for
the first NV = 30 steps: ¢ = Zlgié\[ |z — xg|. If |x)| exceeds 100 the error is set
to its maximum ¢ = 100. Since xg =0 and z1 =0, ¢ > 1.

We suppose that the operator uses a very simple control rule that does the
task with ¢ = 1.004:

0.5,if zp, <0 and 7 =0
uy’ = ¢ —04,if 7, > 0 and |z, — 2| < 0.001 (4)
—0.4 —0.001 sign(xzgy — x1), otherwise

making the system to move approximately along the trajectory ((zo,Zo) ...
(x5, 275 ) - -+ ), where:

op _ .
Ty = Tk + Tk

jjOp _ (Ig 7Ik) 7l:k,if Tk =0 (5)
bt 0.09(zy — x), otherwise

A generalized trajectory is specified by constraints between the current and
the next state. Since the control uy directly affects only @xy1 (and not xgy1),
an appropriate generalized trajectory can be learned as a function mapping
from (xy, ix) to the desired &, and the indirect controller action uj, can be
computed from the learned system’s dynamics. In our experiments with indirect
controllers we used a very simple kind of local learning [1,2] to learn (during the
control) a local model of the system’s dynamics near the current state (xy, <):
10 examples ((x;,2;), uj, (€j41, & 4+1)) with the smallest quadratic distance (z; —
wg)? + (& — 21 )? are used for linear regression to compute the parameters a,b,c,d
of the local linear model @1 = axp+biy+cug+d used at the point (2, @). The
points used for local learning are continuously updated during the control, i.e.
starting with the set { 27, #4°?, u}* } and adding new points during the control.
The control uf, aiming to achieve the desired next state on the generalized
trajectory is then computed as uj, = (], — axy — biy — d)/c.

From the execution trace ((z”, 1", u}’), k = 0,...,N), where rule 4 was
used, the generalized operator’s action uf and the generalized operator’s tra-
jectory x{ can be learned with the learning errors e” and €7, i.e. generalization
errors due to the generalization of the learning system. So the predicted values
of the induced predictors are u? = u;? + € and @] = @7 + €}

When experimenting with direct controllers that generalize the operator’s
action (rule 4) with some learning error e, we noticed that they are very brittle
w.r.t. the learning error and result in much higher controller errors than these
in Table 1. The reason is that the rule 4 is purely reactive. In the rest of the
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Table 1. The robustness of direct and indirect controllers against the learning
error: ¢ and ¢! denote the controller error for the direct and the indirect con-
trollers with the learning errors modeled as Gaussian noise with std.dev. o. ¢
and ¢!+ denote the controller’s error where the predictors’ error was modeled by

biased Gaussian noise. The results are averages of 20 runs

learning|direct controller |indir. controlleﬁ

error o CD CD * CI CI *

0.0 1.005 | 1.005 | 1.005 | 1.005
1073 1.08 1.22 | 1.08 | 1.17
1072 1.6 3.3 1.6 3.1

0.1 9.5 58.2 8.7 18.3
0.2 18.9 | >100 | 20.0 | 39.8
0.5 86.5 | > 100 | 83.5 | > 100

experiments we used better control rule for u;”. It uses the system dynamics
(eq. 3) to achieve the desired 7" | from rule 5. In this way direct controllers
were given the advantage of exact system model, while indirect controllers used
a very simple method to approximate the system dynamics.

To compare the robustness of direct and indirect controllers with respect to
the learning error we performed a set of experiments, where we modeled different
error distributions of the learning system and measured the performance of both
controllers. We experimented with two prediction error models. First the error
was randomly generated as zero mean Gaussian noise with various standard
deviations o. The second model is the same as Gaussian noise, but with all
the errors (in the same control trace) in the same directions, that is errors in
the same control trace are either positive or negative, with random absolute
value. We call this biased Gaussian noise. Biased Gaussian noise is obtained
from Gaussian noise just by adjusting the sign (making the sign uniform for the
whole control trace). Note that biased Gaussian noise thus has the same o, but
of course no longer has zero mean.

The rationale for defining our experiment in this way is as follows. We wanted
to make our experiment independent of the particular learning technique, so we
modeled the "induced” predictors simply by taking the correct value and cor-
rupting it with noise. Gaussian noise as error model seem to be an obvious choice.
The second model, biased Gaussian noise is, however, not quite so obvious. We
designed this error model to account for a frequent property of induced conti-
nuity predictors: namely, that small changes in the attribute values usually do
not cause large changes in the predicted class values. Therefore the errors at
neighbour points have the same sign. The results in Table 1 show that Gaussian
noise in the respective predictors affect both direct and indirect controllers in
terms of their control cost to a similar extent. Biased Gaussian noise is more
damaging to both controllers than zero mean Gaussian noise with the same o.
However, the direct controller is affected much more than the indirect controller.
This happens, surprisingly, in spite of the fact that in addition to the error in
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generalized trajectory, the indirect controller also has to cope with the error in
the induced dynamics model. This result provides a plausible explanation why
indirect controllers have proved to be much more successful in the experiments
with learning techniques in the crane [17,16] and acrobot [15] domains.

We believe that this superiority of the indirect controller follows from their
goal-directness (generalized operator’s trajectory can be seen as the continuous
subgoal) and their use of the system’s dynamics model, which is learned online
and thus enable them to behave well also in the yet unseen regions of the state
space.

5 Why Learning Indirect Controllers Is Better than
Learning Direct Controllers?

Here we would like to comment on the plausible advantages of learning indirect
controllers. We believe that most of these advantages are consequences of the
decomposition of learning an indirect controller into two natural subproblems:
learning what to do (the trajectory) and learning how to do it (the system’s
dynamics). The only difficult task is to learn the generalized trajectory. As con-
firm the experimental results, the system’s dynamics can be approximated suf-
ficiently well by instance based methods of learning from execution traces and
can be also updated online during the control. Advantages of learning indirect
controllers are:

1. An indirect controller is less prone to the departure from the desired trajec-
tory. Due to the operator’s unconsistency (mistakes, taking different actions
in similar situations) and due to the learning errors the learned trajectory or
the action is not perfect. When taking an incorrect action the system often
departs from the desired trajectory and arrives to the yet unseen region of
the state space. Indirect controller is goal directed and considers the system’s
dynamics to take an action back towards the trajectory. A direct controller
has no clue how to get back to the known region of the state space and often
just gets stuck in the unknown region.

2. An indirect controller is more robust against change in the system’s dynamics
and small changes in the task. The robustness against change in the system’s
dynamics is ensured by updating the system’s dynamics model during the
control. The robustness against small changes in the task (like changing
the system start state) follows from the better robustness of the indirect
controller against the departure from the desired trajectory. This of course
assumes that the learned generalized trajectory is still appropriate for the
changed system’s dynamics or the changed task.

3. Generalizing the trajectory is often easier than generalizing the actions. In
many systems different actions can result in similar effect on the system
behavior. When selecting the action to take, an experienced operator keeps
in mind only the desired effect. In similar situations he often uses different
actions to achieve the same effect. These different actions in similar states are
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noise for the learning system if it learns the mapping from the system’s states
to the actions, but are not noise when learning the mapping from the system’s
states to the desired effects, that is generalized trajectory. For example, when
controlling a crane, the operator can use quite different actions to slow down
the trolley: the sequence of oscillating actions around Forcex=2000 can
result in similar behavior as a sequence of actions Forcex=2000.

4. Learning an indirect controller seems usually to be an easier task than learn-
ing a direct controller. When learning an indirect controller, the only difficult
task is to learn the generalized trajectory, that is what the operator is doing.
In the case of a direct controller the task is to learn what the operator is
doing and how he does it. This seems to be a more difficult learning task.

In addition indirect controllers have other advantages:

1. The learned trajectory is easier to understand than the actions, which usually
involve knowledge of the system’s dynamics. The desired trajectory usually
captures the knowledge of performing the given task in a more compact way.
When driving the car on the parking space from one point to the other, it is
easier to understand the (x,y) trajectory, than the sequence of actions like
pushing the gas pedal, turning the wheel for 30 degrees and straightening it
after, pushing the breaks, turning the wheel again,...

2. Knowledge learned by generalized symbolic trajectory can easily be adopted
to new tasks. For example, in the crane domain, the trajectory for attaining
the goal position at X=60 can easily be adopted to goal position at X=80.

6 Related Work

Another approach that deals with learning to control dynamic systems is rein-
forcement learning [9]. Unlike behavioural cloning, reinforcement learning learns
control from scratch, through trial-and-error. The idea is to use dynamic pro-
gramming to learn the value function or @Q-function estimating how promising
(in achieving the goal) each state or action is. In the most common approach
they learn direct controllers. To reduce experimentation with the dynamic sys-
tem, model-based reinforcement learning methods [12] also use learned model
of system dynamics and therefore effectively learn indirect controllers. However,
reinforcement learning does not use human operator’s control skill and is not
concerned with the comprehensibility of the learned strategy.

A similar idea of decomposing the cloning problem into two learning problems
appears in [4]. They use abduction to learn effects of control actions and decision
trees to learn subgoals. However, they do not report on benefits regarding the
success of controllers constructed in this way.
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