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Abstract. Data clustering and association rules discovery are two re-
lated problems in data mining. In this paper, we propose to integrate
these two techniques using the frequent concept lattice data structure - a
formal conceptual model that can be used to identify similarities among a
set of objects based on their frequent attributes (frequent items). Exper-
imental results show that clusterings and association rules are generated
efficiently from the frequent concept lattice, since response time after
lattice construction is measured almost in seconds.

1 Introduction and Motivation

Recently, several clustering methods have been developed in the framework of
the concept lattice [1,4,2] which focus on discovering all possible concepts. These
methods are inefficient under the context of large databases. First, they have
been designed to work in main memory with small datasets, thus limiting their
suitability for data mining in large databases. Second, most of them perform an
exhaustive search of all possible concepts, whereas only part of them is considered
useful by users [5]. An efficient learning method in a real-world context, that
does not carry out an exhaustive search of the whole concept lattice, must be
provided. The idea of generating associations between items from concept lattices
has also been addressed early in several works, e.g., [11,3]. However, the rules
generated by these methods are particular cases of association rules, i.e. they
are association rules with confidence equal to 100%. Further, their associated
algorithms work only in main memory.

In this paper, we propose a data mining framework using a concept lattice [10]
as a tool for the knowledge discovery, with an emphasis on the integration of
data clustering and association rule discovery from large databases. The idea is
to preprocess the database and derive a frequent concept lattice - a data struc-
ture that encodes the information needed for our discovering tasks. A frequent
concept lattice is a part of the concept lattice in which each concept covers at
least some initial minimum number of objects of the database, that say the items
(in the concept’s intent) shared by those objects in the concept’s extent must
have a support greater or equal the user-specified initial support init sup. The
support of an itemset is defined as the percentage of objects in the database
containing that itemset.
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From the frequent concept lattice, pertinent concepts and strong association
rules, with respect to the user point of view, are generated. We developed a
collection of operators to generate all pertinent concepts and strong association
rules directly from the frequent concept lattice without further access to the orig-
inal database. Experimental results show that knowledge are discovered from the
frequent concept lattice, with response time after lattice construction measured
almost in seconds. The rest of the paper is organized as follows: Section 2 begins
by formally defining the frequent concept lattice model. Then, an algorithm for
building a frequent concept lattice from a given a database is described. Section
3 provides experimental results with data extracted from the statistical Census
data of Kansas USA1. Section 4 concludes with a summary and future works.

2 Frequent Concept Lattice Based Data Clustering

In this section, we begin by formally defining the frequent concept lattice model.
Then, we discuss a process for identifying clusters form a data mining context
based on the frequent concept lattice construction.

2.1 The Frequent Concept Lattice Model

Following, we give the formal definitions of data mining context, Galois connec-
tion, concept, frequent concept and finally frequent concept lattice.

Data mining context A data mining context (a database) is defined as
a triple D = (O, I,R), where O and I are finite sets of objects (or transactions)
and database items, R ⊆ O × I is a binary relation. Each couple (o, i) of R de-
notes the fact that the object o of O has the item i of I. Figure 1 and 2 represent
the data mining context example using horizontal and vertical representations.

Object ID Items

1 {A F}
2 {A F G}
3 {A B F G}
4 {B F G H}
5 {A C E}

Fig. 1. Data mining context using a
horizontal representation

Item OIDs

A {1 2 3 5}
B {3 4}
C {5}
D {}
E {5}
F {1 2 3 4}
G {2 3 4}
H {4}

Fig. 2. Data mining context using a
vertical representation

Galois connection Let D = (O, I,R) be a data mining context. For
O ⊆ O and I ⊆ I, we define f : 2O → 2I , f(O) = {i ∈ I | ∀o ∈ O · oRi} and
conversely g : 2I → 2O, g(I) = {o ∈ O | ∀i ∈ I · oRi}. That is, f(O) is the set
of all items, called itemset, common to all objects in O, and g(I) is the set of
1 ftp://ftp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks.zip



Knowledge Discovery from Very Large Databases 439

all objects which have all items in I. The pair (f, g) forms a Galois connection
between 2O and 2I , the power sets of O and I, respectively. Furthermore, the
compositions f◦g and g◦f2 are closure operators.

Concept A concept of the data mining context D = (O, I,R) is defined
as a pair (Extent, Intent), where Extent ⊆ O, Intent ⊆ I, f(Extent) = Intent
and g(Intent) = Extent. Hence, a concept c is formed by two parts: an extent
represents a subset of objects, denoted as Extent(c), and an intent represents
the common items between this subset of objects, denoted as Intent(c). That
is, a concept is a maximal collection of objects sharing common items.

Frequent concept Let L be a set of all concepts formed from D =
(O, I,R), and c a concept of L. Let init sup be a user-specified initial sup-
port. A support threshold associated to a concept c, denoted as supp(c), is the
percentage of objects in O having precisely the same set of items in the intent
of c, which we can be defined as: supp(c) = ‖Extent(c)‖

‖O‖ A concept is said frequent
if its support threshold is greater or equal to init sup.

Frequent concept lattice Let L be a set of all concepts formed from D =
(O, I,R), init sup a user-specified initial support, and FL a set of all frequent
concepts, i.e. FL = {c ∈ L | supp(c) ≥ init sup}. The frequent concept lat-
tice FL = (FL ∪ {⊥},≤) of a data mining context D, is a complete lattice of
frequent concepts derived from D. Proof of this property is given in [8]. Fig-
ure 3 shows the frequent concept lattice (using a graph-oriented representation)
derived from the data mining context example with init sup equal to 35% (at
least 2 objects are contained in each concept).

_|_

c1

c2

c6 c3

c5

c4
c7

c8

{1,2,3,4,5},{}

{1,2,3,4},{F} {1,2,3,5},{A}

{2,3,4},{F,G} {1,2,3},{A,F}

{3,4},{B,F,G} {2,3},{A,F,G}

Fig. 3. Graph-oriented representa-
tion of the frequent concept lat-
tice with the support threshold ≥
35%(2/5)

Concept-ID Extent Intent

c1 {1,2,3,4,5} {}
c2 {} {A,B,F,G}
c3 {1,2,3,5} {A}
c4 {3,4} {B,F,G}
c5 {1,2,3} {A,F}
c6 {1,2,3,4} {F}
c7 {2,3} {A,F,G}

Fig. 4. Database-oriented represen-
tation (nested relation) of the fre-
quent concept lattice

2.2 The Lattice Clustering Algorithm

In contrast with existing works [11,4,6,5,2] where concept lattices are represented
using a graph-oriented representation (where sub-superconcept relationships be-
tween concepts are explicitly represented), we address concept lattice represen-
tation in database systems from a set-oriented perspective. In our approach,
2 We use the following notations: f◦g(O) = g(f(O)) and g◦f(I) = f(g(I)).
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concept lattices are represented as finite sets of concepts in which concept lat-
tice constraints [9] are given, insuring that the sets effectively preserve the lattice
structures. Figure 4 shows the frequent concept lattice using a database-oriented
representation. From a data mining context, we want to derive the frequent con-
cept lattice associated to that context, that is to say finding all the frequent
concepts (Ext, Int) such that Ext is the maximal set of objects which all have
precisely the same set of items in Int and such that the number of those objects
represents a percentage no less than the initial support init sup. The idea is
to successively add a new frequent item (i.e. item that has its support greater
or equal to the initial support init sup) to the current frequent concept lattice.
Formal characterization of inserting a new frequent item into a frequent concept
lattice is given in [8].

procedure Insert frequent item(i: new frequent item, g({i}): object set contain-
ing i, init sup: initial support);
begin
0) Exist = {}; // Exist contains extended concepts or new concepts
1) for j = |Intent(⊥)| downto |Intent(Sup)| do
2) levelj = select c from c in FL where |Intent(c)| == j;
3) for all concept c ∈ levelj do
4) if (Extent(c) ⊆ g({i})) then // c is a extended frequent concept
5) Intent(c) = Intent(c) ∪ {i};
6) if (Extent(c) == g({i})) then exit procedure endif ;
7) Exist = Exist ∪ Extent(c);
8) else
9) inter = g({i}) ∩Extent(c);
10) if (|inter| ≥ (init sup× |D|) and inter /∈ Exist) then
11) Create a new frequent concept nc;
12) Extent(nc) = inter; Intent(nc) = Intent(c) ∪ {i};
13) FL = FL ∪ {nc};
14) if (inter == g({i})) then exit procedure endif ;
15) Exist = Exist ∪ inter;
16) endif ;
17) endif ;
18) end;
19) end;
end

Algorithm Lattice clustering(init sup: initial support, D: data mining con-
text);
begin
0) Initialize Sup and ⊥;
1) FL = {Sup,⊥} ;
2) for k = 1 to |I| do
3) if(supp(ik) ≥ init sup) then
4) Insert frequent item(ik, g({ik}), init sup);
5) endif ;
6) end;
end
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The algorithm for building a frequent concept lattice from a database given
above takes as input (i) an item i to be inserted, (ii) its associated object set
g({i}), (iii) initial support init sup, (iv) a frequent concept lattice FL to be
updated, and a database D. It starts by initializing the lattice with the Top and
⊥ elements. The Top element corresponds to the most general (with respect to
set inclusion) frequent concept in the lattice, i.e. its extent contains all the ob-
jects of the database All). The ⊥ element corresponds to the most specific (with
respect to set inclusion) frequent concept in the lattice, i.e. its intent contains
all the frequent items of the database All). Then, the construction of FL con-
sists of successively calls to the procedure Insert frequent item which inserts a
new frequent item i to the current frequent concept lattice. Each insertion may
discover new frequent concepts and/or augment the intents of existing frequent
concepts. The main loop of the procedure Insert frequent item (lines 1-19) visits
the concepts of the lattice FL level by level in decreasing cardinality of their
intent. At each level, an SQL query is executed on FL in order to load all the
concepts with the same cardinality of their intent in main memory (line 2 of
the procedure). Then, it examines successively all the concepts of the same level
(lines 3-18 of the procedure). For each concept c of FL, the procedure tests how
it relates to g({i}):
– if Extent(c) ⊆ g({i}) (i.e. its extent is more general than or equal to the set

of objects associated to the new item i), c is an augmented concept, then its
intent is augmented by the new item i (lines 4-5 of the procedure),

– else the new extent inter = Extent(c) ∩ g({i}) is calculated. To verify if
inter is not already appeared in any concept of FL, just examine all the
frequent concepts that have been augmented or created previously: that’s the
role of the list Exist which keeps all concepts newly augmented or created.
If inter /∈ Exist and |inter| ≥ (init sup × |O|), then c is a generator of
the new frequent concept (inter, Intent(c) ∪ {i}). This is valid because all
existing concepts are treated in decreasing cardinality of their intent, the
first concept encountered which gives a new intersection is the generator of
the new concept because it is necessary the smallest concept (with respect
to number of its objects).

The execution of the procedure Insert frequent item terminates when a frequent
concept is encountered (line 6) or created (line 14) for which its extent is equal to
g({ik}). Using the database example (c.f. Figure 2), the iterative steps of building
a frequent concept lattice with initial support = 35%(2/5), i.e. each concept of
the lattice must covers at least 2 objects of the database, is illustrated3 below in
Figure 5. The algorithm starts by initializing the lattice with the two elements:
Sup = c1 = (All, ∅) and ⊥ = c2 = ({3}, All) (line 0). Then, for each frequent
item, the procedure Insert frequent item is called. Inserting the item A results
in the insertion of a new frequent concept c3 generated by the concept generator
c1. Inserting the item B results in discovering of two new frequent concepts:
3 We use a Graph-oriented representation of the lattice in order to facilitate under-
standing.
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_|_

{1,2,3,4,5},{}

{1,2,3,4},{F} {1,2,3,5},{A}

{2,3,4},{F,G} {1,2,3},{A,F}

{3,4},{B,F,G} {2,3},{A,F,G}

{1,2,3,4,5},{}

{1,2,3,4},{F} {1,2,3,5},{A}

{3,4},{B,F} {1,2,3},{A,F}

         _|_

{1,2,3,4,5},{}

{3,4},{B} {1,2,3,5},{A}

     _|_

Lattice after inserting the item A

{1,2,3,4,5},{}

{1,2,3,5},{A}

Lattice after inserting the item B

Lattice initialized with the Top and Bottom elements 

Vertical layout of the example database

Lattice after inserting the item F Lattice after inserting the item G

with intent augmented by the new item
New frequent concept 

with arc pointing to its generator
Unchanged frequent concept Modified frequent concept

A

Item OIDs

B

C

D

E

{3 4}

{ }

{1 2 3 5}

{5}

{5}

c1

c1

c1

c1

c1

c2

c3

c2

c2

c4 c3

c6 c3

c4 c5

c2
c2

c6 c3

c5

c4
c7

c8

Fig. 5. Iterative steps of building a frequent concept lattice with initial support
= 35%(2/5)

({3}, {A, B}) generated by ({1, 2, 3, 5}, {A}) and ({3, 4}, {B}) generated by c1.
However only c4 = ({3, 4}, {B}) is added to the lattice since its support threshold
is greater than the initial support init sup given by the users. Inserting the
item F results in the insertion of two new frequent concepts: c5 generated by
c3 and c6 generated by c1, and the modification of the old frequent concept: c4.
Inserting the item G results in the insertion of two new frequent concepts: c7
generated by c5 et c8 generated by c6, and the modification the old frequent
concept: c4.

3 Knowledge Discovering from the Frequent Concept
Lattice

Once constructed, the frequent concept lattice can be used as a support for
generating pertinent concepts and strong association rules. We propose a col-
lection of operators for the tasks of knowledge discovering: lattice operators
(UB,LB,MEET,JOIN, ...) and rule discovery operator. For further details of the
formal definitions of all these operators, interested reader should consult ([9,8,7]).
To assess their relative performances of the proposed operators, our algorithms
were implemented in O2C object database programming language provided by
the O2 OODBMS. The platform we used was a 43P240 bi-processor IBM Power-
PC running AIX 4.1.5 and O2 system version 4.6 with a CPU clock rate of 166
MHz, 1GB of main memory and a 9 GB disk. Only one processor was used since
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the application was single-threaded. The test program was allowed a maximum
of 128 MB. Swapping and buffering mechanisms are provided by the O2 sys-
tem. We ran our tests using the Census data which belong to the domain of
statistical databases. Our objective is to classify the set of persons according to
several characteristics such as sex, age, profession, etc. The Census data were
extracted from the Kansas 1990 PUMS file (Public Use Microdata Samples). We
took two datasets containing the first 100000 persons: c10d100k and c15d100k.
Each person in c10d100k has 10 items (from the total of 281 items). Each person
in 15d100k has 15 items (from the total of 309 items). We treat each person as a
single transaction, where the items are the characteristics associated to persons.

3.1 Frequent Concept Lattice Construction

Although in the worst case, the size of a frequent concept lattice (i.e. the num-
ber of concepts it contains) can be exponential with respect to the number of
database objects, its size is linear with respect to the number of database objects
when there exists an upper bound k which is the average size (number of items)
of a database object. In our experiments, k was set to respectively 10 and 15.
Figure 6 shows the CPU time (including disk access) measured the total time
(in second) necessary to build the lattice by adding new items one by one call-
ing the lattice clustering algorithm (c.f. Figure 2.2). The important difference
between the two curves can be explained by the difference in the size of the two
resulting lattices. Indeed, the algorithm visits almost all concepts of the lattice
and performs the intersection operation at each encountered concept. A more
judicious implementation, without visiting every concept of the lattice, should
accelerate the construction time.
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3.2 Querying Strong Association Rules

At this step, the frequent concept lattice is constructed and stored in the O2

database system, we can then use it to generate all frequent itemsets and then
derive all association rules. Experiments were conducted on the two databases
c10d100k and c15d100k using different minimum supports ranging form 50%
to 90% to get meaningful response times. The minimum confidence is fixed to
75%. In Figure 7, one can see the running times of the experiments. Logically, we
observe that the bigger the support is the shorter the association rule generation
time.

4 Conclusion and Future Works

This paper proposes a framework to integrate data clustering and association
rule discovery. The heart of the framework is the use of frequent concept lattice
data structure during the process of knowledge discovery. Experimental results
show that our method can generate pertinent concepts and strong association
rules efficiently, since response time after lattice construction is measured al-
most in seconds. In our future work, we will focus on updating techniques for
maintenance of the frequent concept lattice to handle dynamic databases. This
approach avoids the repetitive process of discovering all frequent concepts from
crash each time a new object is introduced in the databases, and allows incre-
mental data clustering and association rule discovery.
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