
A Combined Testing and Verification Approach
for Software Reliability

Natasha Sharygina and Doron Peled

Bell Laboratories, 600 Mountain Ave.,
Murray Hill, NJ, USA 07974

{natali,doron}@research.bell-labs.com

Abstract. Automatic and manual software verification is based on ap-
plying mathematical methods to a model of the software. Modeling is
usually done manually, thus it is prone to modeling errors. This means
that errors found in the model may not correspond to real errors in
the code, and that if the model is found to satisfy the checked proper-
ties, the actual code may still have some errors. For this reason, it is
desirable to be able to perform some consistency checks between the ac-
tual code and the model. Exhaustive consistency checks are usually not
possible, for the same reason that modeling is necessary. We propose a
methodology for improving the throughput of software verification by
performing some consistency checks between the original code and the
model, specifically, by applying software testing. In this paper we present
such a combined testing and verification methodology and demonstrate
how it is applied using a set of software reliability tools. We introduce
the notion of a neighborhood of an error trace, consisting of a tree of
execution paths, where the original error trace is one of them. Our expe-
rience with the methodology shows that traversing the neighborhood of
an error is extremely useful in locating its cause. This is crucial not only
in understanding where the error stems from, but in getting an initial
idea of how to redesign the code. We use as a case study a robot control
system, and report on several design and modeling errors found during
the verification and testing process.

1 Introduction

Software reliability can be enhanced by applying various different analysis meth-
ods based on mathematical theories. This includes software verification and test-
ing. Software testing is the more commonly used technique in the software in-
dustry. It involves generating test suites and sampling the execution of the code
according to them. It usually can be applied directly to the actual code. Its main
disadvantage is that it is not exhaustive. Thus, although it practically helps in
detecting many of the program errors, it has a high probability of missing some
of them. Automatic software verification is more exhaustive, but it is usually
limited to finite state systems with a ‘reasonable’ amount of program states, due
to the problem of ‘state space explosion’. Because of these limitations, model
checking is usually applied to a model of the checked code rather than to the

J.N. Oliveira and P. Zave (Eds.): FME 2001, LNCS 2021, pp. 611–628, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

612 N. Sharygina and D. Peled

actual code directly. This model is obtained by manual translation through a
process called “modeling”. The process of manual translation may induce some
errors in the model. This means that errors found in the model during its verifi-
cation may not correspond to real errors in the code, and vice versa. Thus, even
if the model is found to satisfy the checked properties, the actual code may still
have some errors.

The correspondence between the actual code and the model can be addressed
using different techniques. Simulation of the model execution and testing based
on formal descriptions of the functional and behavioral specifications [3], [8]
can be useful for checking that the implementation is behaviorally equivalent to
the design. Another approach is to develop mapping algorithms to connect the
implementation and the model [12], [16]. Verifying the correspondence between
the code and the model can also be done formally, e.g., using theorem proving
technology. In most approaches, consistency checks are performed informally
basis, and not exhaustively.

In this paper we explore a combination of testing and verification methods.
We present a hybrid methodology to software reliability that combines program
analysis and verification techniques. This methodology addresses the issue of
minimizing the number of errors introduced into the model during the translation
process. It also helps identifying the causes of the conceptual errors found during
the verification along with facilitating the software redesign process.

The fundamental principals of our combined testing and verification method-
ology include application of the testing process both during system modeling
prior to the actual verification and during evaluation of the counterexample pro-
duced by the verifier after the verification is complete. The fact that testing
methods are applied to the modeled software allows us to validate the trans-
lation. The idea is to use a testing tool for the examination of the execution
paths of the model, while comparing them with the behavior of the actual code.
During this process, modeling errors, as well as possible conceptual errors, may
be uncovered.

The common model checking approach is to apply the verification to the
model, and if a counterexample is found, to compare it with the original code
in order to check whether it is indeed an error (if it is not, it is called a ‘false
negative’). Doing any conformance testing on the checked model with respect to
the actual code increases the dependability of model checking. We introduce the
notion of a neighborhood of an error trace, which consists of a tree of execution
paths, where the original error trace is one of them. Our experience with this
methodology shows that traversing the neighborhood of an error is extremely
useful in locating its cause. This is crucial not only in understanding where the
conceptual error stems from, but in getting an initial idea of how to correct the
code.

We demonstrate the methodology using a case study taken from robotics,
namely a robot control software. Our proposed methodology does not depend
on the choice of specific tools. We have used it with the following combination
of tools: as the verification tool, we used the Spin model checking system [11]

A Combined Testing and Verification Approach for Software Reliability 613

and as a testing tool, we used the Pet system [7]. The errors, found in different
stages of the verification process, consist of modeling and design errors. These
errors led to changes in the design.

Section 2 provides the description of the combined testing and verification
methodology. Section 3 describes application of the methodology to the verifi-
cation of the robot control system and presents its results. Section 4 provides
conclusions and describes future research.

2 The Combined Methodology: Testing and Verification

One of the main problems of software verification is that it is applied to a
model of the software, rather than to the software directly. This stems from
mathematical limitations on dealing with infinite state systems, limitations on
memory usage, and the use of different kinds of notations and programming
languages in different tools. As a consequence, a discrepancy in functionality
can exist between the actual code and the checked model. The possible danger
is twofold: errors found in the checked model may not correspond to actual
executions of the original code. On the other hand, a positive verification result
may not have taken into account all the executions of the actual code.

The usual practice in this case is that a model is constructed and verified,
and error traces found later during the verification are compared against the
original code. If these error traces are not compatible with the code, then the
model needs to be modified accordingly. Because of a possible modeling error,
when model checking does not come up with an error, there is sometimes very
little that we know about the correctness of the checked property.

In order to minimize the effect of the possible discrepancy between the model
and the code, we suggest a methodology of testing the checked model against

modeling

corrections

Verification

results

(error traces)

corrections

Error Analysis

Testing

Code Model

model checking

Errors

Fig. 1. The combined methodology

614 N. Sharygina and D. Peled

the actual code, as part of applying formal methods. This is done by integrating
interactive ‘white box testing’ of the model [15] with the verification process. We
examine execution paths of the model and compare them to the original code.
Detected discrepancies usually reflect modeling errors and result in modification
of the model. Moreover, in some cases, the testing process can result in the
discovery of errors in the original code.

Figure 1 is used to illustrate our methodology. It adds into the verification
process a testing tool, which can be used to simulate execution paths of the
model. A testing tool that supports interactive and visual representation of the
program’s structure would benefit the process of simulation and examination
of the program execution the most. The interactive testing approach we use
is based on a flow graph notation. We remind the reader this commonly used
formalism. A node in a flow graph is one of the following: begin, end, predicate,
random (i.e., nondeterministic choice), wait (for a certain global predicate to
hold, in a concurrent program), assign, send or receive. The begin and end nodes
appear as ovals, the predicate, wait and random nodes appear as diamonds,
labeled by a condition, or the word random, in the latter case. Assignment and
message send or receive nodes appear as boxes labeled by the corresponding
statement. Each node, together with its output edge constitutes a transition,
i.e., an atomic operation of the program, which can depend on some condition
(e.g., the current program counter, an if-then-else or a while condition in the
node, the nonemptiness of a communication queue) and make some changes to
the program variables (including message queues and program counters). White
box testing (specifically, unit testing) can be performed by examining paths in
flow graphs. Different coverage techniques [15] suggest criteria for the appropriate
coverage of a program by different paths.

Consider an execution path in the flow graph of a sequential program. A
related path of the flow graph can be obtained from it by selecting at some point
an alternative edge out of a condition node. Repeating this process of obtaining
alternative paths (with a prefix that is mutual with a previously selected path),
we obtain a tree, which we call the neighborhood of the original path. This tree
includes in particular the original path. Note that for each path there can be
multiple neighborhoods. Intuitively, if an execution path contains an error, then
its neighborhood (rather than just the path alone) contains enough information
for understanding the error and correcting it. In concurrent code, a trace consists
of a sequence of nodes from different processes. Projecting on the processes,
the neighborhood of a path generates a single tree for each process. Figure 2
represents a path (emphasized) and its neighborhood.

In our approach we use testing in two different ways:

White box testing of the model We perform interactive software testing before
performing model checking, comparing it with the original code. Traversing
execution paths allows us to better understand the code. Errors found in
this way are usually modeling errors. They lead to changing the model, and
repeating the testing process. There is no clear guidance to how much testing
is needed to obtain confidence that the model reflects the code properly.

A Combined Testing and Verification Approach for Software Reliability 615

Fig. 2. A neighborhood

Testing the neighborhood of an error trace. After an error trace is found with
a model checker, a testing tool is used to traverse the neighborhood of that
trace. We explore the neighborhood until the relevant part of the code is
understood, and the cause for the error is detected. The main point is that
it is not only a single error trace that is used to detect an error, but also some
related execution paths, namely the neighborhood. Errors that are found in
this way can be both modeling or conceptual errors. Thus, a fix is needed in
either the model or the original code, respectively.

Our methodology proceeds as follows. The verification process starts with mod-
eling. Then white box testing is performed as long as modeling errors are found,
and until a certain degree of confidence in the verification model is obtained.
Then, we start performing model checking. Upon finding an error, neighbor-
hood testing is performed. Analyzing the error results in fixing the original code
or the model.

3 The Methodology in Practice

As a working example for our methodology, we examine a Robot Control System
(RCS). It is a subset of a multiple criterion decision support software [1], used
for controlling redundant robots (i.e., robots that have more than six degrees
of freedom). Redundant robots are widely used for sophisticated tasks in uncer-
tain and dynamic environments in life-critical systems. This includes space and
underwater operations, nuclear cleanup, and bomb disposal. Failure recovery is
one of the examples of redundancy resolution applications: if one actuator fails,
the controller locks the faulty joint and the redundant robot continues operat-
ing. The robot control algorithms support redundancy resolution. They combine

616 N. Sharygina and D. Peled

requirements for significant computations, hard real-time responsiveness, strin-
gent reliability requirements, and distributed and networked implementation.
This combination of characteristics makes application of formal methods highly
desirable. Although we analyze a simplified version of the RCS in this paper,
this is not a toy example, and its study and verification is of high interest to the
robotics research.

The robot control system controls the motion behavior of the robot arm
and includes kinematics algorithms and interfaces to the robotic computational
libraries, which are the components of the OSCAR [13] system.

In the following sections we describe the functionality of the RCS, specify
properties that we formally verified using model checking, and present the com-
bined verification and testing process in particular using the Spin verifier, and
the Pet path exploration tool.

3.1 The Robot Control System

The design of the RCS is done using the ObjectBench [19] notation. It is an
object-oriented development and analysis environment, which has been used for
the automatic generation of C++ code that can be used for controlling the
robot. 1 In the description of the RCS we use the convention that the names of
the processes in ObjectBench representation of the RCS that are in italics and
start with a capital letter. The names of the variables are in italics and start
with a lowercase letter.

A robot arm consists of several joints and one end-effector. The end-effector
is the last link of the robot, used to accomplish a task. The end-effector may
be holding a tool, or the end-effector itself may be a tool. In this paper we
assume that the robot arm consists only two joints. These physical entities are
represented by the processes Arm, Joint1, Joint2 and EndEffector in the software
design.

For each joint we specify an angle, representing a rotation of the joint rel-
ative to its neighboring link, as a vector of three components. The end-effector
Current position is given as a vector of positions (cp x, cp y, z) and orientation
angles (α, β, γ). The system’s task is to move the end-effector along the specified
path. We examine a simplified instance, in which the end-effector moves only in
the horizontal, i.e., the x direction.

The control algorithm starts with defining an initial end-effector position
given the initial joint angles. This is done by solving a forward kinematics prob-
lem [6]. The next step is to get a new end-effector position from a predefined
path. The system calculates the joint angles for this position, providing the so-
lution of the inverse kinematics problem [6] and configures the arm.
1 Some abstraction was already used in creating the ObjectBench description. In fact,

the ObjectBench code itself can actually be seen as a model for the real system. How-
ever, the fact that there are two levels of abstraction is orthogonal to our method-
ology, and might be misleading. We thus treat the ObjectBench description as the
‘code’ and ignore the lower level of the robot control system.

A Combined Testing and Verification Approach for Software Reliability 617

At each of the steps described above, a number of physical constraints has
to be satisfied. The constraints include limits on the angles of joints and on the
end-effector position. If a joint angle limit is not satisfied, a fault recovery is
performed. The faulty joint is locked within the limit value. Then, the value of
the angle of another joint is recalculated for the same end-effector position. If
the end-effector position exceeds the limit, the algorithm registers the undesired
position, which serves as a flag to stop the execution. A Checker process con-
trols the joints that pass or fail the constraints check. If all the joints meet the
constraints, the Checker issues the command to move the end-effector to a new

Calculate
EndEffector position
for given joint angles

Move

EndEffector

Not_Valid state

OSCAR

Trial
Configuration Checker

Move to Valid/

Calculate joint

Not_Valid state

Calculate
Forward/Inverse

Kinematics

Libraries

Move to Valid/

angles for a given

EE position

Inform Checker if
joint limits are met

Adjust
Joints

 Position EndEffector

Operation

Arm

Configure

EndEffectorJoint

Stop

Fig. 3. The object communication model for the robot control system

position. Otherwise it sends a command to the Arm process indicating its invalid
state.

During the development of this software, one is mainly concerned with the
satisfaction of the reliability requirements. In the presented RCS, the ultimate
goal is to ensure that the end-effector is moving only when the arm is indeed in
a valid state.

The concurrent behavior of the robot components makes it difficult to an-
alyze the overall behavior of the system. In particular, the calculations of the
movement of different parts of the robot are done in a distributed way. A ma-
jor concern is that different parameters that correspond to previous and future

618 N. Sharygina and D. Peled

moves may be used incorrectly. This may result in an improper combination,
leading to a faulty behavior of the arm. In order to prevent such situations,
formal verification is applied.

The object communication model of the RCS is presented in Figure 3. It
displays the flow of events of the RCS in terms of the control signals exchanged
among the objects in the system. Exchange of data in the model is represented
by an arrow originating from a source object to a destination object.

The state transition diagram shown in Figure 4 specifies a lifecycle of one
of the processes of the RCS, the EndEffector process. It consists of nodes, rep-
resenting states and their associated actions to be performed, and event arcs,
which represent transitions between states.

3.2 Experimental Environment

In order to verify the RCS, we have selected tools for model checking and testing,
which can support our methodology. These tools are described below.

Model Checking in SPIN. Model checking [2], [5], [18] is a generic name for a
family of algorithms aimed at the automatic verification of finite state systems.
Spin is a state-based model-checking tool designed for the efficient verification
of distributed process systems.

The specification language of Spin is called Promela. Promela is a pro-
gramming language that includes sequential constructions inspired by Dijkstra’s
Guarded command [4], communication structures influences by Hoare’s CSP [9]
and expressions taken from C [14]. Spin operates by an explicit enumeration of
reachable states. Checking that a model of a program satisfies a property is done
by performing an optimized depth-first-search. The basic mode of operation of
Spin is based on exhaustive reachability analysis.

Specific correctness properties can be expressed in the syntax of Linear Tem-
poral Logic (LTL) [17]. This logic include modal operators, expressing properties
that change over time. In particular, we can write 2ϕ to express that ϕ holds
forever, 3ϕ to denote that ϕ will hold eventually, and ϕUψ to denote that ϕ
will continue to hold until ψ holds. Combining several modalities allows us to
express more complicated formulas. For example, 32ϕ means that ϕ will even-
tually start to hold and would then continue to do so forever. The formula 23ϕ
means that ϕ would hold infinitely often. The formula 2(request → 3granted)
can be used to assert that at any point in the execution, if a request was made,
it is eventually granted.

Testing using PET. The Pet system works with a sequential program, or
with a concurrent program consisting of several processes with shared variables
and a synchronous communication. The processes are written in a language that
is an extension to the programming language Pascal.

Pet automatically generates the flow graph of the tested processes. It then
allows the user to select concurrent execution paths of these processes. Pet leaves

A Combined Testing and Verification Approach for Software Reliability 619

else{
.....

while (i<=6){
.....

Generate TS1: CalculateTrailComfiguration(TS_ID,

undesired_position=1;

EE3: Back to idle(EE_ID)

1. Idle

3. CheckingLimits

EE6: MoveEndEffector(EE_ID)

if (*Current_position>*Limit)

}

Generate TS1: CalculateTrailConfiguration(TS_ID,
"forward_kinematics", IdOfLockedJont);

EE2:CheckLimits(EE_ID,solution)

2. InitialPositioning

EE4: CheckConstraints(EE_ID)

EE1: PositionEndEffector(EE_ID)

"inverse_kinematics", LockedJoint);

Current_position++;
Limit++;}
Generate EE3: Back to idle(EE_ID);

EE5: back(EE_ID)

4. FollowingDesiredTrajectory

{

else Generate EE5: back(EE_ID);

 Generate EE4:CheckConstraints(EE_ID);

 Generate EE5: back(EE_ID);

if(undesired_position==0)
 *Current_position+=delta;
 if(*Current_position!<final_point)

 else

Fig. 4. The ObjectBench Transition Diagram for the EndEffector process

the choice of the paths to the user. The user can choose a path by clicking on the
appropriate nodes of a flow graph. A path can also consist of an interleaving of
nodes from multiple concurrent processes. The user can also create a variant of a
path by backtracking to a predicate (or random) node, and making an alternative
selection. Another way to alter a path is to use the same transitions but allow
a different interleaving of them. When dealing with concurrent programs, the
way the execution of transitions from different nodes are interleaved is perhaps

620 N. Sharygina and D. Peled

the foremost source of errors. The Pet tool allows the user to flip the order of
adjacent transitions on the path, when they belong to different processes.

In order to make the connection between the code, the flow graph and the
selected path clearer, sensitive highlighting is used. For example, when the cursor
points at some predicate node in the flow graph window, the corresponding text
is highlighted in the process window. The code corresponding to a predicate
node can be, e.g., an if-then-else or a while condition.

Once a path is chosen, the condition to execute it is calculated, based on
repeated symbolic calculation of preconditions, as in program verification [10].
The path condition is calculated backwards, starting with true. Thus, we proceed
from a postcondition of a node, in order to calculate its precondition. In calculat-
ing the path condition, we progress backwards, applying various transformations
to the current running condition, depending on the nodes we encounter, until we
arrive to the beginning of the paths. For a transition consisting of a predicate
p with the ‘yes’ outedge, we transform the current condition from c to c ∧ p.
The same predicate with a ‘no’ outedge, results in c ∧ ¬p. For an assignment
of the form x := e, we replace in p every (free) occurrence of the variable x in
the postcondition c by the expression e. We start the calculation of the path
condition with the postcondition true at the end of the selected path.

The meaning of the calculated path condition is different for sequential and
concurrent or nondeterministic programs. In a sequential deterministic program,
the condition expresses exactly the possible assignments that would ensure exe-
cuting the selected path, starting from the first selected node. When concurrency
or nondeterminism are allowed, because of possible concurrency or nondeter-
ministic choices, the condition expresses the assignments that would make the
execution of the selected path possible.

The path condition obtained in this process is simplified using rewriting
rules, based on arithmetic. Subexpressions that contain only integer arithmetic
without multiplication (Pressburger arithmetic) are further simplified using a de-
cision procedure (see [7]). In this case, we can also check algorithmically whether
the path condition is equivalent to false (meaning that this path can never be ex-
ecuted), or to true. The testing process using Pet consts of repeatedly selecting
paths in the tested program and comparing the anticipated path conditions with
the ones calculated by Pet. Pet supports modifying the selected path, travers-
ing its neighborhood, or selecting a different interleaving of the same transitions.

3.3 Verification of the RCS

We have performed a manual translation of the ObjectBench code into a SPIN
model, written in the programming language Promela. At the same time we
translated the same code into a Pet model. The target programming language
of Pet is only syntactically different from Promela. Moreover, there is a one
to one correspondence in their sequential syntactic constructs (e.g., loops, condi-
tionals) and the concurrency features (e.g., shared variables and communication).
Thus, although Spin and Pet do not accept exactly the same input, we could

A Combined Testing and Verification Approach for Software Reliability 621

use Pet to perform the white box testing of the ObjectBench code with the
Spin code (with the obvious possibility of having introduced additional typos).

In order to reduce the complexity of checking the original code we had to
abstract and restrict some calculations. In particular, in the ObjectBench code
the robot arm movement calculations are done through the interface with the
OSCAR libraries [13]. In this example we abstracted away actual calculations
and replaced them with nondeterministic assignments of small natural numbers.
Scaling of the object attribute values has been enforced in order to avoid dealing
with the rational numbers that were widely used in the original code. Figure 5
graphically represents a flow graph of the Arm process. The events to joint1!1,
to joint2!1 are used to initiate movements of the joints and the arm status vari-
able is used to store information about the status of the arm configuration. Below
we present the Promela code for the EndEffector process. The actions associ-
ated with the events of the EndEffector process, as specified in the Transition
Diagram in Figure 4, are presented as the comments in the Promela code.

proctype endeffector (){
byte m;
byte c_p_y=0, c_p_z=0, c_a_alpha=0, c_a_beta=0, c_a_theta=0, k;

do
:: c_i<2 -> {

to_endeffector?m;
c_i=c_i+1;
if
:: c_i==2 -> {

to_trialconf!1; //PositionEndEffector
to_arm!0;
do
:: end_position==0 ->

ee_reference=0;
if
:: endeffector_status==1-> {

to_endeffector?k;
if
:: abort_var==1 -> break
::else -> skip
fi;
c_p_x=c_p_x+delta; //MoveEndEffector
to_recovery!0,0;
to_arm!0;
ee_reference=1}
::else -> skip
fi;
if
:: c_p_x<=finale -> {
if //CheckConstraints
::((c_p_x<=max_x) && (c_p_y<=max_y) && (c_p_z<=max_z) &&

(c_a_alpha<=max_a) && (c_a_beta<=max_b) &&
(c_a_theta<=max_t)) -> {

622 N. Sharygina and D. Peled

if
::endeffector_status==0 ->

to_joint2!1;
endeffector_status=1 }

::else-> to_trialconf!0 //CalculateTrialConfiguration

fi }
::else -> { end_position=1;

to_arm!3;
break}

fi }
::else ->{

end_position=1;
to_arm!2;
break}

fi }
od }

::else -> skip
fi }

::else -> break
od }

3.4 Testing and Verification Results

During our testing and verification process, we formed four generations of Spin
models. Model 0 is the first model created by translation from ObjectBench
code into Pet’s internal language, and at the same time into a Promela model.
Model 1 is obtained after making some corrections based on the white box testing
results. Model 2 corresponds to an improved version that includes several changes
from Model 1, which where made as a result of finding modeling errors. Model
3 is our final model of the RCS, whose implementation underwent some design
changes in order to correct the conceptual errors found during the testing and
model checking processes.

We checked a collection of correctness requirements specifying the coordi-
nated behavior of the RCS processes. The requirements were encoded as LTL
formulas. We expressed all the formulae in terms of state predicates. Since Spin
prefers specifying properties over states, rather than over events, we sometimes
needed to encode the occurrence of some important events by adding new state
variables.

We demonstrate the advantages of using the combined testing and verifica-
tion methodology using a selection of the specifications that failed the formal
checking. We then discuss how the proposed methodology was used for the re-
design of the original code.

Consider the following description of the checked properties. We refer in this
description to the states appearing in the state transition diagrams in Object-
Bench. An example appears in Figure 4.

A Combined Testing and Verification Approach for Software Reliability 623

Fig. 5. Flow graph representation of the Arm process using Pet tool

624 N. Sharygina and D. Peled

1. DeadlockFreedom

The model does not have deadlocks.

2. 2(ee reference = 1 → arm status = 1)

Whenever the EndEffector process is in the FollowingDesiredTrajectory
state (ee reference variable is equal to 1) than the Arm process is in the
“Valid” state (the arm status variable is equal to 1).

3. abort var = 0 U (end position = 1 ∨ (recovery status = 1∧
counter = number joints))

The program eventually terminates. The termination occurs when either
the system completes the task or violates the constraints (in both cases
the end position variable is set to 1) or reaches the state where there is
no solution for the fault recovery (when all joints of the robot arm violate
the joint limits - variables recovery status and counter are set to 1 and
number of joints accordingly).

4. ¬MoveEndEffector U (MoveEndEffector ∧ (¬CalculateTrialConfiguration
UPositionEndEffector))

No command to move the end-effector is scheduled before defining an initial
end-effector position.

We demonstrate the results of verification and testing of these properties
(Prop) in Table 1, and follow it by a detailed discussion of the nature of the
errors found. In Table 1, S and P stand for Spin and Pet, respectively, Err tp
defines an error type, which can be either mod for modeling error, or concept for
conceptual error.

We started by examining the translated model Model 0 and comparing it to
the known behavior of the original code using Pet. By exploring several possible
interprocess communications, we discovered that the variable endeffector status
of the EndEffector process was mistakenly changed in both of the joint processes
(Joint1 and Joint2), instead of only within the EndEffector process. This vari-
able was changed unexpectedly from 0 to 1 before the calculation of an initial
end-effector position was completed. Comparing this with the original code, we
found that this was a modeling error. Consequently, we fixed the Pet and Spin
models accordingly. In order to verify that the change was correct, we specified
Property 4 (see Table 1), which was later verified to hold in the corrected Model
1. After obtaining more confidence in the Spin model, by performing repeated
testing using Pet, we obtained Model 1. We have checked Model 1 for deadlocks
(the deadlock-freedom is Property 1 in the Table 1). Spin checks the code for
several safety properties, including deadlocks, if no explicit temporal formula is
given. We found that a deadlock exists. Tracing the neighborhood of the dead-
lock using Pet, we could realize the cause for it. We observed that in the model,

A Combined Testing and Verification Approach for Software Reliability 625

Table 1. Experimental results

Model 1 Model 2 Model 3
Prop Tools Result Err tp Tools Result Err tp Tools Result

1 S +P False mod S +P False concept S True
2 n/a n/a S +P False concept S True
3 n/a n/a S +P False concept S True
4 n/a n/a S True S True

the counter variable of the Checker process is not reset to zero when it was equal
to number joints, as opposed to the original code.

Thus, another modeling error was identified. We have fixed this error. At
this point, after these corrections to the model, we have obtained Model 2. We
repeated the Spin verification for Property 4 (the cause of the previous deadlock)
on this model, and this check succeeded. Nevertheless, we found using Spin that
a deadlock still occurs. After examination of the error track that led to the
deadlock situation, and studying its neighborhood with Pet, we realized that
this was due to a conceptual error in the fault recovery algorithm.

To confirm this fact we formulated and checked Property 3, which was aimed
at checking whether the system terminates properly. This property did not hold
for Model 2 and the examination of the error track led us to the conclusion that
the system does not terminate in the case where there is no solution for the fault
recovery. We will remind the reader that the fault recovery procedure is activated
in the RCS if one of the robot joints does not satisfy the specified limits. In fact, if
during the process of fault recovery some of the newly recalculated joint angles do
not satisfy the constraints in their turn, then another fault recovery procedure is
called. Analysis of the counterexample provided by Spin for Property 3 indicated
that a mutual attempt was made for several faulty joints to recompute the joint
angles of other joints while not resolving the fault situation.

Specifically, Property 3 failed since in our example it can be shown that
requests originated from Joint1 and Joint2 to recompute the angles of these
joints could continue indefinitely: if Joint1 does not respect the limit then the
fault recovery is called and Joint1 is locked with the angle limit value. The Joint2
angle is being recalculated for the original EndEffector position. If the new angle
of Joint2 does not satisfy its limit then another fault recovery procedure is called,
which attempts to find a new angle for Joint1 while Joint2 angle is locked. If
there is no resolutions that satisfies the limit for Joint1 than fault recovery is
called again. This is also a confirmation of the above deadlock situation.

Another conceptual error found during verification of Model 2 indicated a
problem of coordination between the Arm and the EndEffector processes. The
original design assumed a sequential execution pattern. In fact, it was expected
that the arm status variable of the Arm process would be repeatedly updated
before the EndEffector would switch to the FollowingDesiredTrajectory state,
where the ee reference variable changes its value from 0 to 1. An interaction

626 N. Sharygina and D. Peled

Move to Valid/
Not_Valid state

OSCAR
Libraries

Solution
Kinematics

Forward/Inverse
Calculate

Joints

for given joint angles

Move

EndEffector

Calculate jointAdjust
joint limits are met
Inform Checker if

angles for a given

Return

Perform
Fault
Recovery

Acknowledge

operation
Stop Update

Arm Status

ON

joint angles
Recalculate

EE position

Recovery

Turn

Recovery
Turn

OFF
Recovery

EndEffector position

Joint Position EndEffector

Trial
Configuration

Calculate

Not_Valid state
Move to Valid/

Checker

EndEffector

Configure

Arm

Fig. 6. The modified model of the robot control system

between the processes led to the situation where the update of the ee reference
variable precedes the change of the arm status value. This was the reason for
Property 2 to fail.

In order to fix these conceptual errors a redesign of the original system was
required. Figure 6 reflects the changes made. The corresponding model is then
Model 3. We had to introduce a new process called Recovery, whose functional-
ity provides a correct resolution of the fault recovery situation described above.
Additionally we added several exchanges of messages between the processes Arm
and Joint in order to fix the coordination problem reported earlier. Formal ver-
ification of the redesigned model confirmed that a new design satisfies all of the
properties described above.

4 Conclusions

Model checking and testing techniques provide two complimentary ways of im-
proving the reliability of software, however, traditionally they have been used
separately. In fact, they are usually being advocated by different communities.
We have proposed a methodology that combines the two techniques. This is
done by applying testing to check the model created for the process of model

A Combined Testing and Verification Approach for Software Reliability 627

checking. Further, testing is used to examine the results of model checking and
locating the possible causes for the detected error.

The conformance testing between the source code and the model is based
on the application of an interactive testing tool. Our approach assumes that a
testing team knows the expected behavior of the source code.

We have demonstrated our methodology on a real application, consisting of
a robot control system. Several algorithms that are in current use are known to
have design errors. Several of these errors were identified using our methodology.
We used a collection of formal methods tools, namely, the Pet interactive testing
system, and the model checking system Spin. One of the major achievements of
this experiment is that we could find conceptual errors and correct them quite
quickly, namely within a month of work of one person. This included learning of
the tools that were used.

We used the notion of neighborhood. This is a collection of execution se-
quences that are simple variants of the error trace found during the automatic
verification. The Pet tool was helpful in testing neighborhoods. Model checking
is often used to verify the control part of a system. It is less effective in debugging
the data dependent (sometimes called ‘data path’) part of the system. The data
dependent part often provides a conceptually infinite state space, or at least one
that is too big to be automatically verified using current tools. In our method-
ology, we can extend the testing process to deal with the data dependent part
of the system, which are not handled by finite state model checking techniques.

For example, we can extend the RCS model, to deal with ‘painting’ a surface.
The painting is controlled by the RCS. A mathematical equation is used to
control the painted area, e.g., to make sure that we are within a radius r from
some origin, we check that the relation between the radius and the x and y
coordinates position is x2 + y2 ≤ r2. We can use Pet to generate the necessary
path conditions for executions that include the painting. This can be used in
testing the behavior of the extended model.

As a consequence of our experiment with the tools Spin and Pet, and with
the presented methodology, we suggest a new tool that combines the verification
and testing process described in this paper. Along with the automatic verifi-
cation process, the tool will have the ability to display an error trace and the
capability of tracing the neighborhood of an error. The tracing will be connected
visually with the code and with its graphical representation as a flow graph. We
have found such a combination (by joining the capabilities of the above men-
tioned tools) useful in a rapid process of verification and redesign of the example
software.

Acknowledgement. We acknowledge the counsel of Prof. J.C. Browne in con-
structing the ObjectBench representation of the RCS model. We also would like
to thank Nina Amla for reading the manuscript and making suggestions for
improvements.

628 N. Sharygina and D. Peled

References

1. Cetin, M., Kapoor, C., Tesar, D.: Performance based robot redundancy resolution
with multiple criteria, Proc. of ACME Design Engineering Technical Conference,
Georgia (1998)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. Workshop on Logic of Programs, Yorktown
Heights, NY. Lecture Notes in Computer Science, Vol. 131. Springer-Verlag, Berlin
Heidelberg New York (1981)

3. Clarke, E.M., Grunberg, O., and Peled, D.: Model Checking, MIT Press (1999)
4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-

grams, Comm. ACM, Vol. 18(8) 1975 453-457
5. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-

grams using fixpoints, Lecture Notes in Computer Science, Vol. 85, Springer-Verlag,
Berlin Heidelberg New York (1980) 169-181

6. Graig, J.J: Introduction to Robotics: Mechanics and Control. Addison-Wesley
(1989)

7. Gunter, E.L., Peled, D.: Path Exploration Tool, Proceeding of TACAS 1999, Am-
sterdam, The Netherlands, (1999) 405-419

8. Harel, D.: From Play-In Scenarios to Code: An Achievable Dream, Proceedings
of FASE 2000, Berlin, Germany, Lecture Notes in Computer Science, Vol. 1783,
Springer-Verlag, Berlin Heidelberg New York (2000) 22-34

9. Hoare, C.A.R.: Communicating Sequential Processes, Comm. ACM, Vol. 21(8)
(1978) 666-677

10. Hoare, C.A.R.: An axiomatic basis for computer programming, Comm. ACM, Vol.
12 (1969) 576-580

11. Holzmann, G.J.: Design and Validation of Computer Protocols, Prentice Hall Soft-
ware Series, (1992)

12. Jackson, D.: Aspect: Detecting Bugs with Abstract Dependencies. ACM Transac-
tions on Software Engineering and Methodology, Vol. 4(2) (1995) 279-295

13. Kapoor, C., and Tesar, D.: A Reusable Operational Software Architecture for Ad-
vanced Robotics (OSCAR), The University of Texas at Austin, Report to U.S.
Dept. of Energy, Grant No. DE-FG01 94EW37966 and NASA Grant No. NAG
9-809 (1998)

14. Kernighan, B., and Ritchie, D.: The C programming Language, Prentice Hall
(1988)

15. Myers, G.J.: The Art of Software Testing, Wiley (1979)
16. Murphy, G., Notkin, D., and Sullivan, K: Software Reflexion Models: Bridging the

Gap between Source and High-Level Models, In Proceedings of SIGSOFT’95 Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM
(1995) 18-28

17. Pnueli, A.: The temporal logic of programs, Proc. of the 18th IEEE Symp. on
Foundation of Computer Science (1977) 46-57

18. Quielle, J.P., and Sifakis, J.: Specification and verification of concurrent systems in
CESAR, Proceedings of the 5th International Symposium on Programming (1981)
337-350

19. SES inc., ObjectBench Technical Reference, SES Inc. (1998)

	Introduction
	The Combined Methodology: Testing and Verification
	The Methodology in Practice
	The Robot Control System
	Experimental Environment
	Verification of the RCS
	Testing and Verification Results

	Conclusions

