Math. Program., Ser. B 94: 361-374 (2003)

Digital Object Identifier (DOI) 10.1007/s10107-002-0324-z

Han Hoogeveen - Martin Skutella - Gerhard J. Woeginger
Preemptive scheduling with rejection

Received: October 30, 2000 / Accepted: September 26, 2001
Published online: September 5, 2002 — (© Springer-Verlag 2002

Abstract. We consider the problem of preemptively scheduling a set of n jobs on m (identical, uniformly
related, or unrelated) parallel machines. The scheduler may reject a subset of the jobs and thereby incur job-
dependent penalties for each rejected job, and he must construct a schedule for the remaining jobs so as to
optimize the preemptive makespan on the m machines plus the sum of the penalties of the jobs rejected.

We provide a complete classification of these scheduling problems with respect to complexity and ap-
proximability. Our main results are on the variant with an arbitrary number of unrelated machines. This variant
is APX-hard, and we design a 1.58-approximation algorithm for it. All other considered variants are weakly
NP-hard, and we provide fully polynomial time approximation schemes for them. Finally, we argue that our
results for unrelated machines can be carried over to the corresponding preemptive open shop scheduling
problem with rejection.

Key words. scheduling — preemption — approximation algorithm — worst case ratio — computational
complexity — in-approximability

1. Introduction

Consider a system with m > 2 (identical, uniformly related, or unrelated) parallel ma-
chines My, ..., My, andnjobs Ji, ..., J,.Job J; (j =1, ..., n)has arejection penalty
e; and a processing time p;; on machine M; (i = 1,...,m). In the case of identical
machines, the processing times are machine independent, i.e., p;; = p;. In the case of
uniformly related machines, the ith machine M; runs at speed s;, and p;; = p;/s;. In
the case of unrelated machines, the processing times p;; are arbitrarily structured. In
the standard three-field scheduling notation (see e.g. Lawler, Lenstra, Rinnooy Kan &
Shmoys [6]) identical machines are denoted by the letter P, uniformly related machines
by Q, and unrelated machines by R.

We consider the following optimization problem in such systems: For each job J;,
we must decide whether to accept that job or whether to reject it. The accepted jobs are to
be scheduled on the m machines. Preemption is allowed, i.e., a job may be arbitrarily in-

H. Hoogeveen: Utrecht University, Department of Computer Science, P.O.Box 80089, 3508TB Utrecht, The
Netherlands, e-mail: slam@cs.uu.nl

M. Skutella: Technische Universitit Berlin, Fakultiat II — Mathematik und Naturwissenschaften, Institut fiir
Mathematik, MA 6-1, Strae des 17. Juni 136, 10623 Berlin, Germany,
e-mail: skutella@math.tu-berlin.de

Supported in part by the EU Thematic Network APPOL, Approximation and Online Algorithms, IST-1999-
14084

G. J. Woeginger: University of Twente, Department of Mathematics, P.O.Box 217, 7S00AE Enschede, The
Netherlands, e-mail: g. j . woeginger@math.utwente.nl

Supported by the START program Y43-MAT of the Austrian Ministry of Science.

362 H. Hoogeveen et al.

terrupted and resumed later on. Every machine can process at most one job at a time, and
every job may be processed on at most one machine at a time. For the accepted jobs, we
pay the makespan of the constructed schedule, i.e., the maximum job completion time in
the schedule. For the rejected jobs, we pay the corresponding rejection penalties. In other
words, the objective value is the preemptive makespan of the accepted jobs plus the total
penalty of the rejected jobs. We denote this objective function by an entry “Rej+Cpax”” in
the third field of the three-field scheduling notation. For example, PS5 | pmtn | Rej+ Cmax
denotes this problem on five identical machines; Qm | pmin|Rej + Cpax denotes the
problem on uniformly related machines where the number of machines is a fixed constant
m that is not part of the input; R | pmtn | Rej + Cmax denotes the problem on unrelated
machines where the number of machines is part of the input.

We also consider preemptive open shop scheduling with rejection. There are again
n jobs Ji, ..., J, and m parallel machines My, ..., M;,. Each job J; consists of m
operations Oy, ..., Oyj; operation O;; can only be processed on machine M; and has
processing time p;;. No machine may process more than one operation at a time, and
no two operations of the same job may be processed at the same time. Apart from this,
the operations of a job may be processed in an arbitrary preemptive fashion. Again, we
must decide, for each job J;, whether to accept or reject it. This problem is denoted by
O | pmtn | Rej + Cax and Om | pmin | Rej + Cpax, respectively.

Related scheduling problems with rejection have been studied by Bartal, Leonardi,
Marchetti-Spaccamela, Sgall & Stougie [2] for non-preemptive makespan on identi-
cal machines, by Engels, Karger, Kolliopoulos, Sengupta, Uma & Wein [4] for total
weighted job completion time on a single machine, and by Sengupta [8] for lateness and
tardiness criteria.

Complexity. Whereas classical preemptive makespan minimization (the problem where
all jobs must be accepted) is polynomially solvable even on an arbitrary number of
unrelated machines and also for open shop scheduling [6], preemptive makespan mini-
mization with rejection is hard even in the case of two identical machines. A complete
complexity classification is given in Table 1. In Section 4, we will prove weak NP-hard-
ness of P2 |pmitn|Rej + Cmax and O2 | pmin | Rej + Crax and strong NP-hardness of
R | pmtn | Rej+ Cpmax and O | pmin | Rej+ Cmax. These results induce all negative results
stated in Table 1. In Section 2 we discuss a dynamic program which leads to a pseudo-
polynomial time algorithm for Om | pmtn | Rej + Cmax. Moreover, the results in Sec-
tion 3 on uniformly related machines and the results in Section 2 on unrelated machines
yield the existence of pseudo-polynomial time algorithms for Q | pmtn | Rej + Crax and
Rm | pmtn | Rej + Crax. Perhaps surprisingly, we did not manage to find ‘simple’ pseu-
do-polynomial time algorithms for these two problems. Instead, we took a detour and

Table 1. The complexity landscape of preemptive makespan with rejection

’ H Identical Uniformly related | Unrelated/Open shop
m not part of input weakly NP-hard, weakly NP-hard, weakly NP-hard,
pseudo-polynomial | pseudo-polynomial pseudo-polynomial
m part of input weakly NP-hard, weakly NP-hard, strongly NP-hard
pseudo-polynomial | pseudo-polynomial

Preemptive scheduling with rejection 363

Table 2. The approximability landscape of preemptive makespan with rejection

H Identical Uniformly related | Unrelated/ Open shop

m not part of input FPTAS FPTAS FPTAS
m part of input FPTAS FPTAS 1.58-approximation,
APX-hard

constructed a fully polynomial time approximation scheme (FPTAS); the existence of
the FPTAS then implies the existence of a pseudo-polynomial time algorithm. Anyway,
these two positive results together with the open shop result mentioned above induce all
other positive results stated in Table 1.

Approximability. Apart from their complexity, we are also interested in how close one
can approach an optimum solution to these NP-hard scheduling problems in polynomial
time. An a-approximation algorithm runs in polynomial time and constructs schedules
whose values are within a factor of @ > 1 of the optimum solution value. The number «
is called performance guarantee or performance ratio of the approximation algorithm. A
family of polynomial time approximation algorithms with performance guarantee 1 + ¢
for all fixed ¢ > 0 is called a polynomial time approximation scheme (PTAS). If the
running times of the approximation algorithms are even bounded by a polynomial in
the input size and é, then these algorithms build a fully polynomial time approximation
scheme (FPTAS). It is known that unless P=NP, a strongly NP-hard optimization prob-
lem cannot possess an FPTAS (see e.g. Garey & Johnson [5]). Moreover, an APX-hard
optimization problem (see e.g. [1] for a precise definition of APX-hardness) cannot
possess a PTAS, unless P=NP.

Our approximability classification is given in Table 2. In Section 3 we will derive
an FPTAS for the problem Q | pmtn | Rej + Cnax, and in Section 2 we derive another
FPTAS for Rm | pmtn | Rej + Cax and Om | pmitn | Rej 4+ Cpyax. These results induce all
FPTAS-entries in Table 2. The variants R | pmitn | Rej + Cax and O | pmin | Rej + Cax
with an arbitrary number of machines are APX-hard, even for the case of uniform rejec-
tion penalties (cf. Section 4). In Section 2, we construct a polynomial time e/(e — 1)-
approximation algorithm for R | pmtn | Rej + Cpax and O | pmtn | Rej + Crax; note that
e/(e — 1) ~ 1.58. This approximation algorithm is based on a linear programming
relaxation of the problems and the analysis of the performance guarantee also implies
a bound of e/(e — 1) on the quality of this relaxation. Moreover, we present a class of
instances showing that the ratio between the true optimum and the LP lower bound can
be arbitrarily close to e/(e — 1).

Organization of the paper. Section 2 contains the positive results on unrelated ma-
chines and on open shops, and Section 3 contains the positive results on uniformly
related machines. All negative results (NP-hardness and APX-hardness) are proved in
Section 4.

2. Unrelated machines and open shops

In this section we derive a polynomial time e/(e — 1)-approximation algorithm for
problem R |pmitn|Rej + Cpax and an FPTAS for problem Rm | pmtn|Rej + Cpax.

364 H. Hoogeveen et al.

Moreover, we argue that these results can be carried over to the open shop problems
O | pmtn | Rej 4+ Cpax and Om | pmtn | Rej + Cpax, respectively.

Consider the following mixed integer linear programming formulation (1) of the
problem R | pmin |Rej + Cax. For job J;, the binary variable y; decides whether J;
is rejected (y; = 0) or accepted (y; = 1). The variables x;; describe which percent-
age of job J; should be processed on machine M;. The variable T" denotes the optimal
preemptive makespan for the accepted jobs.

min 7 + Z?:](l — yj)ej

s.t. Z’;-:]xijp,-j <T fori=1,...,m
Yo Xijpij < forj=1,...,n (1)
YoiLixij =y forj=1,...,n
xij >0 fori=1,...,.mand j=1,...,n
vj € {0, 1} forj=1,...,n

The first set of restrictions states that for every machine the total assigned processing
time is at most 7. The second set of restrictions states that the total processing time of
every job cannot exceed T . The third set of restrictions connects the binary decision vari-
ables y; with the continuous variables x;;. If we want to schedule every job J; on the m
machines according to the values x;;, then we essentially are dealing with a preemptive
open shop problem; it is well-known [6] that the smallest number 7' fulfilling the first
two sets of constraints in (1) yields the optimal preemptive makespan. To summarize,
every feasible solution of (1) corresponds to a feasible schedule with objective value
T + Z’}:l(l —yje;.

Now we replace the integrality conditions y; € {0, 1} in (1) by 0 < y; < I. This
yields the linear programming relaxation LPR which can be solved to optimality in

polynomial time. Let xl.*j, y;?, and T* constitute an optimal solution to LPR. From this

solution, we compute a rounded solution X;;, ¥, and T for (1) in the following way: We
randomly choose a threshold o from the uniform distribution over [1/e, 1]. If y;.‘ <a,
then we set y; := 0, and otherwise we set y; := 1. Similar dependent randomized
rounding procedures have already proven useful in other contexts (see e.g. Bertsimas,
Teo & Vohra [3]).

For j with y; = 0, we set all variables X;; = 0. For j with y; = 1, we set all
variables X;; := xl?';. / y’/“ Finally, we set

n

m
T = max{ max E f,'jpij, max E fijpij} . (2)
1<i<m 4] 1<j<n 4 !
j= 1=

It can be verified that the values X;;, y;, and T constitute a feasible solution of (1): All
variables y; are binary. For j with y; = 0, the variables X;; add up to 0. For j with
y; = 1, the variables X;; addupto) ; xl?“j / y;‘f = 1. Finally, in (2) the value of T is fixed
to fulfill the first and the second set of restrictions.

Preemptive scheduling with rejection 365

Now let us analyze the quality of the rounded solution. For any fixed value of a, X;;
is less than a factor of 1/« above x;, and hence by linearity also T is less than a factor
of 1/a above T*. Therefore, the expected multiplicative increase in the makespan is at

most a factor of '
¢ / ada = —— .
e—1Ji e—1

In the LPR solution, the contribution of job J; to the total penalty is (1 — y;‘)e j- The
expected contribution of J; to the penalty in the rounded solution is

! e e e
ej'Pr[y;ffot] = ej/ da < ejf da = —(l—y;'f)ej .
. max{l/e,y}f}e_l y;‘ e—1 e—1 ‘

All in all, the expected objective value for the rounded solution is at most a factor of
e/(e — 1) ~ 1.58 above the optimal objective value of LPR. Hence, our procedure
yields a randomized polynomial time e/(e — 1)-approximation algorithm. Since the on-
ly critical values for the threshold parameter « are the values y}’.‘ (G =1,...,n),itis
straightforward to derandomize this algorithm in polynomial time.

Theorem 1. The problem R | pmtn|Rej + Cnax possesses a deterministic polynomial
time e /(e — 1)-approximation algorithm. m|

Since in our analysis the value of the computed schedule was compared to the lower
bound given by the value of an optimum solution to the linear programming relaxation
LPR, the bound e/(e — 1) also holds for the quality of LPR. Moreover, we can show
that this result is tight.

Corollary 1. The integrality gap of the linear programming relaxation LPR is at most
e/(e — 1), this bound is tight, even for the special case of identical parallel machines
and uniform rejection penalties ej = 1.

Proof. Tt remains to show that the given bound is tight. For each positive integer g we
construct an instance with (¢ + 1)7 identical machines and the same number of jobs
with uniform rejection penalties; the processing time of the jth job is set to p; = j.
Then, the total rejection penalty in any reasonable schedule with makespan T is equal
to (¢ + 1)? — T, in particular, the value of an optimal schedule is (¢ + 1)¢. However,
consider the following feasible solution to LPR:

e {q‘fl/j £ Sg me T=d
The value of this solution is equal to
(q+D? (g+D? (g+D?
T+ Y -y =q'+ Y (U=q'/j) =@q+D'—q* > = .
j=1 J=q1+1 j=q9+1

The ratio of this value and the value of an optimal schedule is

q q (Q‘H)ql
1— | —— - . 3
<q+1) Z J)

Jj=q9+1

366 H. Hoogeveen et al.

Since

(@+D7+1 @+ 4 (@+D7
/ —-dz < Z - = / —dz
q J q

941 Z j=qi41 q Z

and the terms on the left and on the right hand side converge to 1 when g goes to infinity,
the same holds for the sum in between. Thus, for large ¢, the ratio (3) tends to (e — 1) /e.
This completes the proof. O

The mixed integer linear program (1) can easily be adapted to the open shop sched-
uling problem O | pmitn | Rej + Cax- Remove the third and fourth constraints of (1) and
replace all variables x;; by y;. Then, an appropriate adaption of the rounding algorithm
discussed above is also an e/ (e — 1)-approximation algorithm for O | pmtn | Rej + Crax
and Corollary 1 holds as well.

Theorem 2. The problem O | pmtn |Rej + Cmax possesses a deterministic polynomial
time e/ (e — 1)-approximation algorithm. O

Let us turn to problem Rm | pmtn | Rej + Cpax. The crucial fact for deriving positive
results on this problem is the following discretization lemma.

Lemma 1. Let § be a real number with 0 < § < 1/m, such that 1/ is integer. Then,
the mixed integer linear program (1) possesses a feasible solution, in which the values
x;ij all are integer multiples of 8% and whose objective value is at most a factor of 1 + 8
above the optimal objective value of (1).

Proof. Consider an optimal solution x;“j, y;f, and T* of the mixed integer linear program
(1). Another feasible solution X;; and y; for (1) is constructed job-wise in the following
way. For job J;, let £(j) denote a machine index that maximizes x;(j) I i.e., an index
with xz“(/.) = x;“j forall 1 <i < m.Thenfori # £(j), X;; is the value x;“j rounded down
to the next multiple of §3. Moreover, we set j; = yiand Xy, j = Vj = Dize(j) Yij-
Finally, T is computed according to (2). It is straightforward to verify that X;;, y;, and
T is feasible for (1). By construction, the values X;; all are integer multiples of 83 for
i # £(j). Moreover, this is also true for X(j), ; since y; € {0, 1} and 1/§ is integer.

We claim thatforall j =1,...,nandi =1, ..., m, the inequality x;; < (1 +8)x,.*j
is fulfilled. If y;‘ = 0, this inequality trivially holds since y; = X;; = O0fori =1,...,m
then. Otherwise, if i # £(j), the inequality holds since x;kj -8 < ;< x,’; Moreover,
fori = £(j) we have

By = Fi— Y Fj o< ¥i— Y (=8 < xjy +m8 < A48, -
2240)] i#L(j)

The first inequality follows from the definition of the x;; with i # £(j). The second

inequality is straightforward. The last inequality is equivalent to m8> < xz‘(DL this is

true since 6 < 1/m and xZ‘(= y;‘ /m = 1/m. Summarizing, the claimed inequalities

are indeed fulfilled. Since y; = y;, the objective value in (1) increases at most by a

factor of 1 + 4. |

Preemptive scheduling with rejection 367

In the following, we call a feasible solution of (1) where all values x;; are integer
multiples of 83 asin Lemma 1 a 8-discrete feasible solution. Moreover, we assume with-
out loss of generality that all processing times p;; and rejection penalties e are integral.
Our next goal is to show that the best §-discrete feasible solution can be computed in
pseudo-polynomial time by a dynamic programming approach. A state of the dynamic
program encodes a partial schedule for the first £ jobs (1 < k < n). Every state has
m + 2 components. The first m components store the loads of the m machines in the
partial schedule. Component m + 1 stores the length of the longest job scheduled so far
(i.e., the maximum time that any job needs in the schedule). Component m + 2 stores the
total penalty of all jobs from Ji, ..., J; that have been rejected so far. The state space
So is initialized with the all-zero vector. When job J; is treated, every state § from the
state space Si—1 is updated and yields several new states.

— First, job J; may be rejected. The corresponding new state results from adding the
penalty ey to the last component of 5.

— Otherwise, job Jj is accepted. We try all O(1/8>") possibilities for the m pieces
X1j, ..., Xp; that are integer multiples of 83 and that add up to 1. For each appro-
priate combination the ith (i = 1,...,m) component of § is increased by x; i Dij-
The new (m + 1)th component is the maximum of the old (m + 1)th component and
2 it Xij Pij-

Finally, after treating the last job J,, we compute the objective values for all states in
S, and output the best one; the objective value equals the maximum of the first m + 1
components plus the last component. The running time of this dynamic program is
polynomial in n, 1/§, and in the size of the state spaces. Component i(i = 1,...,m)
indicates the load of machine i, which is measured in units of 83 hence, the number of
possible states for component i is O(Z?: 1 Pij/ 83). Similarly, the number of possible
states for component (m + 1) is O X"/, pij/ 83). Finally, the number of possible states
for component m + 2 is O (27:1 e;). Clearly, this yields a pseudo-polynomial running
time.

Lemma 2. For any instance of Rm | pmin | Rej+ Cmax and for any § with0 < § < 1/m
and 1/§ integer, the best §-discrete schedule can be computed in pseudo-polynomial
time. O

By applying standard methods, this dynamic programming formulation can be trans-
formed into a fully polynomial time approximation scheme; in fact, the dynamic program
belongs to the class of so-called ex-benevolent dynamic programs (Woeginger [9]), and
therefore automatically leads to an FPTAS for computing the best §-discrete feasible
solution. Finally, let us turn back to the general problem Rm | pmtn | Rej + Cpax. For a
given ¢ > 0, we set § = min{1/m, 1/[3/¢1} and then compute in fully polynomial time
a (1 + e/3)-approximation for the best §-discrete feasible solution. It is easily verified
that this yields a (1 + ¢)-approximation of the optimal objective value; hence there is an
FPTAS for Rm | pmtn | Rej 4+ Crax.

Itis known that every sufficiently well-behaved optimization problem with an FPTAS
is solvable in pseudo-polynomial time (see e.g. Theorem 6.8 in Garey & Johnson [5]).
Here, well-behaved means that all solution values are positive integers and that the value

368 H. Hoogeveen et al.

of an optimal solution is polynomially bounded in the size of a unary encoding of the
input. While the latter condition is satisfied for Rm | pmtn | Rej+ Cpax, the first condition
is in general violated. However, it follows from the theory of linear inequalities that the
denominator of the value of a fractional extreme solution to the mixed integer linear
program (1) is polynomially bounded in the size of a unary encoding of the input (see
e.g. Schrijver [7, Theorem 10.1]). Thus, there is a pseudo-polynomially bounded ¢ > 0
such that any (1 + ¢)-approximative extreme solution to (1) is optimal. The FPTAS
discussed above can be used to compute such a solution in pseudo-polynomial time.

Theorem 3. The problem Rm | pmtn |Rej + Cmax has an FPTAS, and it is solvable in
pseudo-polynomial time. O

Compared to Rm | pmitn |Rej + Cpax, the situation for the open shop scheduling
problem Om | pmtn | Rej + Cpax 1s less complicated. Since each operation of a job can
only be processed on one machine, there is no need for a discretization lemma. Instead,
we can directly solve the problem via dynamic programming in pseudo-polynomial time.
The dynamic program is a simplified version of the one discussed above; in particular,
it uses the same states. However, in contrast to the case of unrelated machines, if a job
Jx is accepted, there is only one possibility of adding it to one of the current partial
solutions s: for each operation O;, add its processing time p; to the ith component of
state 5. Again, this dynamic programming formulation can be transformed into a fully
polynomial time approximation scheme by applying standard methods.

Theorem 4. The problem Om | pmin | Rej+Cunax is solvable in pseudo-polynomial time,
and it has an FPTAS. O

3. Uniformly related machines

In this section we will construct an FPTAS and a pseudo-polynomial time algorithm for
QO | pmtn | Rej + Crax. Our line of approach is quite similar to that for Rm | pmtn | Rej +
Cmax in Section 2 which also gave an FPTAS and a pseudo-polynomial time algorithm.

Now consider an instance of Q | pmtn |Rej + Cpax with m machines and n jobs.
Without loss of generality we assume that m = n holds: If m > n, then the m — n
slowest machines will not be used in any reasonable schedule and may be removed from
the instance. If m < n, then we introduce n — m dummy machines of speed 0; these
dummy machines will not be used in any reasonable schedule. Let s; > sp > --- > s,
denote the speeds of the machines (so that processing of a job piece of length L on
machine M; takes L/s; time). Fori < nlet S; = Y ;_, sr denote the total speed of the
i fastest machines.

Leta; > a; > --- > a, denote the lengths of the g accepted jobs in some schedule.
Fori <glet A; = Z;;:l ay denote the total length of the i longest accepted jobs. It
is well-known [6] that for m = n machines the optimal preemptive makespan for the
accepted jobs equals

max A;/S; . @

I<i=q
This leads to the following dynamic programming formulation of Q | pmtn | Rej+ Cpax.-
Without loss of generality we assume that p; > p, > --- > p,, i.e., that the jobs

Preemptive scheduling with rejection 369

are ordered by non-increasing processing times. Every state of the dynamic program
consists of four values vy, v, v3, and v4 and encodes a schedule for a prefix Ji, ..., Ji
of the job sequence. Value v; stores the total penalty of the jobs rejected so far, value v
stores the total processing time of the jobs accepted so far, value v3 stores the number of
accepted jobs, and value v4 stores the maximum value A;/S; over | <i < v3. How do
we update a state [v1, v, v3, v4] for Jq, ..., Ji, if also job Ji41 has to be considered?

— If job Jr41 is rejected, we replace vy by vi + ex+1 and leave everything else un-
changed. This yields the state [v] + ex+1, v2, V3, v4].

— If job Ji 41 is accepted, we define v5" := vy + pg41 and V5" := v3 + 1. Moreover,
v;** becomes the maximum of the old component v4 and v5*” divided by Synew.

This yields the state [vy, v, V5%, v}"].

We handle job by job in this way, until we end up with a state space for Ji, ..., J,.
Then we extract from every state [vy, va, v3, v4] its objective value v + v4. The state
with the best objective value gives the solution of Q | pmtn | Rej + Cpax. The time com-
plexity of this dynamic programming formulation mainly depends on the number of
states. Since every component in every state is a number whose size is bounded by the
input size, the total number of states is pseudo-polynomial. Moreover, we can prove
that this dynamic program belongs to the class of benevolent dynamic programming
formulations [9]. Hence, it can be transformed into an FPTAS by trimming the state
space appropriately. Finally, the same arguments as in Section 2 yield the existence of
an exact pseudo-polynomial time algorithm.

Theorem S. The problem Q | pmtn|Rej + Cpax has an FPTAS, and it is solvable in
pseudo-polynomial time. O

4. Negative results

In this section we prove the following negative results: the NP-hardness of the prob-
lems P2 |pmtn|Rej + Cmax and O2 | pmitn|Rej + Cmax, and the APX-hardness of
R | pmtn|Rej 4+ Cpax and O | pmin | Rej + Cmax. The strong NP-hardness of the prob-
lems R | pmtn | Rej + Cnax and O | pmin | Rej + Cax follows along the same lines: our
L-reductions (from the APX-hard maximum bounded 3-dimensional matching problem)
at the same time constitute Turing-reductions (from the strongly NP-hard 3-
dimensional matching problem). Moreover, we note that our L-reduction to the prob-
lem R | pmtn|Rej + Cmax also implies APX-hardness and strong NP-hardness for the
non-preemptive problem variant R | | Rej + Cppax.

Theorem 6. The problems P2 | pmtn |Rej + Cmax and O2 | pmin | Rej + Crax are NP-
hard in the ordinary sense.

The following proof for the problem P2 | pmitn | Rej + Cpax can easily be modified
to yield the hardness result for the open shop problem O2 | pmin | Rej + Cpax.

Proof. The proof is a straightforward reduction from PARTITION. Consider an instance
of PARTITION, i.e., n positive integers ay, ..., a, that add up to 2A. The question is

370 H. Hoogeveen et al.

whether there exists anindex set I C {1, ..., n} with Zie] aj = A. Weintroduce n + 1
jobs. The jobs J; with 1 < j < n have penalties a; and processing times 3a;. The job
Ju+1 has penalty 5A and processing time 3A.

We claim that the instance of PARTITION has answer YES if and only if there exists
a preemptive schedule with objective value at most 4A. (Only if): Suppose that there
exists an index set I with Z/e] aj = A.Process all jobs J; with j € I on machine M.
Process job J,+1 on machine M». Reject all remaining jobs. The resulting schedule has
makespan 3A and total penalty A; hence, its objective value equals 4A. (If): Suppose
that there exists a schedule with objective value at most 4A. Then job J,4+; has been
accepted, and hence the makespan is at least 3A. Denote by X the total penalty of the
rejected jobs. Since the makespan is > 3 A and the objective value is at most 4 A, we must
have X < A. The total processing time of the accepted jobs is equal to 3(2A — X) (for
the jobs 1 < j < n) plus 3A (for job J,,+1). The preemptive makespan on two machines
is at least the total scheduled processing time divided by 2. Hence, the objective value
of this schedule is at least

1 1
X+20A-3X) = SOA-X) .

This must be no more than 4A, which implies that X > A. Hence, we conclude that
X = A, which implies that PARTITION has answer YES. m]

Now we turn to problem R | pmtn |Rej + Cmax. The APX-hardness proof is done
for the special case of uniform rejection penalties e; = 1 and so-called restricted
assignment, where the processing times of jobs are not machine-dependent but each
job may only be processed on a subset of machines, i.e., p;; € {p;, 00}. We provide an
L-reduction from the APX-hard maximum bounded 3-dimensional matching problem.

Maximum bounded 3-dimensional matching (Max-3DM-B)

Input: Three sets A = {a1, a2, ..., a4}, B={b1,b2,...,bs}and C = {c1, c2, ..., ¢4}
A subset T of A x B x C of cardinality s, such that any element of A, B and C occurs
in exactly one, two, or three triples in 7. Note that this implies that g < s < 3¢.

Goal: Find a subset T’ of T of maximum cardinality such that no two triples of 7’ agree
in any coordinate.

Measure: The cardinality of T".

Without loss of generality, we restrict ourselves to instances of MAX-3DM-B where
the value ¢ and the value of an optimal solution both are even. Notice that an arbitrary
instance can easily be modified to fulfill these requirements by taking two disjoint copies
of the instance. The following simple observation will be useful.

Lemma 3. For any instance I of MAX-3DM-B we have OPT(I) > 1s.

Proof. Select an arbitrary triple ¢ from 7. Remove ¢ together with all triples that agree
with ¢ in some coordinate from 7. Repeat this process until 7 becomes empty. Since
every element occurs in at most 3 triples, at most 7 triples are removed from 7 in every
step. Hence, there are at least %s steps and at least %s selected triples. Since the selected
triples do not agree in any coordinate, they form a feasible 3-dimensional matching. O

Preemptive scheduling with rejection 371

Let I = (g, T) be an instance of MAX-3DM-B. We construct an instance R(I) of
the scheduling problem R |pmitn,e; = 1, p;j € {pj, o0} |Rej + Cmax with s + 22¢
jobs and s + 17g machines, where all penalties e; are 1 and the processing time of job
J; on machine i is either p; or infinite (i.e., a job can only be processed on a subset
of machines). The core of the instance consists of s + 7¢ jobs and s 4+ 2¢g machines.
There are further 15g non-core machines and 15g non-core jobs. The non-core jobs are
matched to the non-core machines. The processing time of each non-core job is 15¢
on its matching non-core machine, and it is infinite on all other (core and non-core)
machines. Processing of a core job on a non-core machine also takes infinite time (and
thus is impossible).

Now we continue our description of the core of the instance. There are s machines,
which correspond to the triples in 7', and therefore are called the triple machines. More-
over, there are 2g so-called element machines. As to the jobs, each a;, b;, and c; element
corresponds to an element job with processing time 5g. An element job can be processed
on any element machine; moreover, each triple machine can process the element jobs
of the elements occurring in the corresponding triple. Each triple machine has its own
matching dummy job; processing this dummy job takes 15¢ units of time, and no other
dummy job can be processed on the machine. Each element machine has two matching
dummy jobs with processing times 5¢ and 10q, respectively; again, no other dummy
job can be processed on an element machine.

As we will see later, the sole purpose of adding the 15¢ non-core machines with
corresponding non-core jobs is to enforce that in the optimal schedule Cpax > 15¢g. The
following lemma gives the basic intuition of how the reduction works.

Lemma 4. [fthe optimal solution to an instance I of MAX-3DM-B consists of k triples,
then there is a solution to the instance R(I) of the scheduling problem with objective
value 16q + (g — k)/2.

Proof. Without loss of generality, we assume that the first & triples in 7' constitute an
optimal solution of /. We construct the following solution with makespan 15¢ to instance
R(I). The first k triple machines process the element jobs belonging to their triples; the
dummy jobs corresponding to the first k triple machines are rejected. The remaining
3(g — k) element jobs are grouped into 3(¢ — k) /2 pairs which are then processed on an
arbitrary subset of 3(¢ — k) /2 element machines; the corresponding 3(g — k) /2 dummy
jobs of size 10g are rejected. This yields a schedule with Crax = 15 and k+3(qg —k)/2
rejected jobs. Hence, the objective value is equal to 16g + (g — k) /2. |

The following lemma shows that the schedule constructed in the proof of Lemma 4
in fact is optimal.

Lemma 5. Let I be an instance of MAX-3DM-B and 0 < k < q. Given a solution o
to the scheduling instance R(I) with objective value c(o) < 16g + (¢ — k) /2, one can
construct in polynomial time a solution S(o) to I consisting of at least k + 1 triples.

Proof. If the makespan of the given schedule is less than 15¢, then at least 17g + s
dummy jobs (one for each machine) must have been rejected. Thus, the objective value
is at least 17¢g + s which is a contradiction to c(c) < 16qg + (¢ — k)/2; this yields
Cmax = 15¢ + A for some A > 0.

372 H. Hoogeveen et al.

If all dummy jobs of length 10g are rejected, then the capacity of the 2¢ element
machines suffices to process all element jobs and all dummy jobs of length 5¢ within
the interval [0, 15¢g]. Thus, if an element job or a dummy job of length 5g has been
rejected in the given schedule and if it cannot be added to any element machine with-
out increasing the makespan, then there must be at least one dummy job of length 10g
which was not rejected. Interchanging the two jobs does not deteriorate the value of
the schedule. Thus, we can modify the given schedule such that no element job and
no dummy job of length 5¢ is rejected. We denote the number of rejected jobs in the
resulting schedule by R; notice that the makespan of this schedule is still bounded by
15+ Aand R+ A <q+ (g —k)/2.

We consider the triple machines iteratively one after another and construct a solution
of instance /; at the same time, we also modify the current schedule accordingly: If a
triple machine processes (fractions of) element jobs for more than 10g time units, then
we add the corresponding triple to the solution of /. Since the load of the triple machine
isatmost 15¢ + A < 17¢g, its dummy job must have been rejected; we move all fractions
of the three corresponding element jobs to the triple machine increasing its load to 15¢q.
We denote the cardinality of the resulting solution of instance I by k’. It remains to show
that k" > k.

We bound the total amount of time that is used in the resulting schedule by triple
machines and by element machines for processing element jobs:

— Any triple machine which corresponds to one of the k' chosen triples spends 15¢
time units for processing element jobs.

— Any other machine which does not process all its dummy jobs spends at most 10g + A
time units for processing element jobs; there are (R — k") such machines.

— Each of the s +2g — R remaining machines spends at most A time units for processing
element jobs.

Summarizing, the total processing time of all element jobs is at most

15gk" + (10g + A)(R — k') + A(s +2g — R) < 5gk’ +10gR + 5¢A
5k’ +10g(R + A)
< 5q(k' —k)+5q -3q .

IA

The last inequality follows from R + A < g + (¢ — k)/2. Since the total processing
time of all 3¢ element jobs is 3q - 5¢g, we get kK’ > k which concludes the proof. O

Lemmas 4 and 5 together yield the following result.

Corollary 2. If an optimal solution to the instance I of MAX-3DM-B consists of k
triples, then the value of an optimum solution to the instance R(I) of the scheduling
problem is equal to 16q + (g — k) /2. O

We can now state the main result of this section (Since the notion of preemption is not
used in the proof of Lemmas 4 and 5, we can use the very same L-reduction to establish
APX-hardness of the nonpreemptive problem R |e; = 1, p;j € {p;, o0} | Rej + Ciax)-

Theorem 7. The problem R |pmin,ej =1, p;; € {pj, o0} | Rej + Cmax is APX-hard.

Preemptive scheduling with rejection 373

Proof. Our L-reduction now looks as follows. Given an instance I of MAX-3DM-B, we
construct the instance R(I) of the problem R | pmin, e; = 1, p;j € {p;j, o0} | Rej+ Cmax
as described above. The transformation S that maps a given solution for R(I) to a feasi-
ble solution of / is given in the proof of Lemma 5. Clearly, R and S can be implemented
to run in polynomial time. Moreover, we have for any instance I of MAX-3DM-B that

OPT(R(I)) < 17 < 17s < 1190p1(]) ;

the first inequality follows from Lemma 4 and the last inequality from Lemma 3. Finally,
for any feasible schedule o of R([), the feasible solution S(o’) of instance / fulfills the
inequality

OPT(I) —|S(0)| < 2(c(o) — OPT(R(]))

by Lemma 5 and Corollary 2. O

In order to prove the same result for open shop scheduling, one can use a similar
L-reduction from MAX-3DM-B, where, however, the role of the machines and the jobs
is reversed. We give a short sketch of the reduction and its proof.

Let I = (g, T) be an instance of MAX-3DM-B. We construct an instance O (/) of the
scheduling problem O | pmtn, e; = 1 |Rej+ Cpax with s +21g jobs and 184 machines,
where all penalties e; are 1. The core of the instance consists of s + 6g jobs and 3¢ ma-
chines. There are further 15g non-core machines and 15¢ non-core jobs. The non-core
jobs are matched to the non-core machines. Each non-core job has one operation with
processing time 15¢ on its matching non-core machine; the processing time of all other
operations of a non-core job is 0.

In the core of the instance O (I), there are 3¢ machines, one for each element of
1. For each such machine, there are two matching dummy jobs which both have an
operation with processing time 5¢ on this machine; all other operations of the dummy
jobs have processing time 0. Finally, there are s jobs, which correspond to the triples in
T, and therefore are called the triple jobs. Each triple job has three operations with pro-
cessing time 5¢; those operations are matched to the element machines corresponding
to the elements of the respective triple; again, all other operations of a triple job have
processing time 0.

Itis a straightforward observation that there always exists an optimal schedule for in-
stance O (1) which rejects no dummy job and has makespan 15¢; in particular, the triples
corresponding to the accepted triple jobs must form a feasible solution to /. Moreover,
any given schedule can easily be modified to fulfill these conditions without increasing
its objective value. This yields the following lemma.

Lemma 6. If an optimal solution to the instance I of MAX-3DM-B consists of k triples,
then the value of an optimum solution to the instance O (1) of the open shop scheduling
problem is equal to 15 + s — k. O

The lemma and the discussion above contain the main ingredients for the proof of
the following theorem.

Theorem 8. The problem O | pmitn, e; = 1|Rej + Cmax is APX-hard. O

374 H. Hoogeveen et al.: Preemptive scheduling with rejection

References

1.

2.

3.

G. AUSIELLO, P. CRESCENZI, G. GAMBOSI, V. KANN, A. MARCHETTI-SPACCAMELA, AND M. PROTASI
[1999]. Complexity and Approximation. Springer, Berlin.

Y. BARTAL, S. LEONARDI, A. MARCHETTI-SPACCAMELA, J. SGALL, AND L. STOUGIE [2000]. Multiprocessor
scheduling with rejection. SIAM Journal on Discrete Mathematics 13, 64-78.

D. BERTSIMAS, C. TEO, AND R. VOHRA [1999]. On dependent randomized rounding algorithms. Operations
Research Letters 24, 105-114.

D.W. ENGELS, D.R. KARGER, S.G. KOLLIOPOULOS, S. SENGUPTA, R.N. UMA, AND J. WEIN [1998]. Tech-
niques for scheduling with rejection. Proceedings of the 6th European Symposium on Algorithms (ESA’98),

Springer LNCS 1461, 490-501.

. M.R. GAREY AND D.S. JOHNSON [1979]. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, San Francisco.

. E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS [1993]. Sequencing and schedul-

ing: Algorithms and complexity. In: S.C. Graves, A.H.G. Rinnooy Kan, and P.H. Zipkin (eds.) Logistics of
Production and Inventory, Handbooks in Operations Research and Management Science 4, North-Holland,
Amsterdam, 445-522.

. A. SCHRUVER [1986]. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester.
. S. SENGUPTA [1999]. Algorithms and approximation schemes for minimum lateness and tardiness sched-

uling with rejection. Manuscript, Laboratory for Computer Science, MIT.

. G.J. WOEGINGER [1999]. When does a dynamic programming formulation guarantee the existence of

an FPTAS? Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99),
820-829.

