Skip to main content

Solvers for Systems of Nonlinear Algebraic Equations - Their Sensitivity to Starting Vectors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Abstract

In this note we compare the sensitivity of six advanced solvers for systems of nonlinear algebraic equations to the choice of starting vectors. We will report on results of our experiments in which, for each test problem, the calculated solution was used as the center from which we have moved away in various directions and observed the behavior of each solver attempting to find the solution. We are particularly interested in determining the best global starting vectors. Experimental results are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgowerr, E. and George, K.: Numerical Continuation Methods: An Introduction, Springer-Verlag, Berlin (1990)

    Google Scholar 

  2. Brown, K. M.: A quadratically convergent Newton-like method based upon Gaussian elimination, SIAM Journal on Numerical Analysis, 6 (1969) 560–569

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouaricha, A., Schnabel, R.: Algorithm 768: TENSOLVE: A Software Package For Solving Systems Of Nonlinear Equations And Nonlinear Least-Squares Problems Using Tensor Methods. ACM Trans. Math. Software, 23, 2 (1997), 174–195

    Article  MATH  MathSciNet  Google Scholar 

  4. Burden, R. L., Faries, J. D.: Numerical Analysis. PWS-Kent Publishing Company, Boston, (1993) 575–576

    Google Scholar 

  5. Conn, A. R., Gould, N. I. M and Toint, Ph. L.: LANCELOT: A Fortran package for large-scale nonlinear optimization (Release A), Springer Series in Computiational Mathematics 17, Springer-Vergag, (1992)

    Google Scholar 

  6. Dent, D., Paprzycki, M., Kucaba-Pietal, A.: Comparing Solvers for Large Systems of Nonlinear Algebraic Equations. Proceedings of the 16th IMACSWorld Congress, to be published

    Google Scholar 

  7. Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Performance of Solvers for Systems of Nonlinear Algebraic Equations. Proceedings of 15th Annual Conf. on Applied Math (1999) 67–77

    Google Scholar 

  8. Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Studying the Numerical Properties of Solvers for Systems of Nonlinear Equations. Proceedings Of The Ninth International Colloquium On Differential Equations (1999), 113–118

    Google Scholar 

  9. Dent, D., Paprzycki, M., Kucaba-Pietal, A,: Testing Convergence of Nonlinear System Solvers. Proceedings of the First Southern Symposium on Computing, (1998)

    Google Scholar 

  10. Fong, K. W., Jefferson, T. H., Suyehiro, T., Walton, L.: Guide to the SLATEC Common Mathematical Library, Argonne, Ill., (1990)

    Google Scholar 

  11. Kucaba-Pietal, A., Laudanski, L.:Modeling Stationary Gaussian Loads. Scientific Papers of Silesian Technical University, Mechanics, 121 (1995) 173–181

    Google Scholar 

  12. Laudanski, L.: Designing Random Vibration Tests. Int. J. Non-Linear Mechanics, 31, 5 (1996) 563–572

    Article  Google Scholar 

  13. More, J. J., Garbow, B. S., Hillstrom, K. E.: User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, Argonne, Ill., (1980)

    Google Scholar 

  14. More, J. J., Sorensen, D. C., Hillstrom, K. E., Garbow, B. S.: The MINPACK Project, in Sources and Development of Mathematical Software, W. J. Cowell, ed., Prentice-Hall (1984)

    Google Scholar 

  15. Rheinboldt, W. C.: Methods for Solving System of Nonlinear Equations. SIAM, Philadelphia (1998)

    Google Scholar 

  16. Rheinboldt, W. C., Burkardt, J.: Algorithm 596: A Program For A Locally Parameterized Continuation Process. ACM Trans. Math. Software, 9 (1983) 236–241

    Article  MathSciNet  Google Scholar 

  17. Stoer, J., Bulirsh, R.: Introduction to Numerical Analysis. Springer, New York, (1993)

    Google Scholar 

  18. Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P., Walker, H. F.: Algorithm 777:HOMPACK 90: Suite Of Fortran 90 Codes For Globally Convergent Homotopy Algorithms. ACM Trans. Math. Software 23, 4 (1997), 514–549

    Article  MATH  MathSciNet  Google Scholar 

  19. Weimann, U. N.: A Family of Newton Codes for Systems of Highly Nonlinear Equations. ZIB Technical Report TR-91-10, ZIB, Berlin, Germany (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dent, D., Paprzycki, M., Kucaba-Pietal, A. (2001). Solvers for Systems of Nonlinear Algebraic Equations - Their Sensitivity to Starting Vectors. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics