Skip to main content

A Level Set-Boundary Element Method for Simulation of Dynamic Powder Consolidation of Metals

  • Conference paper
  • First Online:
Numerical Analysis and Its Applications (NAA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1988))

Included in the following conference series:

Abstract

In this paper, the level set method is coupled with the boundary element method to simulate dynamic powder consolidation of metals based on linear elastostatics theory. We focus on the case of two particles that are in contact. The boundaries of the two particles are expressed as the zero level curves of two level set functions. The boundary integral equations are discretized using the piecewise linear elements at some projections of irregular grid points on the boundaries of the two particles. Numerical examples are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Benson, W. Tong, and G. Ravichandran. Particle-level modeling of dynamic consolidation of Ti-SiC powders. Model. Simul. Mater. Sci. Eng., 3:771–796, 1995.

    Article  Google Scholar 

  2. C. A. Brebbia and J. Dominguez. Boundary elements, An introductory course.MxGraw-Hill Book Company, 1992.

    Google Scholar 

  3. J. E. Flinn, R. L. Williamson, R. A. Berry, and R. N. Wright. Dynamics consolidation of type 304 stainless-steel powders in gas gun experienments. J. Appl. Phys., 64(3):1446–1456, 1988.

    Article  Google Scholar 

  4. T. Hou, Z. Li, S. Osher, and H. Zhao. A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys., 134:236–252, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. Z. Li, H. Zhao, and H. Gao. A numerical study of electro-migration voiding by evolving level set functions on a fixed cartesian grid. J. Comput. Phys., 152:281–304, 1999.

    Article  MATH  Google Scholar 

  6. S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. L. Williamson, J. R. Knibloe, and R. N. Wright. Particle-level investigation of densification during uniaxial hot pressing: Continuum modeling and experiments. J. Eng. Mat. Tech., 114:105–110, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Z., Cai, W. (2001). A Level Set-Boundary Element Method for Simulation of Dynamic Powder Consolidation of Metals. In: Vulkov, L., Yalamov, P., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2000. Lecture Notes in Computer Science, vol 1988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45262-1_62

Download citation

  • DOI: https://doi.org/10.1007/3-540-45262-1_62

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41814-6

  • Online ISBN: 978-3-540-45262-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics