
Modeling Archival Repositories for Digital Libraries�

Arturo Crespo, Hector Garcia-Molina
Computer Science Department

Stanford University
fcrespo,hectorg@db.stanford.edu

ABSTRACT
This paper studies the archival problem: how a digital li-
brary can preserve electronic documents over long periods of
time. We analyze how an archival repository can fail and we
present different strategies that help solve the problem. We
introduce ArchSim, a simulation tool that for evaluating an
implementation of an archival repository system and compare
options such as different disk reliabilities, error detection and
correction algorithms, preventive maintenance, etc. We use
ArchSim to analyze a case study of an Archival Repository
for Computer Science Technical Reports.

KEYWORDS: digital archiving,digital preservation,archival
repository, models for archival repositories, performance of
archival repositories, simulation of archival repositories.

1 Introduction
A continual threat to digital libraries is the loss of documents.
Digital information can be lost not just through magnetic de-
cay in storage devices, but also because of format and device
obsolescence. This problem will only get worse as more and
more information is provided only in digital form. The so-
lution is an Archival Repository (AR), a system capable of
storing and preserving digital objects (e.g., movies, technical
reports) as technologies and organizations evolve [3]. An AR
must preserve not only the bits, but also the “meaning” of
its documents [9]. For instance, to preserve a “postscript”
technical report, the AR needs to maintain the postscript bits,
metadata indicating that this document is postscript, a pro-
gram that can interpret and render postscript, and an environ-
ment that can execute the rendering program.

One of the main challenges in designing an archival reposi-
tory is how to configure the repository to achieve some target
“preservation guarantee” while minimizing the cost and ef-
fort involved in running the repository. For example, the AR
designer may have to decide how may sites to use, what types
of disks or tape units to use, what and how many formats to

�This work was partially supported by NSF.

store documents in, how frequently to check existing docu-
ments for errors, what strategy to use for error recovery, how
often to migrate documents to a more modern format, and
so on. Each AR configuration leads to different levels of
assurance, e.g., on the average a document will not be lost for
1000 years, or in 1000 years we expect to still have access to
99% of our documents. Each configuration has an associated
cost, e.g., disk hardware involved, computer cycles used to
check for errors, or staff running each site.

The number of options and choices is daunting, and the AR
designer has few good tools to help. The traditional fault
tolerance models and techniques, of the type used to eval-
uate hardware, are a helpful starting point, but they do not
capture the unique complexities of ARs. For example, tra-
ditional models may have difficulty capturing different doc-
ument loss scenarios (e.g., missing interpreter, missing bits,
missing metadata) and they frequently assume failure distri-
butions (e.g., exponential) that are too simplistic.

In this paper we present a powerful modeling and simulation
tool, ArchSim, for helping in AR design. ArchSim can model
important details, such as multiple formats, preventive main-
tenance, and realistic failure distribution functions. ArchSim
is capable of evaluating a large number of components over
very long time periods. ArchSim uses specialized techniques
in order to run comprehensive simulations in a time frame
that allows the exploration and testing of different policies.

Of course, no model can be absolutely complete: there is
an intrinsic tradeoff between how detailed the model is and
the complexity (even feasibility) of its study. In our case, we
have chosen to ignore (at least in this initial study) information
loss due to format conversion (migration to a new format is
always successful and does not introduce any loss). We also
do not model partial failures (a failure where we can salvage
part, but not all, of the information in a device). As we
will see, we also rely on an “expert” that can provide failure
distributions for the components of the systems. For instance,
if format obsolescence is an issue, an expert needs to give us
the probabilities of different format lifetimes.

In summary, our contributions are:

� A comprehensive model for an AR, including options for
the most common recovery and preventive maintenance tech-
niques (Sections 2, 3 and 4).

1



� A powerful simulation tool, ArchSim, for evaluating ARs
and for studying available archival strategies (Section 5).
� A detailed case study for a hypothetical Technical Report
repository operated between two universities. Through this
case study, we evaluate AR factors such as disk reliability,
handling of format failures, and preventive maintenance.

2 Archival Problems and Solutions

As a first step in modeling and evaluating archival repositories
(ARs), it is important to understand how information can be
lost, and what techniques can reduce the likelihood of loss.
Because of space limitations, we limit ourselves to a brief
review of failure sources and avoidance techniques. The
expanded version of this paper [8] contains the full review.

2.1 Sources of Failures

An AR fails to meet its guarantee when it loses information.
Such a loss may be caused by a variety of undesired events,
such as the failure of a disk, on an operator error. A document
is lost if the bits that represent it are lost, and also if the
necessary components that give meaning to those bits are
lost. We define the components of a document to be all the
resources that are needed to support access to the document,
e.g., the document bits, the disk that stores the bits, and the
viewer that interprets the bits.

An undesired event does not necessarily cause information
loss. For instance, if the AR keeps two copies of a document,
and the disk holdingone of the copies fails, then the document
is not lost. It would take a second undesired event affecting
the second copy to cause information loss. A document is
damaged if a copy or instance of one of its components is
corrupted or lost. Damaged documents should be repaired
by the system to protect them from further failures.

The most common undesired events that may lead to the
loss of a document can be broken down into the following
categories. (We do not consider transient failures, e.g., a
power failure, that do not lead to a permanent loss.)

Media decay and failure: Example: disk magnetic decay; a
worn out tape breaks when it is being read.

Component Obsolescence: Example: we do not have a ma-
chine that can read a tape, even if the media is still readable.

Human and Software Errors: Example: a person or a pro-
gram deletes a document; a program improperly modifies the
files and data structures that represent the document. (Ref-
erence [13] suggests that humans and software are the most
serious sources of failures in computer systems.)

External Events: Examples: fires, earthquakes and wars.
Such events may cause several AR components to fail simul-
taneously. For example, a flood can destroy a collection of
disks at one site. If a document was replicated using those
disks, all copies will be lost.

2.2 Component Failure Avoidance Techniques
There are two well-known ways to avoid an AR failure: We
can either reduce the probability of component faults, or we
can design the AR so those faults do not result in document
loss. In this subsection, we review techniques in the first
category, while the next subsection will cover the second
category. We organize the presentation in this subsection
using the taxonomy of faults presented in Section 2.1.

Media decay and failure: To reduce the likelihood of media
failure, we can store our document on very reliable media
(e.g., use CDs instead of tapes). We can also ensure that the
media is maintained in the best conditions possible. For ex-
ample, by placing tapes in a low-temperature/low-humidity
environment, we may increase their life by an order of mag-
nitude [2].

Component Obsolescence: Reducing component obsoles-
cence is hard, as it requires an accurate prediction of what
operating systems, document formats, and devices will be
used in the future. Still, use of standards, self-contained
media (i.e., media that includes its own reader) [14], and
equipment preservation may help.

Human/Software Errors: Good coding techniques can reduce
the likelihood of these failures, e.g. define interfaces that
minimize the amount of damage that can be done. In addition,
program validation and operator training can help.

External Events: Damage from external or environmental
events can be reduced by fire-proof walls,earthquake resistant
buildings, and so on.

2.3 System-Level Techniques
Migration: Migration involves replacing a document com-
ponent by a new, safer one. For example, suppose that
“Postscript” readers are becoming obsolete, being replaced
by new “Postscript II” ones. Then we may decide to migrate
Postscript documents into the new format, before Postscript
readers become unavailable. Migration is particularly effec-
tive for storage devices. However, migrating to new formats
is more challenging because some information may be lost in
the transformation.

Replication: Replication makes copies or creates new in-
stances of needed components, to ensure the long term sur-
vival of the component. Replication is used by many archival
system including the Computing Research Repository [12],
the Archival Intermemory Project [10, 6], and the Stanford
Archival Vault [4].

Emulation: Emulation involves re-creating all the compo-
nents needed to access a document on a new platform [17].
Emulation can be done at several levels: hardware, the oper-
ating system, software, or format.

Fast Failure Detection and Repair: With most system fault
tolerance techniques, we need to check periodically for failed

2



documents. Fast failure detection and repair yields improved
reliability. For example, if one of two component copies have
failed, the sooner we detect the problem and generate a new
copy, the more protection we get against a second fault.

3 Architecture of an Archival Repository
Our goal in this section is to identify the elements of a typical
archival repository (AR), so we can model each element and
study how it impacts reliability. A typical AR stores docu-
ments in a data store that can fail. The AR can still achieve
long-term survivability by enhancing the data store with an
archival system (AS) that implements some of the techniques
of Section 2.3. We present our AR model in Figure 1. The
figure shows the AS modules (in solid-line boxes), the non-
fault-tolerant store (in a dashed-line box), and the archival
documents. The arrows represent the runtime interactions
between the elements.

Damage
RepairDetection

Failure

Archival
Document
Creation

Archival
Document
Access

Failure

Prevention

Archival
Document

Archival
Document

Other
Services

Data Store

Figure 1: Archival Repository Model

3.1 Archival Documents
In our architecture, an archival document embodies informa-
tion. An archival document cannot be just a bag of bits, but it
must also include all the components necessary to transform
the bits into a human comprehensible form.

An archival document is an abstract entity. The connection
between document and access to it is achieved through mate-
rializations. A materialization is the set of all the components
necessary to provide some sort of human access to a docu-
ment. For example, a materialization may include the bits,
disks, and format interpreters necessary to display a technical
report. The same technical report may be accessible through
a different materialization, that may include a different format
interpreter to print the technical report.

We illustrate materializations in Figure 2. In the figure, there
are two archival documents. Each of those documents has
two different materializations. For example, Materialization
1 requires the following components to be available: File 1,
Site A, Disk 1, and a ASCII printer. Incidentally, notice that
File 1 is stored on Disk 1, which in turn is at Site A. Such
component interdependencies will be discussed later, when
we model materialization failures.

The AR is able to preserve documents by preserving the
materializations and their components. In this paper, we treat
the documents as “black boxes.” We do not attempt to take
advantage of document structure (e.g., chapters in a book).

Site B

Disk 2 Disk 3
File

3

Site A

Disk 1

ASCII Printer
PDF Displayer

Postscript Printer

Materialization
1

Materialization
2

Materialization
3

Materialization
4

Document 1 Document 2

File
1

File
2

File
4

Figure 2: Materializations

3.2 Architecture of the Non-Fault-Tolerance Store

The Store encompasses the set of components, such as sites,
disks, or format interpreters that make materializations acces-
sible. Because the store is not fault tolerant, materializations
may be lost. A materialization is considered lost when any
of its components has failed. If all of the materializations of
a document are lost, then the document is considered lost.

To create a materialization, first we must ensure that the
necessary components exist in the store. Then we create
a record that links together the components as a material-
ization. For example, say we want to create a document
materialization that requires the bits in file “doc.ps”, which
are located in disk2 in site1 and requires the postscript in-
terpreter. Any components that do not exist already (e.g., the
file doc.ps) are created. In some cases, “creating” a compo-
nent may require a physical action, e.g., adding a new printer
or disk to the store. Once the components exist, a metadata
record containing references to the components is created
(e.g., hsite1; doc:ps; disk2; postscripti). This record serves
as the identifier for the materialization.

A document metadata record includes the records for all avail-
able materializations. Note that a document is not accessible
if its metadata record is corrupted or lost. Therefore, the
record must be one of the required components for any ma-
terialization.

3.3 Architecture of the Archival System

The AS provides fault tolerance by managing multiple ma-
terializations for each document. The AS monitors these
materializations, and when a failure is detected, attempts to
repair them. The AS can improve fault tolerance further by
taking preventive actions to avoid failures. The AS provides
the user the ability to create and retrieve archival documents.
It also provides miscellaneous services such as indexing, se-
curity, and document retirement, among others. When a user
requests a document, the AS uses its metadata to find all the
available materializations of that document, selects one and
returns it to the user. In this section, we describe the six
modules that make up at AS (see Figure 1).

3



The Archival Document Creation module (ADC) generates
new documents, implementing policies on the number and
types of materializations that are needed. For example, say
an administrator has decided that documents should be ma-
terialized as illustrated by Document 1 in Figure 2. Then, for
each new document, the ADC will create (on the data store)
the appropriate “File 1” and “File 2,” the document metadata
record, and will check that the other components exist. The
main objective of this paper is to provide a framework that al-
lows a system administrator to choose the best materialization
policies to achieve a desired level of reliability.

The Archival Document Access module (ADA) services re-
quest for documents. Basically, the module translates the
request for a document into a request for the appropriate
components of one of the document materializations.

The Failure detection module (FD) scans the store looking
for damaged or lost materializations. When a damaged mate-
rialization is found, the failure detection module informs the
Damage Repair module (described below) about the problem.

The Damage Repair module (DR) attempts to repair damaged
documents. There are many strategies to repair a damaged
document, as discussed in Section 2.3. The input of the DR
module is a signal from the FD module.

The Failure Prevention module (FP) scans the store and takes
preventive measures so materializations are less likely to be
damaged. For example, the FP module may copy components
that are stored on a disk that is close to the end of its expected
life, into a newer disk.

Finally, the Other Services module (OS) provides miscel-
laneous services such as indexing, security, and document
retirement. Retiring a document involves removing from the
store any components that are no longer needed, even by other
materializations.

4 Failure and Recovery Modeling
In this section, we will model the failure and recovery char-
acteristics of an AR, based on the architecture presented in
the previous section. First, we will explore how to model a
non-fault-tolerance store, and then the archival system (AS).
Later, we will combine these two models into an archival
document model.

4.1 Modeling a Non-Fault-Tolerance Store
To model the failure characteristics of a store, we start with an
abstract representation of materializations and components.
We model a materialization as an n-tuple hmatid, docid,
comp1, :::compni; wherematid is the materialization identi-
fier, docid is the document identifier, and comp1:::compn are
the components required to provide the required document ac-
cess. The identifiersmatid and docid together, form a unique
id for the materialization. For example: hM1, TR1233,
doc:ps, site1, disk2, postscripti means that the materializa-
tion M1 contains the document identified by TR1233 that

needs the bits in file doc:ps, disk2, site1 and the postscript
interpreter in order to be readable. A document can have
more than one materialization. For example, Technical Re-
port 1233 can also have the materialization hM2, TR1233,
doc:ps, site1, disk3, postscripti, which would be a copy of
M1 but on a different disk (disk3).

We model components by a tuple hcomponentid, typei,
where componentid is a unique identifier for the compo-
nent instance and type is the class (e.g., file, disk, interpreter)
to which the instance belongs.

To further model components, we need to describe:

� How many component instances and types are present in the
system: this is, how many disks, formats, etc., are available.
� Failure distribution of each component type. Many com-
ponents have two different failure distributions, one during
archival and another during access. For example, a tape is
more likely to fail when it is being manipulated and mounted
on a reader than when it is stored. Therefore, each component
will have two failure distributions: during archival (i.e., time
to next failure when the component is not used) and during
access. For some components, such as disks or sites, the ac-
cess and archival distributions will be the same; but for other
components, such as tapes or diskettes, these distributions
can be very different.
� Time distribution for performing a component check. This
distribution describes how long it takes to discover a failure
(or to determine that a component is good), from the time the
check process starts. For example, consider checking a tape.
This may involve getting the tape from the shelf, mounting
the tape, and scanning the tape for errors.
� Time distribution for repairing a component failure. This
distributiondescribes how long it takes to repair a component.
This distribution may be deterministic (if the component can
be repaired in a fixed amount of time). Repair time may be
“infinite” if the component cannot be fixed.

In addition, there is an important interdependency between
components. Specifically, the failure of one component may
cause the failure of another component. For example, if a
site fails (e.g., because it was destroyed by a fire), then all
the disks at the site will also fail. As pointed out earlier,
we are only taking into account permanent failures; transient
failures (e.g., the site was temporarily disconnected from the
network) are ignored. This failure dependency is captured
by a directed graph. For example, an arrow between “Site
A” and “Disk 1” in the interdependency graph means that if
“Site A” fails, then “Disk 1” will also fail.

We close this subsection with two comments. First, we do not
claim that the model presented for the store is complete. For
instance, we have not included policies for handling concur-
rent access. There is always a tradeoff between complexity
of the model and our ability to analyze it. We believe that
our model strikes a good balance in this respect, and captures
the essential features of a store. Second, the reliability pre-

4



dictions we make are only valid for the current configuration
of the repository. Over time, the repository will change (e.g.,
as new devices are introduced), so we may need to change
our repository model. As the model changes, we may need
to revisit our predictions.

4.2 Modeling an Archival System
In this section, we describe how to model the behavior of the
modules of the archival system. We do not include failure
distributions for these modules as we are assuming that the
AS itself does not fail. We recognize that this is a strong
assumption, but in this paper, we have chosen to concentrate
on the failure of components, instead of on the failure of the
system that provides fault-tolerance. How to develop error-
tolerant robust software design have been study in [16].

Because of space constraints, we cannot describe each mod-
ule separately. In general, we model the input of the modules
with probability distribution functions and their behavior by
algorithms. For example, consider the document creation
(ADC) module. Its input distributions tell us how frequently
requests for document creation arrive, how many materializa-
tions each new document will have, and which components
will be selected to participate in a given materialization. The
algorithms for the failure detection (FD) module spell out
what policies are implemented, e.g., if all components are
checked on a regular basis or not.

The probability distributions that drive the model can be ob-
tained in different ways. If we have data from a real system,
we can use the data directly (trace driven), or we can define
an empirical distribution, or we can fit the data onto a theoret-
ical distribution [1]. If we do not have real data, we need to
choose a theoretical distributionthat matches our intuition. A
sensible distribution to choose (when requests are generated
independently) is a Poisson distribution for event inter-arrival
times [5].

We summarize the model parameters in Figure 3. The figure
is divided in three parts. At the top are the parameters that
describe the AR: the number of components and their types,
and the failure dependency graph. Then, we list all the dis-
tributions needed for the model with the units being modeled
in parenthesis. Finally, we list all the policies and algorithms
that must be defined to model the archival system.

4.3 Modeling Archival Documents
In this section, we combine the models for the data store and
the AS, in order to describe the life of an archival document.
In Figure 4, we depict our model for the life of an archival
document. The life of a document starts when its material-
izations are created by the ADC module and handed to the
store. The creation of a document may not be an instanta-
neous process. For example, if long-term survival is achieved
by keeping multiple copies, the document is not considered
archived until all the copies are generated. Once the ADC
module has taken all the actions that ensures the long-term

� AR Description
– Number of components and types
– Failure dependency graph

� Distributions
– For each component type:

� Failure distribution during access (time)
� Failure distribution during archival (time)
� Failure detection distribution (time)
� Repair distribution (time)

– Document creation distribution (time)
– Document access distribution (time)
– Access duration distribution (time)
– Document selection distribution (document)

� Policies
– Document Creation policy
– Document to materializations policy
– Failure detection algorithm
– Damage Repair algorithm
– Failure prevention algorithm

Figure 3: Archival Repository Model Parameters

survival of the document, then the document has full protec-
tion, and we say that the document is in the Archived state.

Document
is Lost

Document
is created

Document
is retired

Document
is Damaged

Document
is accesible

Document
is Archieved

10

1 9

4 2

3

5

6

7 8
11

Damaged
detected

Figure 4: Archival Document Model

When any of the document component fails (based on the
distributions in Figure 3), the document is considered to be
in the Damaged state and becomes temporarily unprotected.
For example, if we keep two copies of a document and one
of the copies is lost, then the document would be damaged.
As explained earlier, the AS will not know that a document
is damaged until the FD module detects the failure. When
the failure is detected, the document goes to the Damaged
Detected state.

When damage to a document is detected (by the policies
summarized in Figure 3), the AS starts actions to restore
the document and, hopefully, return it to the Archived state.
For example, if the document is damaged because one of its
copies was lost, the repository can just replace the damaged
copy by creating a fresh one from one of the good copies.
However, if the repair is not successful, then the document
may be Lost. This later state is the one that we want to avoid
in an archival system.

We also distinguish two additional states: Accessible and
Retired. When a document is in the Accessible state, it can be

5



accessed (e.g., read, printed) by users, which is not the case
for the Archived state. For example, if some the document’s
components are stored on a tape which is kept in a safe, we
need to take the tape out and mount it in a reading device to
make it accessible. When the tape is stored the document is
in the Archived state; when the tape is mounted, it is in the
Accessible state. As we discussed in the previous section,
when making the document accessible, in general, we are
increasing the chances of damaging the document; so the
probability of transition 7 is, in general, greater than the
probability of transition 5.

The Retired state allows users to mark the document that are
not needed anymore. In this case, the document is retired
from the archival system and the system does not provide
any survivability guarantees. It is important to note that
retiring a document may eventually result in removing all
materializations from the store. This action is different than
taking a document “out of circulation,” in which case the
document is not longer available to regular users, but it is still
preserved for historical reasons.

5 ArchSim: A Simulation Tool for Archival Repositories
To evaluate a possible AR configuration, we need to predict
how well it protects documents. This prediction can some-
times be done analytically, but as the AR gets more complex,
an analytical solution is impractical (and sometimes impossi-
ble). Instead, we rely on a specialized simulation engine for
archival repositories: ArchSim. We start this section by dis-
cussing the specific challenges confronted when simulating
an AR. Then we describe ArchSim and its libraries.

5.1 Challenges in Simulating an Archival Repository
ArchSim buildsupon existing simulation techniques for fault-
tolerant systems. However, the unique characteristics of
archival repositories make their simulation challenging:

� Time Span: The life of an archival system is measured in
hundreds, perhaps thousands of years. This means that sim-
ulation runs will be extremely long, so special precautions
must be taken to make the simulation very efficient. Fur-
thermore, given these long periods, failure distributions must
take into account component “wear-out.” (A component is
more likely to fail after 50 years that it is when new.) Simple
failure distributions (e.g., exponentially distributed time be-
tween failures) are frequently used in fault-tolerant studies,
but they cannot be used here since they do not capture wear
out.
� Repairs: In an archival system we cannot in general assume
that damaged components can always be replaced by new
identical components (another common assumption when
studying fault-tolerant systems). For example, after say 100
years, it may be impossible or undesirable to replace a disk
with one having the same failure characteristics.
� Component models: Component models are fairly rich,
compounding the number of states that must be considered.
For instance, as we have discussed, a file is not simply cor-

rect or corrupted. Instead, it can be corrupted but the error
undetected, it can be correct but not accessible for reads, and
so on. The failure models in each of these states may be
different, e.g., a file is more likely to be lost when being read.
� Sources of failures: A document can be lost for many rea-
sons, e.g., a disk fails or a format becomes obsolete. Each
of these failures has very different models and probability
distributions. The approach of finding the “weak link” and
assuming that all other factors can be ignored is not appro-
priate for ARs.
� Number of Components: An AR needs to deal with a large
number of components and materializations. The challenge
of simulating large number of objects has been studied ex-
tensively [11, 15] and ArchSim uses those results.

5.2 The Simulation Engine: ArchSim
ArchSim receives as input an AR model, a stop condition
(stop when the first document is lost or when all documents
are lost) and a simulation time unit (minutes, hours, days,
etc.). ArchSim outputs the mean time to failure (mean time
to stop condition), plus a confidence interval for this time.
We are currently considering other output metrics, e.g., the
fraction of the documents that are available after some fixed
amount of time. However, these other metrics are not used in
our case study (Section 6).

For defining the AR model, each distribution and policy is
implemented as a Java object, so they can be as general as nec-
essary. For example, for component repair, the corresponding
Java module can simply use a probability distribution (per-
haps one of the library functions described below) to generate
the expected repair time. However, that module can easily
be replaced by one that first decides if the component can
be repaired (using one probability distribution), and then for
each cases generates a completion time (when the component
is repaired or the repair is declared unsuccessful).

5.3 Library of Failure Distributions
ArchSim makes available a library of pre-defined failure dis-
tributions, that can be used to describe AR components. The
distributions in the library are: bathtub, infant mortality, his-
torical survival,uniform, and deterministic. In Figure 5(a)-(e)
we sketch generic versions of these probability distributions.
For instance, in the bathtub distribution in (a), the instanta-
neous probability of failure early in the component’s life (left
on the horizontal axis) and late in its life (to the right) are
higher than during the middle years. With the deterministic
distribution (e), the component fails at a fixed time, where a
spike is shown. (The area under these curves, from time 0 to
t, represents the probability the component will fail by time
t.) In the extended version of this paper [8], we give a formal
definition of each distribution.

5.4 ArchSim’s Implementation
ArchSim follows the structure of a traditional simulation tool.
Each module of the AR model can register future events in a
timeline. For example, when a disk is created, the simulation

6



t

p

t

p

(A) (B)
t

p

(C)

t

p

t

p

(D) (E)

1

Figure 5: Possible Failure Functions

uses the disk failure distribution tocompute when the disk will
fail; then, it registers the future failure event in the timeline.
The simulation engine advances time by calling the module
that registered the first event. This module may change the
state of the repositoryand register more events in the timeline.
After the module returns, the simulation advances to the next
event, in chronological order. The user can choose between
two end conditions for the simulation: the simulation can
stop after the first document is lost or after all the documents
are lost.

ArchSim needs to be very flexible and efficient to meet the
challenges of simulating an archival repository. Flexibility
is needed to model very different archival conditions and
implementations. Speed is needed to cope with many ma-
terializations, components, and events. Additionally, each
simulation needs to be run many times in order to obtain
narrow confidence intervals.

In an AR simulation, many events are inconsequential. For
example, suppose that the detection module schedules peri-
odic detection events. If the detection event finds a fault (i.e.,
there was a failure event before the detection event), then the
module starts a component repair; if no failure is detected,
then the module does nothing. If a repair module checks a
component with mean time to failure (MTTF) of 20 years,
every 15 days, then, in average, 486 events (20 � 365=15)
will be fired and the repair module will just return without
doing anything; only in the event 487, when a failure of the
component has happened, will the repair module perform an
action. Given the large number of components and modules
that may be part of the model, this large number of inconse-
quential events represents a significant overhead. To avoid
this overhead and to improve efficiency, modules are allowed
to register conditional events in the timeline. These events
will only happen if some other event happened before them.
By using conditional events, we can condition the firing of the
detection event only if a failure event on an specific compo-
nent happened before it. A conditional event is not registered
directly in the timeline. Instead, it is registered in an index
that is part of its triggering event. For example, if event B is
conditional to the occurrence of event A, we will put B in the
index of A. When a new event A is schedule in the timeline,
we look in the index and find that B is conditional to it, so at

that point we also schedule B.

To reduce the number of events further, ArchSim also mod-
ifies failure distributions. For example, when modeling pre-
ventive maintenance, a large number of “replace component”
events are generated. We can eliminate all those events, by
modifying the failure distribution. Specifically, the original
failure distribution is used to generate the time of the next
failure of the component. If this time is higher than the pre-
scribed preventive maintenance period, we ignore this time,
and we generate a new failure time, gain using the origi-
nal distribution. We repeat this process until a failure time
is lower than the preventive maintenance period. The new
distribution then returns the number of iterations minus one,
times the PM period, plus the last failure time.

Another challenge for ArchSim is how to deal with a large
number of materializations and components. This is done by
scheduling only the next failure for each component type and
associating a trigger with that event. When the failure event
happens, the trigger is activated. The trigger computes when
the next failure of a member of that component type will
occur, and adds it to the timeline. Obviously, this approach
is only beneficial if we have many components of the same
type, which is a reasonable scenario for an AR. In the case
when we have N different distributions for N components,
this technique does not improve the simulation time, but it
does not increase it.

6 Case Study: MIT/Stanford TR Repository
In this section, we use ArchSim to answer some design
questions for an hypothetical MIT/Stanford Technical Re-
port Archival Repository. The AR follows loosely the Stan-
ford Archival Vault (SAV) design [7] and implementation [4].
(We actually considered creating such a repository some years
ago, when both institutions were participating in the DARPA
sponsored CSTR Project.) In this case study, MIT and Stan-
ford preserve their Computer Science Technical reports by
replicating the reports at both universities. In this case study
we will have to make many assumptions. Our goal here is
not make any specific predictions, but rather to illustrate the
types of evaluations that ArchSim can support, the types of
decisions that must be made to model an AR, and the types of
comparisons than can be made to support rational decisions
among alternatives.

We will assume that the collection has 200,000 documents and
that each document is stored in one or more of four available
formats. The repository will have two types of components:
storage devices (disks) and format interpreters. To ensure
preservation, the AR maintains four materializations of each
technical report; two materializations at Stanford and two at
MIT. Materializations are created by choosing two formats
out of the four available formats. Two of the materializations
will be in one of the chosen format, while the other twowill be
in the other. Then, at each site, we place two materializations
that are in different formats in two different disks. Figure 6

7



illustrates the arrangement of the technical reports in this
system.

Stanford

Disk 1

Disk 10

ASCII PrinterPDF Displayer

Materialization
1

Materialization
2

Technical
Report

Postscript Printer TIFF Displayer

File
1

File
2

MIT

Disk 1

Disk 10

Materialization
3

Materialization
4

File
3

File
4

Figure 6: MIT/Stanford CSTR Scenario

Disks, formats, and sites have uniform failure distributions
with parameters 1=�sto; 1=�form; 1=�site. As our base val-
ues, we are assuming �sto, �form, and �site, the mean time
to failure (MTTF) for disks, formats and sites, to be 3, 20,
and 45 years respectively.

These values are our best guess for a typical archival system.
We chose 3 years as the disk MTTF, as this is the normal
period under which a hard drive is under manufacturer guar-
antee. We chose 20 years for format MTTF as we theorize
that it will take that long for a well-known format to be re-
placed by a new format and for all displayers and transformers
for the old format to be lost. We chose 45 years for the site
MTTF as we assign a 50% probability to the event of loosing
the Stanford site due to a high intensity earthquake in the San
Francisco Bay Area (which is predicted to happen in a 45
year period).

The archival system checks for faults periodically. When
a fault is detected in one of the storage devices, the bad
device is retired, and a new device is set online. Then, the
system regenerates the bad device by making a copy of the
lost materializations from the other site. Similarly, when
a format becomes obsolete, a new format is selected and a
new set of materializations (transformed from a non-obsolete
format) is created in the new format. In addition, in case of
site failure, the site is recreated from the other site. If all sites,
formats and devices that support all the materializations of a
technical report are lost, then the technical report is lost and
the simulation stops. Disks, formats, and sites are checked
and repaired (if needed) every �sto; �form , and �site days.
As our base values, we are assuming �sto; �form, and �site
to be 60, 60, and 7 days.

To justify these values, we need to describe what is involved
in the detection and repair of component failures. Detecting a
failure in a disk involves scanning the whole disk and check-
ing for lost data. When we find lost data, we need to order a
new disk and then copy all the data that was in the damaged

Parameter Symbol value
Number of disks nsto 100 per site
Number of formats nform 4
Number of documents numdoc 200,000
Mean Time to Disk Failure �sto 3 years
Mean Time to Format Failure �form 20 years
Mean Time to Site Failure �site 45 years
Disk Failure Detection/Repair time �sto 60 days
Format Failure Detection/Repair time �form 60 days
Site Failure Detection/Repair time �site 7 days

Figure 7: Base values

disk from other sources into the new disk. Assuming that the
repair time is 60 days means that we need to dedicate only
3% of the disk bandwidth to scan all materializations in order
to detect failures. We did not chose a quicker repair because
the scanning overhead would be too high in our opinion. For
example, 25% of the disk bandwidth is required to detect
failures in 7 days.

For formats, the detection/repair times imply that we are able
to realize that a format is obsolete and that we can create a
new copy of the document from a non-obsolete format within
a 60 day period. In the case of site failures, we are assuming
that the detection/repair time for the site is much lower than
for formats and disk. The detection itself should be rather
fast in this case (the entire site is down), and the 7 days could
be the time it takes to find a backup site to take over.

In this case study, we are assuming that failures are total. This
is, we cannot partially repair a component and salvage some
of the materializations. The failure distributionduring access
will be assumed to be the same as the failure distribution
during archival. The simulation parameters are summarized
in Appendix I and the base values for our simulation are in
Figure 7.

In our first experiment, we evaluate the effect of the fail-
ure MTTF and repair times of storage devices on the system
MTTF. In Figure 8, we show the system MTTF for different
disk MTTFs, given a detection/repair time of 60 days. To
single-out the influence of storage device failures, we are as-
suming in this experiment that formats and sites never fail.
The dotted lines in the figure represent the 99% confidence
interval for the simulation, while the solid line is the average
of all the simulation runs. As expected, the system MTTF
increases when the disk MTTF increases (when the disk fail-
ure rate decreases). The exponential shape of the curve is the
result of the constant repair time. As we keep increasing the
disk MTTF, it is much more improbable that another device
will also fail before 60 days have passed. This graph allows
us to select a good storage device for a target system MTTF. If
the library targets a 10-year MTTF, then a disk with a failure
MTTF of 3 years will suffice. However, if the library requires
a MTTF of 100 years, then we will need disks with a MTTF of
about 6 years. Most manufacturers guarantee their disks for

8



0

200

400

600

800

1000

1200

1400

3 5 10 20φφφφsto (years)

M
T

T
F

of
S

ys
te

m
(y

ea
rs

)

Average

99% confidence interval

Figure 8: MTTF vs. �sto with
�sto of 60 days

MTTF of MIT/Stanford CSTR Archival System
(logarithmic scale)

1

10

100

1000

10000

15 30 60 120 360 480 720

ρρρρsto (Detection/Repair Time in days)

M
T

T
F

(y
ea

rs
) 3 years

5 years

10 years

20 years

φsto

Figure 9: System MTTF (loga-
rithmic scale)

0

50

100

150

200

250

3 5 10 20
φφφφsto of media (years)

M
T

T
F

of
S

ys
te

m
(y

ea
rs

)

MTTF with format failures

99% confidence interval

MTTF without format failures

Figure 10: MTTF �form=20
years, �sto=�form=60 days

three years and very few guarantee them beyond five years.
Therefore, a 6-year disk MTTF requirement will be hard (or
very expensive) to meet. Nevertheless, we can still achieve
our target system MTTF by changing other parameters in our
system, as we will see in the next experiment.

We now evaluate the sensitivity of the system MTTF to the
repair time (�sto). In Figure 9, we show the MTTF of the
AR for different disk MTTF (�sto) values, and for different
expected detection/repair times. (Note that the graph has
a logarithmic scale. Confidence intervals are not shown to
avoid clutter.) First, let us concentrate in the curve for a �sto
of 3 years. As expected, the MTTF of the system decreases
when the �sto of the storage devices increases. However, the
shape of the curve is more interesting. At low detection and
repair times, there is a high positive impact on the MTTF of
the system. However, as we increase the repair times, the
system MTTF drops sharply. Interestingly, for a repair times
greater than 120 days, about 1/9 of the MTTF of the storage
device, the effect on the system MTTF of the detection/repair
module is small. Thus, the detection and repair times must
be much lower than the storage device failure MTTF to have
a significant effect on the MTTF of the Archival System.

What is the optimal solution for a given MTTF with respect
to disk MTTF repair times? The answer depends on the cost
assigned to those two factors. By looking to all the curves of
Figure 9, we can observe that we can achieve similar MTTF
by using better media or by reducing the detection/repair
times. For instance, a system that uses a storage device with
�sto of 5 years (i.e., a low quality storage device) and has a
detection/repair time of 30 days, is as good as a system that
uses a high quality storage device with �sto of 20 years, but
is only checked and repaired every 360 days. The decision
of which alternative to choose will depend on the cost of the
storage device versus the cost of more frequent detections.

We now expand our experiments by allowing formats to fail.
In Figure 10 we show system MTTF as a function of �sto
when formats can fail. We fix �sto at 60 days, and now
formats can fail with�form = 20years. To avoid introducing
additional factors in the analysis, we assume site failures still

cannot happen. Format failures are detected and repaired
with �form = 60 days. For comparison purposes, we have
included in Figure 10, the results presented in Figure 8. The
important conclusion that we can derive from the figure is that
in an archival repository we cannot focus on single component
types. It is surprising that even though the format MTTF is
much larger than the disk’s MTTF, the failure of formats still
has a significant impact. This is because a document is lost
if there is a disk failure or a format failure. The result is that
we are taking the “worst” of those two failures, resulting in a
system with a low MTTF. The result of this experiment shows
that we need a comprehensive model, like the one proposed in
this paper, to realize the interactions between the components
and their effects on system MTTF.

Our model can be used to explore other possibilities that
may improve reliability. For example, we now consider what
happens if we are able to increase the number of copies main-
tained in the sites from two to three. In Figure 11, we maintain
the same parameters at the same base values, but now each
site has three copies in three different formats. In the figure,
we can see that by increasing the number of copies to three,
the MTTF increases from 34 years to 2101 when �sto is equal
to 3 years. Although increasing the number of copies to three
will undoubtedly increase the cost (as we need an additional
33% disk space and the need to handle an extra format), we
have achieved an important improvement in the MTTF of the
system.

As we stated earlier, a comprehensive model is important to
get an accurate picture of the reliability of the system. In the
next experiment, we use our system to explore a different,
more complex failure distribution for storage devices. In
this new distribution, we want to include the issue of “infant
mortality.”

When the failure distribution includes infant mortality, stor-
age devices have a higher failure rate in the beginning of their
life (in our case, 30 days) than in the rest of their lives. This
can be expressed as a distribution that has a low MTTF within
the first 30 days and a higher MTTF after that. The MTTF
after the 30-day period will be 5 years. We will vary the

9



1

10

100

1000

10000

60 360 720
Repair Rate (days)

M
T

T
F

of
S

ys
te

m
(y

ea
rs

)

3 years

5 years

Two Copies (3 years)

φsto

Figure 11: MTTF with 3 Copies
(logarithmic scale)

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50%

Infant Mortality (% of storage devices failing in first 30
days)

M
T

T
F

of
S

ys
te

m
(y

ea
rs

)

Average

90% confidence interval

Figure 12: MTTF with Infant
Mortality

0

10

20

30

40

50

60

70

80

1 3 5 10 Never
Start of Aging (years)

M
T

T
F

(y
ea

rs
)

1
3
5
10
Never

Preventive
Maintenance

Period (years)

Figure 13: System MTTF with
PM and Aging

early MTTF between 44 and 285 days. In this experiments
we will assume that formats cannot fail. All other assump-
tions and repair procedures of the previous experiments are
maintained (see Figure 7). In Figure 12 we show the system
MTTF at given percentages of storage devices that fail in the
first 30 days. For example, with an early MTTF of 285 days,
10% of the devices will fail within 30 days. With a MTTF
of 135 days, 20% will fail. As expected, the higher the in-
fant mortality, the lower the MTTF of the system. At a 0%
infant mortality, the system MTTF was 65 years, dropping
to 48 years when the infant mortality is 10% and dropping
to only 11 years at 50% infant mortality level. Given this,
when using components that suffer from infant mortality, a
way to increase the MTTF of the system is for the failure
detection module to check new components much more often
than older components.

We now explore the issue of aging of storage devices. With
aging, a storage devices will have a lower MTTF at the end
of its life. For example, a disk may have a 5 year MTTF
during its initial life and a MTTF of 2 years when it reaches its
“aging” phase. In this experiment we will assume that formats
cannot fail. All other assumptions and repair procedures
of the previous experiments are maintained (see Figure 7).
We evaluated the MTTF of the system for different points
when aging starts (no graph shown). As expected, the sooner
aging starts, the lower the MTTF of the system. If aging
never occurs, the MTTF of the system is 65 years. If aging
starts after 1 year, the system MTTF is 17 years, increasing
to 42 years when aging starts after 5 years. Given this,
when using components that suffer from aging, a way to
increase the MTTF of the system is for the failure detection
module to check old components much more often than newer
components. Moreover, we should consider replacing old
components with newer ones before the old components fail.

As a final experiment, we will evaluate the impact of Pre-
ventive Maintenance (PM) on a system with aging disks.
Specifically, we will replace old disks with new ones before
the old disks are expected to fail. This is done by copying
(instantaneously) all documents from the old disk into a new
disk, and then removing the old disk. In this experiment, we

are assuming that disks do not have infant mortality and that
disks have a 5 year MTTF during their initial life and a MTTF
of 2 years when they reach their “aging” phase. Figure 13
shows five PM schedules for disks that age at different points.
From the figure we can see that the most efficient PM sched-
ule is one that matches the start of the aging period of the
disk. For example, when we use a 10-year PM plan a system
with disks that age after 5 years, will have a MTTF of 42
years. When we never perform PM, the system MTTF does
not increase significantly. However, when we use a 5-year
PM plan, the MTTF of the system increases to 63 years. If
we keep increasing the frequency of the PM plan, the MTTF
does not improve much more.

7 Conclusions
In this paper, we have studied the archival problem. We stud-
ied the different options for recovery and preventive main-
tenance, developing a comprehensive model for an AR. We
described a powerful simulation tool, ArchSim, for evaluat-
ing ARs and the available archival strategies. We described
how ArchSim can efficiently perform large simulations many
components and very long durations. We demonstrated the
use of ArchSim with a case study for a hypothetical Tech-
nical Report repository operated between Stanford and MIT.
We considered options such as disks with different reliabil-
ity, number of copies, format failure handling, and preventive
maintenance. We believe ArchSim can help librarians and
computer scientists make rational decisions about preserva-
tion, and help achieve better archival repositories.

8 REFERENCES
1. W. David Kelton Averill M. Law. Simulation Modeling &

Analysis. McGraw-Hill, 1991.

2. John W.C. Van Bogart. Magnetic Tape Storage and Handling.
National Media Lab, 1995.

3. C. Borgman, S. Chen, H. Garcia-Monlina, K. Thibodeau, ,
and G. Wiederhold. NSF Workshop on Data Archival and In-
formation Preservation. National Science Foundation, March
1999. At http://cecssrv1.cecs.missouri.edu/NSFWorkshop/.

4. Arturo Crespo Brian Cooper and Hector Garcia-Molina. Im-
plementing a reliable digital object archive, 1999. Submitted
for publication to ACM DL 2000.

10



5. E. Çinlar. Introduction to Stochastic Processes. Prentice-Hall,
1975.

6. Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb,
Sumeet Sobti, and Peter Yianilos. A prototype implemen-
tation of archival intermemory. In Proceedings of the Fourth
ACM International Conference on Digital Libraries, 1999.

7. Arturo Crespo and Hector Garcia-Molina. Archival storage
for digital libraries. In Proceedings of the Third ACM In-
ternational Conference on Digital Libraries, 1998. Acces-
sible at http://www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-
WP-1998-0082.

8. Arturo Crespo and Hector Garcia-Molina. Modeling
archival repositories for digital libraries. Technical re-
port, Stanford University. At http://www-db.stanford.edu/ cre-
spo/papers/ArchSimFull.ps, 1999.

9. John Garrett and Donald Waters. Preserving digital informa-
tion: Report of the Task Force on Archiving of Digital Infor-
mation, May 1996. Accessible at http://www.rlg.org/ArchTF/.

10. Andrew Goldberg and Peter Yianilos. Towards an archival
intermemory. In Advances in Digital Libraries, 1998.

11. G. Gordon. The Application of GPSS V to discrete System
Simulation. Prentice-Hall, 1975.

12. Joseph Halpern and Carl Lagoze. The Computing Research
Repository: Promoting the rapid dissemination and archiving
of computer science research. In Proceedings of the Fourth
ACM International Conference on Digital Libraries, August
1999.

13. Andreas Reuter Jim Gray. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publisher, 1993.

14. Kranch. Preserving electronic documents. In ACM Digital
Library Conference, 1998.

15. T.I. Oren. Application of system theoretic concepts to the
simulation of large scale adaptive systems. In Proceedings of
the 6th Hawaii International Conferenceon Systems Sciences,
pages 435–437, 1973.

16. Dhiraj K. Pradhan. Fault-Tolerant Computer System Design.
Prentice Hall PTR, 1995.

17. Jeff Rothenberg. Avoiding technologicalquicksand: Finding a
viable technical foundation for digital preservation. Technical
report, Council on Library and Information Resources (CLIR),
Washington DC, 1999.

Appendix I: MIT/Stanford CSTR Scenario Parameters
� AR Description

– Initial collection: numdoc documents. Each document,
d, will have the following four materializations:

� hd;MIT; diski; formji,
� hd;MIT; diskk; formli,
� hd; Stanford; diskx; formji,
� hd; Stanford; disky; formli.

WhereMIT andStanford are the two sites; diski, diskk,
diskx, and disky are different storage devices; and, formj

and forml are two different formats.
– Number of components and types: nsto storage devices,
nform formats, 2 sites.
– Failure dependency graph: site ! disk, when the disk
is in the given site.

� Distributions
– Disk Failure distribution during access: U (1=�sto)
– Format Failure distribution during access: U (1=�form)
– Site Failure distribution during access: U (1=�site)
– Disk Failure distribution during archival: U (1=�sto)
– Format Failure distribution duringarchival: U (1=�form)

– Site Failure distribution during archival: U (1=�site)
– Disk Failure Detection distribution: instantaneous
– Format Failure Detection distribution: instantaneous
– Site Failure Detection distribution: instantaneous
– Disk Repair distribution: instantaneous
– Format Repair distribution: instantaneous
– Site Repair distribution: instantaneous
– Document creation: numdoc documents at startup, then
no documents are created.
– Document access rate: irrelevant as failure distribution
during access is the same as during archival.
– Access duration rate: irrelevant as failure distribution
during access is the same as during archival.
– Document selection: uniform over the numdoc docu-
ments.

� Policies
– Document Creation policy: for each document, four ma-
terializations are created, 2 in each site. In each site, each
materialization is created in a different disk and in a differ-
ent format.
– Document to Materialization: read from any material-
ization.
– Failure detection algorithm: complete scan of all disk,
formats, and sites every �sto, �form, and �site days, respec-
tively.
– Damage Repair algorithm: discard bad component and
replace with new component taking �sto, �form , and �site
days, for disks, formats, and sites respectively.
– Failure prevention algorithm: none

� ArchSim Parameters
– Stop Condition: when losing the first document.
– Simulation time unit: days.

11


