
R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 1–2, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Virtual Classes and Their Implementation
Ole Lehrmann Madsen

Computer Science Department, Aarhus University,
Åbogade 34, DK-8200 Århus N, Denmark

Ole.L.Madsen@daimi.au.dk

Abstract. One of the characteristics of BETA [4] is the unification of abstraction
mechanisms such as class, procedure, process type, generic class, interface, etc. into
one abstraction mechanism: the pattern. In addition to keeping the language small, the
unification has given a systematic treatment of all abstraction mechanisms and leads
to a number of new possibilities.

One of the interesting results of the unification is the notion of virtual class [7,8],
which is the BETA mechanism for expressing genericity. A class may define an
attribute in the form of a virtual class just as a class may define an attribute in the
form of a virtual procedure. A subclass may then refine the definition of the virtual
class attribute into a more specialized class. This is very much in the same way as a
virtual procedure can be refined - resulting in a more specialized procedure. Virtual
classes can be seen as an object-oriented version of generics. Other attempts to
provide genericity for OO languages has been based on various forms of parametric
polymorphism and function application rather than inheritance. Virtual classes have
been used for more than 15 years in the BETA community and they have
demonstrated their usefulness as a powerful abstraction mechanism. There has
recently been an increasing interest in virtual classes and a number of proposals for
adding virtual classes to other languages, extending virtual classes, and unifying
virtual classes and parameterized classes have been made [1,2,3,13,14,15,16,17].

Another distinguishing feature of BETA is the notion of nested class [6]. The
nested class construct originates already with Simula and is supported in a more
general form in BETA. Nested classes have thus been available to the OO community
for almost 4 decades, and the mechanism has found many uses in particular to
structure large systems. Despite the usefulness, mainstream OO languages have not
included general nesting mechanisms although C++ has a restricted form of nested
classes, only working as a scoping mechanism. Recently nested classes has been
added to the Java language.

From a semantic analysis point of view the combination of inheritance, and general
nesting adds some complexity to the semantic analysis, since the search space for
names becomes two-dimensional. With virtual classes, the analysis becomes even
more complicated – for details see ref. [10].

The unification of class and procedure has also lead to an inheritance mechanism
for procedures [5] where method-combination is based on the inner-construct known
from Simula. In BETA, patterns are first-class values, which implies that procedures
as well as classes are first-class values. BETA also supports the notion of class-less
objects, which has been adapted in the form of anonymous classes in Java. Finally, it

mailto:Ole.L.Madsen@daimi.au.dk

2 O. Lehrmann Madsen

might be mentioned that BETA supports coroutines as well as concurrent active
objects. For further details about BETA, see [6,9,11]. The Mjølner System is a
program development environment for BETA and may be obtained from ref. [12].

References

1. Bruce, K., Odersky, M., Wadler, P.: A Statically Safe Alternative to Virtual Types, In: Jul,
E. (ed.): 12th European Conference on Object-Oriented Programming, Brussels, June 1998.
Lecture Notes in Computer Science, Vol. 1445. Springer-Verlag, Berlin Heidelberg New
York, 1998.

2. Ernst, E.: Propagating Class and Method Combination, In: Guerraoui, R. (ed.): 13th

European Conference on Object-Oriented Programming, Lisbon, June 1999. Lecture Notes
in Computer Science, Vol. 1628. Springer-Verlag, Berlin Heidelberg New York, 1999.

3. Igarashi, A., Pierce, B.: Foundations for Virtual Types, In: Guerraoui, R. (ed.): 13th

European Conference on Object-Oriented Programming, Lisbon, June 1999. Lecture Notes
in Computer Science, Vol. 1628. Springer-Verlag, Berlin Heidelberg New York, 1999.

4. Kristensen, B.B., Madsen, O.L., Møller-Pedersen, B. Nygaard, K.: Abstraction
Mechanisms in the BETA Programming Language. In Conference Record of the Tenth
Annual ACM Symposium on Principles of Programming Languages. Austin, Texas,
January 1983.

5. Kristensen, B.B., Madsen, O.L. Møller-Pedersen, B., Nygaard, K.: Classification of
Actions or Inheritance also for Methods. In: Bézivin, et al. (eds.): 1st European
Conference on Object-Oriented Programming, Paris, June 1987. Lecture Notes in
Computer Science, Vol. 276. Springer-Verlag, Berlin Heidelberg New York, 1987.

6. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming in the
BETA Programming Language. Addison Wesley/ACM Press, Wokingham, England,
1993. (Out of print, but a reprint can be obtained from [12]).

7. Madsen, O.L., Møller-Pedersen, B.: Virtual Classes, a Powerful Mechanism in Object-
Oriented Languages. In: Proc. OOPSLA’89, New Orleans, 1989.

8. Madsen, O.L., Magnusson, B., Møller-Pedersen, B.: Strong Typing of Object-Oriented
Languages Revisited. In: Proc. OOPSLA'90, Ottawa, Canada, 1990.

9. Madsen, O.L.: Open Issues in Object-Oriented Programming — A Scandinavian
Perspective. Software Practice and Experience, Vol. 25, No. S4, Dec. 1995.

10. Madsen, O.L.: Semantic Analysis of Virtual Classes and Nested Classes. In: Proc.
OOPSLA’99, Denver, Colorado, 1999.

11. Madsen, O.L: Towards a Unified Programming Language. In: Bertino, E. (ed.): 14th

European Conference on Object-Oriented Programming. Lecture Notes in Computer
Science, Vol. 1850. Springer-Verlag, Berlin Heidelberg New York, 2000.

12. The Mjølner System: http://www.mjolner.com
13. Shang, D.: Subtypes and Convertible Types, Object Currents, 1(6), June 1996.
14. Thorup. K.K.: Genericity in Java with Virtual Classes. In: Aksit, M., Matsouka, S. (eds.):

11th European Conference on Object-Oriented Programming. Lecture Notes in Computer
Science, Vol. 1241. Springer Verlag, Berlin Heidelberg New York, 1997.

15. Torgersen, M.: Virtual Types are Statically Safe, 5th Workshop on Foundations of Object-
Oriented Languages, January 1998.

16. Thorup, K.K., Torgersen, M.: Structured Virtual Types, informal session on types for Java,
5th Workshop on Foundations of Object-Oriented Languages, January 1998.

17. Thorup, K.K., Torgersen, M.: Unifying Genericity — Combining the benefits of Virtual
types and parameterized types. In: Guerraoui, R. (ed.): 13th European Conference on
Object-Oriented Programming, Lisbon, June 1999. Lecture Notes in Computer Science,
Vol. 1628. Springer-Verlag, Berlin Heidelberg New York, 1999.

	References

