Software Pipelining of Nested Loops

Kalyan Muthukumar and Gautam Doshi

Intel Corporation
2200 Mission College Blvd., Santa Clara, CA 95052, U.S.A.
{kalyan.muthukumar, gautam.doshi}@intel.com

Abstract. Software pipelining is a technique to improve the perfor-
mance of a loop by overlapping the execution of several iterations. The
execution of a software-pipelined loop goes through three phases: prolog,
kernel, and epilog. Software pipelining works best if most of the time
is spent in the kernel phase rather than in the prolog or epilog phases.
This can happen only if the trip count of a pipelined loop is large enough
to amortize the overhead of prolog and epilog phases. When a software-
pipelined loop is part of a loop nest, the overhead of filling and draining
the pipeline is incurred for every iteration of the outer loop. This pa-
per introduces two novel methods to minimize the overhead of software-
pipeline fill/drain in nested loops. In effect, these methods overlap the
draining of the software pipeline corresponding to one outer loop iter-
ation with the filling of the software pipeline corresponding to one or
more subsequent outer loop iterations. This results in better instruction-
level parallelism (ILP) for the loop nest, particularly for loop nests in
which the trip counts of inner loops are small. These methods exploit
ItaniumTM™ architecture software pipelining features such as predication,
register rotation, and explicit epilog stage control, to minimize the code
size overhead associated with such a transformation. However, the key
idea behind these methods is applicable to other architectures as well.
These methods have been prototyped in the Intel optimizing compiler
for the Itanium?M processor. Experimental results on SPEC2000 bench-
mark programs are presented.

1 Introduction

Software pipelining [T2[A6I7ITOT3TAUTAIT6] is a well known compilation tech-
nique that improves the performance of a loop by overlapping the execution of
independent instructions from several iterations. The execution of a software-
pipelined loop goes through three phases: prolog, when the pipeline is filled
- i.e. new iterations are commenced and no iterations are completed, kernel,
when the pipeline is in steady state - i.e. new iterations are commenced and
older iterations are completed, and epilog, when the pipeline is drained - i.e. no
new iterations are commenced and older iterations are completed. See Fig.1(a).

Since maximum instruction-level parallelism (ILP) is obtained during the
kernel phase, software pipelining works best if most of the execution time is spent
in kernel phase rather than in prolog or epilog phases. This can happen only if

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 165-&1], 2001.
© Springer-Verlag Berlin Heidelberg 2001

166 K. Muthukumar and G. Doshi

the trip count of the pipelined loop is large enough to amortize the necessary
overhead of the prolog and epilog phases. In practice, there are nested loops,
in which the outer loop(s) have high trip counts, and the inner loop has a low
trip count. In such cases, the inner loop’s software pipeline fill/drain overhead
is incurred for every outer loop iteration. This overhead is then amortized over
only a few inner loop iterations, hence relatively less time is spent in the kernel
phase. This results in poor ILP for the loop nest. See Fig.1(b).

Iterations

It iteration of outer loop

|

Setup for 2" jteration of outer loop

Prolog phase

Kernel phase

Time Time]

¢
L/

2nd jteration of outer loop

Epilog phase

(a) (b)

Fig. 1. (a) Phases of a software-pipelined loop, (b) Prolog/Epilog overhead for inner
loops with short trip counts.

This paper presents two novel methods to address this problem. These meth-
ods perform Outer Loop Pipelining (OLP), by overlapping the epilog of the
software pipeline corresponding to one outer loop iteration with the prolog of
the software pipelines corresponding to one or more subsequent outer loop iter-
ations. Thus, the software pipeline for the inner loop is filled just once for the
loop nest, when the first iterations for all the loops in the loop nest are executed.
The software pipeline is also drained just once for the loop nest, when the last
iterations for all the loops in the loop nest are executed.

Using Itanium?™ architecture [8] software pipelining features (such as pred-
ication [12], register rotation [5], and epilog stage count register), these methods
can be implemented with minimal code changes. The inner loop schedule re-
mains unchanged and only a few additional instructions are added to the outer
loop. Hence these methods work well even when the trip counts of inner loops
are large. In such cases, the performance improvement due to OLP is not as large
as when the inner loops have shorter trip counts. Since there is either a small
or a large performance gain, and negligible performance penalty for using this
technique, it is especially useful for loop nests whose trip counts are not known
at compile-time.

These methods have been prototyped in the Intel optimizing compiler for the
Itanium7™ processor. Experimental results for kernels derived from workstation
applications indicate good speedups for loop nests that have short trip count
inner loops. Results on SPEC{p2000 and SPECint2000 suites of benchmarks
also validate the applicability of this technique for a number of key loops.

Software Pipelining of Nested Loops 167

The key idea behind these methods can also be applied to architectures
that do not have support for rotating registers and other features for software
pipelining. In such cases, limited overlap can be achieved between the execution
of two successive outer loop iterations, at the expense of some increase in code
size.

The rest of this paper is organized as follows. Section 2 describes the Ita-
nium?™ architecture features and the software-pipelining schema using these
features. Sections 3 presents two OLP methods that use Itanium”» architecture
features to achieve pipelining of nested loops. Section 4 discusses how OLP can
be applied to traditional architectures as well. Section 5 presents experimental
results of these methods on the SPECint2000 and SPEC{p2000 suites of bench-
marks. Finally, Section 6 provides a summary and directions for future work.

Background and Terminology: We use the term source loop to refer to
the original source code loop, and the term kernel loop to refer to the code
that implements the software-pipelined version of the source code. Iterations of
the source loop are called source iterations and iterations of the kernel loop are
called kernel iterations. Instructions corresponding to a single source iteration
are executed in stages. A single source iteration spans multiple kernel iterations.
The number of cycles between the start of successive kernel iterations is called
the Initiation Interval (II). Figure 1(a) shows the execution of five source
iterations of a software-pipelined loop with three pipeline stages.

2 Software Pipelining in the Itaniumr~ Architecture

The Itanium?™ architecture provides many features to aid the compiler in en-
hancing and exploiting instruction level parallelism (ILP) [98]. These include an
explicitly parallel (EPIC) instruction set, large register files, register renaming,
predication [I2], speculation [I1], and special support for software pipelining.
The special support for software-pipelined loops includes register rotation,
loop branches and loop control registers. Such features were first seen in the
Cydrome Cydra-5 [5]. Register rotation provides a renaming mechanism that
eliminates the need to unroll loops for the purpose of software renaming of
registers. Registers are renamed by adding the register number to the value of
a register rename base (RRB) modulo the size of the rotating register file. The
RRB is decremented when a software-pipelined loop branch is executed at the
end of each kernel iteration. Decrementing the RRB makes the value in register
X, during one kernel iteration, appear to move to register X+1, in the next
kernel iteration. If X is the highest numbered rotating register, its value wraps
to the lowest numbered rotating register. General registers r32-r127, floating-
point registers £32-f127, and predicate registers pl6-p63 can rotate. Registers
r0-r31, f0-r31 and p0-pl5 do not rotate and are referred to as static registers.
Below is an example of register rotation.

Li: 144 r32 = [r4],4 // post increment r4 by 4
add r34 = r34,r9
st4 [r5] = r35,4 // post increment r5 by 4

swp_branch L1 ;; // software pipeline branch

168 K. Muthukumar and G. Doshi

Each stage of the software pipeline is one cycle long (II = 1), a load latency of
2 cycles and an add latency of 1 cycle is assumed. The value that the load writes
to r32 is read by the add, two kernel iterations (and hence two rotations) later,
as r34. In the meantime, two more instances of the load are executed. However,
because of register rotation, those instances write to different registers and do
not destroy the value needed by the add.

Predication refers to the conditional execution of an instruction based on a
boolean source operand called the qualifying predicate. If the qualifying predi-
cate is True (one), the instruction is executed. If the qualifying predicate is False
(zero), the instruction generally behaves like a no-op. Predicates are assigned val-
ues by compare, test-bit, or software-pipelined loop branch instructions. Com-
pare instructions generally write two complementary destination predicate reg-
isters based on the boolean evaluation of the compare condition.

The rotation of predicate registers serves two purposes. The first, similar
to the rotating general and floating-point registers, is to avoid overwriting a
predicate value that is still needed. The second purpose is to control the filling
and draining of the software pipeline. To do the latter, a predicate is assigned to
each stage of the software pipeline to control the execution of the instructions
in that stage. This predicate is called a stage predicate. For counted loops, p16
is architecturally defined to be the stage predicate for the first stage, pl7 is
defined to be the stage predicate for the second stage, etc. A register rotation
takes place at the end of each stage (when the swp_branch is executed in the
kernel loop). When p16 is set to 1, it enables the first stage for a given source
iteration. This value of pl6 is rotated to p17 when the swp_branch is executed,
to enable the second stage for the same source iteration. Each 1 written into p16,
sequentially enables all the stages for a given source iteration. This behavior is
used to enable (propagate 1s) or disable (propagate 0s) the execution of the
stages of the pipelined loop during the prolog, kernel, and epilog phases.

Itanium7™ architecture provides special software-pipeline loop branches for
counted (br.ctop, br.cexit) and while (br.wtop, br.wexit) loops and software-
pipeline loop control registers that maintain the loop count (LC) and epilog
count (EC). During the prolog and kernel phases, a decision to continue kernel
loop execution means that a new source iteration is started. For example, for a
counted loop, LC (which is > 0) is decremented to update the count of remaining
source iterations. EC is not modified. P63 is set to one. Registers are rotated (so
now pl6 is set to 1) and the branch (ctop) is taken so as to continue the kernel
loop execution.

Once LC reaches zero, all required source iterations have been started and
the epilog phase is entered. During this phase, a decision to continue kernel
loop execution means that the software pipeline has not yet been fully drained.
P63 is now set to zero because there are no more new source iterations to start
and the instructions that correspond to non-existent source iterations must be
disabled. EC is decremented to update the count of the remaining stages for the
last source iteration. Registers are rotated and the branch is executed so as to
continue the kernel loop execution. When EC reaches one, the pipeline has been
fully drained, and the branch is executed so as to exit the kernel loop execution.

Software Pipelining of Nested Loops 169

A pipelined version of the example counted loop, using Itanium?» architec-
ture software pipelining features, is shown below assuming an IT of 1 cycle and
a loop count of 2 source iterations:

mov pr.rot = 0 ;; // Clear rotating preds (16-63)
mov IC =1 // LC = loop count - 1
mov EC = 4 // EC = loop stage count
cmp.eq pl6,p0 = r0,r0 ;; // Set pl6 =1
L1: (p16) 1d4 r32 = [r4],4 // Stagel:

(p18) add r34 = r34,r9 // Stage3:

(p19) st4 [r5] = r35,4 // Stage4d:
br.ctop L1 ;;

Thus the various Itanium”™ architectural features of register rotation, predi-
cation and software-pipelined loop branches and registers, enable extremely com-
pact and efficient software-pipelined loop sequences.

3 Software Pipelining of Nested Loops

This section presents two new methods for outer loop pipelining (OLP), when the
innermost loop is software pipelined. OLP is achieved by overlapping the epilog
phase of the inner loop pipeline corresponding to one outer loop iteration, with
the prolog (and possibly epilog) phases of the inner loop pipelines corresponding
to subsequent outer loop iterations. In doing so, the cost associated with filling
and draining the inner loop pipeline is incurred only once during the execution
of the entire loop nest rather than during every outer loop iteration. As a result,
the performance of the loop nest is improved, especially for inner loops with
short trip counts.

Consider a loop nest with an inner loop that is software-pipelined with 5
stages and has a trip count of 2. Figure 2 illustrates how these methods overlap
the inner loop computations across multiple outer loop iterations.

During OLP, the inner loop’s software pipeline is not drained after all the
inner loop source iterations for a given outer loop iteration have been started.
Rather, the pipeline is frozen, and set-up for the next outer loop iteration is done.
The draining continues during the prolog phase of the next outer loop iteration.
Eventually, when all the loops in the enclosing loop nest are in their last itera-
tions, the inner loop software pipeline is drained. Note that computations can be
overlapped across more than two outer loop iterations. This occurs when the in-
ner loop pipeline never reaches kernel phase. When inner loop pipeline stages are
more than twice the number of inner loop iterations, overlap is achieved across
three outer loop iterations. Figure 2 shows inner loop computations overlapped
across three outer loop iterations.

Two key features of the Itanium7™ architecture enable efficient OLP. They
are: (1) rotating registers, and (2) explicit epilog stage control. Rotating reg-
isters enable holding the intermediate results of the inner loop computations
corresponding to one outer loop iteration, and at the same time, start the in-
ner loop computations for another outer loop iteration. Epilog stage control is
achieved via the EC register. Normally EC would have been initialized such that

170 K. Muthukumar and G. Doshi

the inner loop is drained completely for each outer loop iteration. In these OLP
methods, EC is set to 1 at the start of an inner loop for all outer loop itera-
tions, except for the very last iterations of the outer loops, in which case it is
set appropriately so that the inner loop pipeline is completely drained.

The two methods differ in their schemas as to how this is accomplished. The
first method does not make copies of the kernel code for the inner loop, but the
second method does. The first method works only for counted outer loops, while
the second method is more general and does not impose this restriction. Except
for the copy of the kernel code in the case of the second method, both methods
add very few (static and dynamic) instructions to perform OLP. Since these
methods overlap computations across outer loop iterations, they must preserve
the register and memory dependences of the original loop nest. This is explained
later in this section.

2 inner loop iterations of 15t outer loop iteration
RAREN — » Iterations
N

1 . . . - . .
‘ \ 2 inner loop iterations of 27d outer loop iteration
\

Setup‘\for 2nd outer loop iteration

‘ 2 inner loop iterations of 3 outer loop iteration

Setup for 37 outer loop iteration

2 inner loop iterations of 4" outer loop iteration

\ 1 ‘

Soo Setup for 4" outer loop iteration

2 inner loop iterations of 5 outer loop iteration

etup for 5% outer loop iteration

Fig. 2. Overlapping of inner loop pipelines across outer loop iterations.

n

These methods can be generally applied to perfect or imperfect loop nests of
arbitrary depth. For illustration, a running example of a two level perfect loop
nest with a counted outer loop is used.

Consider the following loop nest (an excerpt from a critical loop in an impor-
tant proprietary workstation application), which has a high trip count for the
outer loop but a low trip count for the inner loop:

REAL*4 A(10,100), B(10,100), €(10,100)
D0 J =1, 100
p0I =1,3
A(I,3 = B(I,D / C(1,D)
ENDDO
ENDDO

Suppose that the inner loop is pipelined in 12 stages and has an IT of 5 cycle.
Furthermore, suppose that it takes 5 cycles to setup the pipeline (i.e. reset array
addresses, reset rotating predicate registers, reset EC/LC, etc). Then, this loop

requires roughly:

Divides in Itanium?¥ architecture are implemented as a sequence of instructions [9].

Software Pipelining of Nested Loops 171

Cycles for prolog and kernel stages of inner loop = 100%(3%5)
Cycles for epilog stages of inner loop = 100*(11%5)
Cycles to reset for the next outer loop iteration = 100%(5)

TOTAL CYCLES = 7500 cycles

The overhead for draining the epilog stages is very high (5500 cycles i.e. 73%
of the total cycles). Traditional techniques of loop collapsing, loop interchange
and loop unrolling can be used to address this problem but they each have their
own costs. Loop collapsing adds predicated address computations that could
affect the inner loop scheduled II. Loop interchange could adversely affect (as it
does in this example) the memory access pattern. Loop unrolling increases code
size and cannot be easily applied if the inner loop trip count is not a compile-time
constant.

Without OLP, the generated code is as follows:

mov ri4 = 99 // Outer loop count - 1

mov r2 =1 // Outer loop index
Outer_loop:

mov pr.rot =0 // P16-P63=0

mov EC = 12 // EC = Stage count

mov LC =2 ;; // LC = Trip count - 1

cmp.eq pl6,p0 = r0,r0O // P16 = 1
Inner_loop:
[inner loop codel
br.ctop Inner_loop // Inner loop branch
cmp.le p7,p6 = r2,r14 // Test for outer loop count
add r2 = r2,1 // Increment outer loop index
(p7) br.cond Outer_loop // Outer loop branch

Fig. 3. Non OLP code for the Running Example.

The computations in the inner loop (loads of B and C, the FP divide se-
quence, and the store of A) have been omitted to simplify the example. Since
the inner loop is a counted loop, it uses the br.ctop instruction. The LC register
is initialized to 2 for every iteration of the inner loop, since the inner loop has a
trip count of 3 (for a trip count of N, LC is initialized to (N-1)). The EC register
is initialized to 12, the stage count of the pipeline.

3.1 Method 1 for Pipelining of Nested Loops

In this method, EC is initialized (to 1) so that the inner loop pipeline is not
drained. A test for the final iteration is inserted in the outer loop to conditionally
set EC to completely drain the pipeline. The predicate registers (that control the
staging of the pipeline) are preserved across outer loop iterations by not clearing
them at the start of each inner loop pipeline. The resultant code is as follows:

172 K. Muthukumar and G. Doshi

mov ri4 = 99
mov r2 =1
mov pr.rot = 0 ;; /7 (D
mov EC =1 /7 (2)
Outer_loop:
mov LC =2
cmp.eq pl6,p0 = r0,r0
Inner_loop:
[inner loop code]
br.ctop Inner_loop
cmp.eq p8,p9 = r2,ri4d ;; // (3
(p9) mov EC =1 /7 (4)
(p8) mov EC = 12 // (5)
cmp.le p7,p0 = r2,ri4
add r2 = r2,1

(p7) br.cond Outer_loop
Fig. 4. Code After Pipelining of Nested Loops

Instructions to clear the rotating predicates (1) and to set EC (2), have
been moved to the preheader of the loop nest. Also, EC has been initialized
to 1 instead of 12 to prevent the draining of the inner loop software pipeline.
Since the clearing of the rotating predicates is now done outside the loop nest,
the rotating predicates p17-p63 retain the values between outer loop iterations.
This enables the freezing and restarting of the inner loop pipeline.

Instruction (3) checks for the start of the last iteration of the outer loop. If
this is the case, then EC is set to 12 by instruction (5). Otherwise, instruction
(4) resets EC to 1. Thus, the inner loop pipeline is drained only during the last
iteration of the outer loop.

Thus this method requires the addition of just three new instructions to the
outer loop:

e Instruction (3) to check for the start of the last iteration of outer loop,
e Instruction (5) to set EC to stage count, for the last iteration of outer loop,
e Instruction (4) to reset EC to 1, for all other iterations of outer loop.

Assume that the addition of these instructions increases the time required to
set-up for the next outer loop iteration from 5 to 6 cycles. However, the pipeline
is drained only once, so the time required to execute the loop nest is:

Cycles for prolog and kernel stages of inner loop = 100%(3%5)
Cycles for epilog stages of inner loop = (11%5)
Cycles to reset for the next outer loop iteration = 100*%(6)

TOTAL CYCLES = 2155 cycles

Thus, this method leads to a significant performance improvement (71%)
over that of the original code sequence, with hardly any increase in the static or
dynamic code size.

Software Pipelining of Nested Loops 173

Conditions required for this method: OLP essentially involves hoisting
inner-loop code associated with later outer loop iterations, so as to overlap them
with the current outer loop iteration. As with all code motion, this hoisting must
honor the register and memory data dependences of the original code sequence.
This section details the conditions that must be satisfied for this method to work
correctly. The following are the key ideas behind these conditions, which ensure
the correctness of the OLP transformation:

e We should be able to predict the last iteration(s) of the outer loop(s) and
ensure that the pipeline of the inner loop is finally drained.

e Register values that are in flight across inner loop kernel iterations, must
not be clobbered due to OLP.

e Live-out register values must be computed correctly, even though the pipeline
has not been completely drained.

e All memory-dependences across outer-loop iterations must be obeyed.

Here are the conditions that ensure the correctness of OLP for a loop nest:

1. Counted Outer Loops: All the outer loops must be counted loops. This is
needed to set EC to drain the software pipeline only when all the outer loops
are in their last iterations.

2. Single Outer Loop Exit: Each loop in the loop nest should have only one
exit. If this is not satisfied, an early exit in one of the loops would transfer control
and skip the instructions in the post-exit of the inner loop that set EC to drain
the pipeline of the inner loop.

3. Live-in Values: If a value is live-in to the inner loop, it should either be in
a rotating register or used only in the first stage of the software pipeline. This
condition ensures that register and memory anti-dependences across outer loop
iterations in the original loop nest are honored.

Figure 5(a) shows a scenario in which R10 is loop-invariant in the inner loop
and is used in the second stage, but changes its value in the immediate outer
loop. The inner loop has 2 iterations. After OLP, the second iteration of the
inner loop still expects to see “valuel” in R10. However, this is clobbered with
“value2” when the second iteration of the outer loop is started.

R10 = valuel R15=0
R15 = 0
Outer_loop: Outer loop:
R10 = value N P
Inner loop: Inner_loop:
P =RI0| P R32=
(p17) = R10 (pl7) R32 =
C RI10 = value2 et RI5 +=R33
br.ctop Inner loop br.ctop Inner loop
P R15 += R33
R =RI10| . R32=
(px) br.cond Outer loop (px) br.cond Outer_loop
=RI0| R32=
Outer loop 1¥ iteration Outer loop 2™ iteration Outer loop 1 iteration Outer loop 2% iteration
(a) (b)

Fig.5. (a) Register Anti-dependences for live-in values (b) Register dependences for
live-out values

174 K. Muthukumar and G. Doshi

Note that this problem will not arise if either (a) the values that are live-in

are used in the first stage of the pipeline or (b) the live-in values are assigned
to rotating registers. In such cases, the live-in values are not clobbered by their
subsequent redefinitions in the outer loops.
4. Live-out Values: If a value is live-out of the inner loop, and is used within
the loop nest in a subsequent outer iteration, it should be defined in the first
stage of the software pipeline. This condition ensures that register and memory
dependences that exist from the inner loop to an outer loop computation are
honored. Consider the loop nest in Fig. 5(b), in which the inner loop has 2 stages
and a trip count of 2.

The value defined in R32 in the second iteration of the inner loop is live-out
of the inner loop. It gets rotated into R33 and is used to update R15. However,
if OLP is done, the second stage of the second iteration of the inner loop does
not get executed until after the next iteration of the outer loop is started. The
result is that the value that is stored in R15 at the start of the second iteration
of the outer loop is the value of R32 that is defined in the first iteration of the
inner loop. This would obviously be incorrect.

5. Rotating Register Values: Code in the outer loop(s) should not clobber
the values held in rotating registers used in the kernel of the inner loop. The
register allocator ensures that the rotating registers are not used for outer loop
live ranges.

6. Loop-carried Memory Dependence: If there is a loop-carried memory
dependence for inner loop computations carried by the outer loop, the Point of
First Reference (P,1) of a memory location should precede its Point of Second
Reference (P,2) in the execution time-line of these instructions. The memory
dependence that exists for the pair (P.1, Pyo) can be a flow, anti or output de-
pendence. Depending on the number of inner loop iterations that elapse between
P,1 and P,9, and the stages in which P,; and P,5 occur, it may or may not be
legal to perform OLP.

Consider the following:

DO J =1, 100
DOI=1, 3
= A(I, J-1)
ACI, J) =
ENDDO
ENDDO

For this program, there is a memory flow dependence carried by the outer
loop for the location A(I, J). Py is the definition of the value in A(I,J) and
P,5 is the subsequent use of that value (referenced as A(I1,J-1)). P and P, are
defined in terms of number of stages of the software pipeline of the inner loop.
In general, let P.; and P,5 occur in stages D and U, respectively. If M inner loop
iterations elapse between P,.; and P,, then :

P.i=D, Pp=U+M and OLP is legal iff P < Pro (i.e. iff D<U+M).

For the above loop nest, M = 3 since three inner loop iterations separate P,y
and P,.o. If P.q occurs in the 4th stage (D = 4) and P, occurs in the 2nd stage
(U =2), then D < U + M, so OLP can be done (Fig. 6(a)). However, if D =5
and U =1, then D > U + M, and OLP cannot be done (Fig. 6(b)).

Software Pipelining of Nested Loops 175

Outer Loop Outer Loop Outer Loop Outer Loop
15t iteration 2nd jteration 1t iteration 2nd jteration
Fig. 6. (a) OLP can be done (b) OLP cannot be done

The value of M is calculated using (a) the number of outer loop iterations
that separate P,; from P9, which is obtained from data dependence analysis
[BI17], and (b) the number of inner loop iterations that are executed per outer
loop iteration. If the number of inner loop iterations is a compile-time constant,
then the legality check for loop-carried memory dependence can be performed
at compile-time. Otherwise, based on a run-time check of the number of inner
loop iterations, control can either go to a loop nest that has OLP or to another
loop nest in which only the inner loop is pipelined.

The conditions described above for the live-in and live-out values and the
loop-carried memory dependence in the inner loop are applicable only if we do
not want any draining of the software pipeline before starting the next outer
loop iterations. These conditions can be relaxed if partial draining is allowed to
happen at the end of execution of every iteration of the immediate outer loop.
This can be formulated as follows:

e Let Siipe—in be the maximum stage in which a live-in register value that is
in a static register is used in the pipelined inner loop.

e Let Sipe—out be the maximum stage in which a live-out value that is used
in the loop nest, is defined in the pipelined inner loop.

o Lot Sioop—carried—mem—dep denote the maximum of (P — Pr2) over all mem-
ory references that have loop-carried dependence across the outer loop(s).
Note that the maximum value of Sjoop—carried—mem—dep is the number of
epilog stages of the pipelined inner loop.

So, the value that EC should be set to before starting the next outer loop
iteration is: BS = Max(L Slivefiru Slivefouty Sloopfcar'riedfmemfdep + 2) If ES
is the same as the number of stages required to completely drain the pipeline of
the inner loop, then we do not perform OLP, since there is no performance gain
from doing it.

Algorithm for Pipelining of Nested Loops: This method can be integrated
with modulo scheduling [I4] and rotating register allocation in the software

176 K. Muthukumar and G. Doshi

pipeliner. The algorithm for this method consists of two steps. The first step,
IsLoopNestEligibleForOLP, checks to see if the pipelined inner loop and the
loop nest satisfy the conditions listed in the previous section. The second step,
PerformOLPForLoopNest, performs OLP by suitably adding and moving
the instructions so that the pipeline of the inner loop is not completely drained.
These two functions are invoked by the main function OLPForLoopNest.

Algorithm 1 Algorithm for Method 1

Bool IsLoopNestEligibleForOLP (Loop_nest, unsigned int *pES)
{
if (any outer loop is not a counted loop) return False;
if (any outer loop has more than one exit) return False;
ComPUte Slivefin7 Slivefoum and Sloopfcar'riedfmemfdep;
*pES = Max (17 Sli'uefin, Slivefouh Sloopfca'r'riedfmemfdep + 2)7

if (*xpES == number of pipeline stages) return False;

else return True;
}
Void PerformOLPForLoopNest (Loop_nest, unsigned int ES)
{

Move init of pr.rot from preheader of inner loop to preheader of loop nest;

Delete the initialization of EC in the preheader of the inner loop;

Initialize EC = ES in the preheader of the loop nest;

Add a compare instruction in the post-exit of inner loop to set prast;

Prast = (last iteration(s) of outer loop(s)) ? 1 : 0;

Let pnotLast = the predicate register that is complementary to prast;

Add an instruction “(pnotLast) EC = ES” to post-exit of inner loop;

Add an instruction “(prest) EC = (Epilog Count to completely drain inner
loop)” to post-exit of inner loop;

Void OLPForLoopNest (Loop_nest)
{
unsigned int ES;
if (IsLoopNestEligibleForOLP (Loop-nest, &ES))
PerformOLPForLoopNest (Loop_nest, ES);

3.2 Method 2 for Pipelining of Nested Loops

This method is similar in principle to method 1. However, there are three key
differences: (a) it does not require that the outer loops in the loop nest be counted
loops, (b) it allows outer loops to have multiple exits, and (c) it makes a copy
(or copies if there are multiple exits for any outer loop) of the pipelined inner
loop and inserts it after the code for the loop nest. Other conditions that were
required for method 1 apply to this method as well. This method is conceptually
simpler, less restrictive, and allows more loop nests to be pipelined. However,

Software Pipelining of Nested Loops 177

it comes with the cost of expanded code size and the attendant problems of
possibly increased I-cache misses, page faults, instruction TLB misses, etc. This
method transforms the code for the running example as follows:

mov pr.rot = 0 ;; // (1)

Outer_loop:
mov EC =1 // EC = 1 (no drain)
mov LC =2 // LC = Trip count - 1
cmp.eq pl6 = r0,r0 // P16 = 1

Inner_loop:
[inner loop codel

br.ctop Inner_loop // Inner loop branch
(p7) br.cond Outer_loop // Outer loop branch
mov EC = 11 /7 (2)

Inner_loop_copy:
[inner loop codel
br.ctop Inner_loop_copy
<MOV instructions for values that are live-out of Inner_loop_copy>

This method consists of the following steps:

e The pr.rot instruction that is in the preheader of the inner loop in the non-
OLP code is moved out of the loop nest.

e EC is now initialized to 1 instead of 12 in the preheader of the inner loop. Im-
mediately following the loop nest, EC is set to 11 (number of epilog stages).

e A copy of the pipelined inner loop is placed following this instruction. This
serves to drain the inner loop completely.

e Following this copy of the inner loop, MOV instructions are added for those
rotating register values that are live out of the inner loop. These values are
not used inside the loop nest, but outside.

4 Pipelining of Nested Loops for Other Architectures

The key idea behind these methods can be applied for nested loops in other
architectures as well. However, the speedup that can be achieved in such archi-
tectures is potentially smaller than in architectures that have rotating registers
and predication. Without these features, this technique can be implemented as
follows: The inner loop is peeled such that the code for the prolog phase of the
pipelined inner loop is peeled out of the inner loop and placed in the preheader of
the loop nest. The code for the epilog phase of the pipelined inner loop is peeled
as well and placed after the code for the inner loop. This is intertwined with a
copy of the prolog phase of the inner loop for the next outer loop iteration.
This method does achieve overlap between the epilog phase of the pipelined
inner loop for one iteration of the outer loop with the prolog phase of the
pipelined inner loop for the next iteration of the outer loop. However, it may be

178 K. Muthukumar and G. Doshi

Algorithm 2 Algorithm for Method 2
Bool IsLoopNestEligibleForOLP (Loop-nest, unsigned int *pES)

{

Compute Slive—in, Slive—out; and Sloop—carm'ed—mem—dep;
*pES = Max (17 Slivefiny Slivefouh Sloopfcarriedfmemfdep + 2),

if (*xpES == number of pipeline stages) return False;

else return True;
}
Void PerformOLPForLoopNest (Loop_nest, unsigned int ES)
{

Move the init of pr.rot in preheader of inner loop to outside the loop nest;
Replace the ‘mov EC’ instruction in the preheader of the inner
loop with a MOV instruction that initializes EC to ES;
At each exit of the loop nest, append an instruction “EC = (Stage count - ES)”
and a copy of the pipelined inner loop. ;
Following this, for all rotating register values that are live-out of the inner
loop to outside the loop nest, add appropriate MOV instructions;

very difficult to overlap inner loop computations across multiple outer loop itera-
tions. Also, if the inner loop trip count is fewer than the number of prolog stages,
exits out of the prolog phase will further add to the code size and complexity. It
leads to increased code size that is caused by copies of prolog and epilog phases
of the inner loop. Also, modulo scheduling for traditional architectures requires
kernel unrolling and/or MOV instructions that also lead to increased code size.
However, it may be still profitable to do OLP using this technique for loop nests
that have small trip counts for inner loops.

5 Experimental Results

We have prototyped both the OLP methods in the Intel optimizing compiler for
the Itanium?™ processor. The performance of the resulting OLP code was mea-
sured on the Itanium7» processor. The prototype compiler was used to produce
code for a critical loop nest (similar to the running example) of an important
workstation application. This application was the motivation for developing and
implementing this technique in the compiler. This (and similar) kernels showed
large (71%) speedups using OLP. Benefits largely accrue from the inner loop trip
counts being small and the outer loop trip counts being large. Next, the applica-
bility of this technique was validated using the SPEC{p2000 and SPECint2000
benchmark suites (see Table 1). The first column lists the 14 SPEC{p2000 bench-
marks followed by 12 SPECint2000 benchmarks. The second column shows the
total number of loops in each benchmark that are pipelined. This includes loops
that are singly nested as well as those that are in loop nests. The third col-
umn in the table shows the number of pipelined loops that are in loop nests -
these are the loop nests that are candidates for OLP. The fourth column shows

Software Pipelining of Nested Loops 179

Table 1. Results of Method 2 on SPEC{p2000 and SPECint2000

Benchmark ||# of pi-|# of piple-|# of pi-|# of OLP|Code
plelined lined loops|plelined loop nests [size in-
innermost |within loops with crease due
loops loop nests |[sibling to OLP

loops

168.wupwise||7 0 0 0 0.0%

171.swim 23 20 15 4 1.5%

172.mgrid ||12 10 2 6 0.3%

173.applu 38 38 27 7 0.0%

177.mesa 175 75 52 12 0.4%

178.galgel ||258 180 52 50 1.7%

179.art 23 21 16 2 0.8%

183.equake |[14 11 7 1 0.0%

187.facerec ||59 47 5 38 0.6%

188.ammp |93 38 24 5 2.9%

189.lucas 22 14 2 3 2.7%

191.fma3d ||128 50 44 2 0.1%

200.sixtrack ||302 262 216 12 0.0%

301.apsi 132 83 40 35 0.8%

164.gzip 52 21 17 0 0.0%

175.vpr 53 29 15 8 1.1%

176.gcc 205 58 31 1 0.0%

181.mcf 20 6 5 0 0.0%

186.crafty (|39 14 7 2 0.0%

197.parser |47 21 15 0 0.0%

252.eon 94 72 4 64 0.4%

253.perlbmk||81 44 22 0 0.0%

254.gap 302 102 76 1 0.0%

255.vortex ||17 5 1 0 0.0%

256.bzip2 32 13 11 0 0.0%

300.twolf 223 113 72 9 0.8%

the number of pipelined inner loops that have sibling loops in loop nests. Such
loops are not candidates for OLP. The fifth column shows the number of loop
nests for which OLP was successfully done using Method 2. Unfortunately, the
performance gains due to OLP on these benchmarks were negligible, because:
(a) Many critical loop nests have large trip counts for the innermost loop. In
such cases, the draining of the software pipeline for the innermost loop is not a
high overhead, and therefore reducing the cost of draining the pipeline does not
contribute to a significant performance gain. (b) Many critical pipelined loops
were ineligible for OLP since they had sibling loops in their loop nests. (¢) Live
values between stages of the software pipelined loop are exposed by OLP. As
a result, the register pressure for the code sections outside the innermost loop
increases, causing spills in some cases.

180 K. Muthukumar and G. Doshi

These results validate that the overhead of OLP due to adding instructions
in post-exits of inner loops is miniscule (column 6). Even the small performance
gain possible in loop nests with large trip counts of inner loops was realized.

6 Conclusion

We have presented two methods for Outer Loop Pipelining (OLP) of loop nests
that have software-pipelined inner loops. These methods overlap the draining of
the software pipeline corresponding to one outer loop iteration with the filling or
draining of the software pipeline corresponding to another outer loop iteration.
Thus, the software pipeline for the inner loop is filled and drained only once for
the loop nest. This is efficiently implemented using the Itanium?™ architecture
features such as predication, rotating registers, and explicit epilog stage control.
This technique is applicable, in a limited sense, to other architectures as well.

Both methods are applicable to perfect as well as imperfect loop nests. The
first method does OLP with minimal code expansion, but requires all the outer
loops be counted loops with no early exits. The second method does not place
such restrictions on the loop nest, but does duplicate the kernel code of the
pipelined inner loop where required. These methods have been prototyped in
the Intel Optimizing Compiler for Itanium? architecture. Experimental results
indicate good speedups for loop nests with short trip counts for inner loops in an
important workstation application. The speedups observed for the SPEC{p2000
and SPECint2000 suites of benchmarks were small - this is because their critical
loop nests have large trip counts for inner loops.

With the continuing trend of wider and deeply pipelined processors, the
availability of parallel execution resources and the latency of instructions will
increase. As a result, the prolog/epilog overhead (as a fraction of the execution
time of the loop) will increase as well. OLP will be increasingly important as a
means to maximize the performance of loop nests.

Acknowledgements. Comments from Dan Lavery, Dong-Yuan Chen, Youfeng
Wu, Wei Li, Jean-Francois Collard, Yong-Fong Lee, Sun Chan, and anonymous
reviewers helped improve the presentation of this paper. Dan Lavery provided
the description of the Itanium7» architecture software pipelining features. Were
it not for the plentiful BKTEX support of Kishore Menezes, we’d still be struggling
with Word.

References

1. Aiken, A., Nicolau, A.: Optimal Loop Parallelization. Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion, June, (1988), 308-317

2. Allan, Vicki H., Jones, Reese B., Lee, Randall M., Allan, Stephen J. : Software
Pipelining. ACM Computing Surveys, 27, No. 3, September (1995) 367432

3. Banerjee, U.: Dependence Analysis for Supercomputing. Kluwer Academic Pub-
lishers, Boston, MA, (1993)

10.

11.

12.

13.

14.

15.

16.

17.

Software Pipelining of Nested Loops 181

Charlesworth, A.: An Approach to Scientific Array Processing: The Architectural
Design of the AP-120B/FPS-164 Family. IEEE Computer, Sept. (1981).

Dehnert, J. C., Hsu, P. Y., Bratt, J. P.: Overlapped Loop Support in the Cydra
5. Proceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, April, (1989), 26-38

Ebcioglu, K.: A Compilation Technique for Software Pipelining of Loops with Con-
ditional Jumps. Proceedings of the 20th Annual Workshop on Microprogramming
and Microarchitecture”, Dec. (1987), 69-79

Eisenbeis, C., et. al: A New Fast Algorithm for Optimal Register Allocation in
Modulo Scheduled Loops. INRIA TR-RR3337, January (1998)

Huck, J., et al: Introducing the IA-64 Architecture. IEEE Micro, 20, Number 5,
Sep/Oct (2000)

Intel Corporation: IA-64 Architecture Software Developer’s Manual. Santa Clara,
CA, April 2000

Lam, M. S.: Software Pipelining: An Effective Scheduling Technique for VLIW
Machines. Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation, June, 1988, 318-328

Mabhlke, S. A., Chen, W. Y., Hwu,W. W., Rau, B. R., Schlansker, M. S.: Sentinel
Scheduling for Superscalar and VLIW Processors. Proceedings of the 5th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Oct, (1992), 238247

Mahlke, S. A., Hank, R. E., McCormick, J.E., August, D. I., Hwu, W. W.: A Com-
parison of Full and Partial Predicated Execution Support for ILP Processors. Pro-
ceedings of the 22nd International Symposium on Computer Architecture, June,
(1995), 138-150

Rau, B. R., Glaeser, C. D.: Some Scheduling Techniques and an Easily Schedulable
Horizontal Architecture for High Performance Scientific Computing. Proceedings
of the 20th Annual Workshop on Microprogramming and Microarchitecture, Oct,
(1981), 183-198

Rau, B. R.: Iterative Modulo Scheduling: An Algorithm for Software Pipelining
Loops. MICRO-27, (1994), 63-74

Rau, B. R, Schlansker, M. S., Tirumalai, P. P.: Code Generation Schema for Modulo
Scheduled Loops. MICRO-25, (1992), 158-169

Ruttenberg, J., Gao, G. R., Stoutchinin, A., Lichtenstein, W. : Software Pipelining
Showdown: Optimal vs. Heuristic Methods in a Production Compiler. Proceedings
of the ACM SIGPLAN 96 Conference on Programming Language Design and Im-
plementation, May, (1996), 1-11

Wolfe, M.: High-Performance Compilers for Parallel Computing. Addison-Wesley,
Redwood City, CA, (1996)

	Introduction
	Software Pipelining in the Itanium{relax fontsize {5}{6}selectfont TM} Architecture
	Software Pipelining of Nested Loops
	Method 1 for Pipelining of Nested Loops
	Method 2 for Pipelining of Nested Loops

	Pipelining of Nested Loops for Other Architectures
	Experimental Results
	Conclusion

