A Bounded Graph-Connect Construction for
LR-regular Parsers

Jacques Farré! and José Fortes Galvez?:!

! Laboratoire I3S, CNRS and Université de Nice - Sophia Antipolis
2 Depart. de Informética y Sistemas, Universidad de Las Palmas de Gran Canaria

Abstract. Parser generation tools currently used for computer language
analysis rely on user wisdom in order to resolve grammar conflicts. Here
practical LR(0)-based parser generation is introduced, with automatic
conflict resolution by potentially-unbounded lookahead exploration. The
underlying LR(0)-automaton item dependence graph is used for looka-
head DFA construction. A bounded graph-connect technique overcomes
the difficulties of previous approaches with empty rules, and compact
coding allows to precisely resume right-hand contexts. Resulting parsers
are deterministic and linear, and accept a large class of LR-regular
grammars including LALR (k). Their construction is formally introduced,
shown to be decidable, and illustrated by a detailed example.

1 Introduction

Grammars for many computer languages (programming languages, description
languages ...) are neither LL(1) nor LALR(1). Unfortunately, most available
parser generators, without user help, are restricted to these grammar classes.
And the user is confronted with adapting the grammar, if not the language, to
the restrictions imposed by the tool. Unnatural design, which may not adapt well
to the application, results from these restrictions, e.g., the discussion on a Java
LALR grammar in [8]. Moreover, this adaptation often requires user expertise
and detailed analysis. The need for more powerful parsers exists, as shown by the
popularity of tools proposing different means to overcome conflicts. A first choice
is to use generators that propose to resolve conflicts by means of predicates [9
T4]. These are apparently-simple semantic checks or lookahead explorations spec-
ified “ad hoc” by the user. But resorting to predicates is intrinsically insecure,
because parser generators cannot detect design errors, and may produce incor-
rect parsers without user notice. Moreover, ill-designed syntactic predicates may
involve heavy backtracking, resulting in inefficient parsers.

A second choice is to use parsers for unrestricted context-free grammars [6]
T2IT1]). In particular Generalized LR [I8], which has efficient implementations [I]
and has been successfully used outside the scope of natural language processing
(e.g., [19]). Unfortunately, these generators cannot always warn about grammar
ambiguity. As a result, the user may be confronted with an unexpected forest
at parsing time. Although GLR has been practically found near-linear in many

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 244-B58, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Bounded Graph-Connect Construction for LR-regular Parsers 245

cases, nondeterminism occurs for each conflict, and linearity is not guaranteed,
even for unambiguous grammars. Finally, nondeterminism compels to undo or
to defer semantic actions.

We think that, between the above choices, a tool offering automatic conflict
resolution through potentially-unbounded lookahead exploration should be use-
ful. It would allow to produce deterministic and reliable parsers for a large class
of unambiguous grammars, without relying on user help or expertise.

In LR-regular (LRR) parsing [5], an LR conflict can be resolved if there
exist disjoint regular languages covering the right-hand contexts of every action
in conflict. The LRR class is theoretically interesting, since it allows to build
efficient parsers using deterministic finite-state automata (DFA) for lookahead
exploration. In particular, it has been established that LRR parsing is linear [10],
what is not ensured by GLR or parsers with predicates.

Unfortunately, full LRR parser generators cannot be constructed because it is
undecidable whether a grammar is LRR [I7]. Nevertheless, several attempts have
been done to develop techniques for some subset of LRR, but have failed to pro-
duce sufficiently practical parser generators. At most, they guarantee LALR(k)
only for grammars without e-rules, what nowadays is considered unacceptable.

In this paper, we propose a bounded graph-connect technique for building
LRR parsers. This technique is inspired by noncanonical discriminating-reverse
(NDR) parsers [7], which actually accept a wider class of grammars not restricted
within LRR. However, the method shown here naturally produces canonical
and correct-prefix parsers (what is not ensured by NDR), which are usually
considered desirable properties.

1.1 Related Work

The first attempt to develop parsers for a subset of LRR grammars is due to
Baker [2], with the XLR method. In XLR, the LR automaton is used as the
basis for the lookahead automata construction, with the addition of e-arcs that
allow to resume exploration after reduction states. However, the lack of precise
right-hand context recovery makes XLR(k) a proper subclass of LALR(k).

The methods R(s)LR by Boullier 4], and LAR(s) by Bermudez and Schimpf
[B], were independently developed with similar results. Their approach can be de-
scribed as using a bounded memory of s LR(0) automaton states in order to im-
prove right-hand context recovery. Thus, both methods are more powerful than
XLR, but they both have problems with e productions. As they show, R(s)LR(0)
accepts all e-free LALR(s) grammars, but for any s there exist LALR(1) gram-
mars that are not LAR(s).

Seité studied automatic LALR(1) conflict resolution [15]. His method, while
not more powerful than Boullier’s in the lookahead exploration phase, introduces
an additional phase which scans some stack prefix when the lookahead explo-
ration has not been able to resolve the conflict. This extension, which increases
the accepted class with some non-LR, LRR grammars, is quite independent of
the lookahead exploration technique used. Although it can be applied to our
method, we shall not consider it here.

246 J. Farré and J. Fortes Gélvez

1.2 Introduction to Our Approach

In our approach, right-hand context computation is made much more precise
than previous methods, thanks to several innovations:

— Instead of automaton state transitions, we follow the underlying kernel-item
transition graph of the LR(0) automaton. Using kernel items instead of full
state item-set allows a simpler and more efficient construction.

— Instead of keeping track of s states for the right-hand context to recover, we
keep track of at most h path subgraphs of the underlying item graph. Each
such subgraph is coded by its extreme items, and the underlying graph is in
turn used to follow precisely each possible path.

— An e-skip move, combined with the above bounded graph-connect technique,
allows to skip and precisely resume exploration on the right of e-deriving
nonterminals.

Our construction follows precisely right-hand contexts as far as no more
than h path subgraphs are needed. Since at most a new subgraph is added for
each explored terminal, all LALR(h) grammars are accepted. Moreover, for most
practical grammars, an effective lookahead length well beyond & (in fact, usually
unbounded, and thus allowing grammars not in LR) should be actually obtained.

In previous methods, since transitions on e-deriving nonterminals add states
to the (bounded) state memory, there exist LALR(1) grammars whose conflicts
cannot be resolved.

2 Context Recovery and Subgraph Connections

In this section, we shall first describe the kernel-item underlying graph, and then
the different aspects of our approach for computing right-hand contexts.

Usual notational conventions, e.g., [16], will be generally followed. The orig-
inal grammar G is augmented with P’ = {S’—S-} U P. Productions in P’ are

numbered from 1 to |P’|, what is sometimes noted as Aba.

2.1 LR(0) Construction

Let us first recall the LR(0) automaton construction where each state g corre-
sponds to a set K, of kernel items. For initial state gy we have Ky, = {[S’—-S-]}.
The transition function A can be defined as follows:

A(Kq, X) = {[A=aX f] | [A=a-X] € C(K,)},
where C is the closure operation, which can be defined as
C(K) = KU{[B—]|[A=ap] € K, B="Br="yx}.

A kernel item ¢ indicates the parsing actions “shift” if there is some [A—a-af] in

C({¢}) and “reduce j” for each [Biw'] in C({¢}). A conflict-state item set indi-
cates a set of two or more different actions. For these states, our method builds
a lookahead automaton, by using the kernel-item graph as its basic reference.

A Bounded Graph-Connect Construction for LR-regular Parsers 247

Fig. 1. Tllustration of § function

2.2 The Underlying LR(0) Kernel-Item Graph

In the LR(0) automaton underlying graph, each node v = [A— -] , corresponds
to some kernel item [A—c-(] in some set K, i.e., the same item in different state
sets will correspond to different nodes. (Single) transitions are defined on V', as
illustrated by Fig. [}

6(v, X) = {[A=aX Bl | A(Ky, X) = Ky, v = [A=a-X] }
U {[C—)X-'y]q, |A(Ky, X) =Ky ,v= [A—)a-qu,Bﬁ*Cﬂc:Xfyx}.

In the first subset, the dot moves along the right-hand side of a rule until its
right-hand end, where no more transitions are possible. The second subset may
be understood as “transitions through” nonkernel items resulting by closure from
some kernel item in the originating state ¢ to some kernel item in the destination
state ¢’.

We extend ¢ for transitions on strings in V*:

§*(v,e) = {v}, (v, Xa) = U (V).
v'ed(v,X)

We shall usually write -1/ instead of v/ € §*(v,).

2.3 Simple Context Recovery

Item graph transitions on terminals determine the lookahead DFA transitions.
The starting points, for each LR(0) conflict, are kernel items in the conflict
state. Suppose that, in Fig. Bl ¢ is a state with a shift-reduce conflict. For the
shift action in conflict, the transition on a will be followed initially from node
[A—a-Bf], to node [C—a-w], , and then, if necessary, successive transitions on
symbols in w.

A first aspect to consider is how to precisely recover the right-hand contexts
of a left-hand side nonterminal when its corresponding rule’s right-hand side
has been completely traversed, e.g., in Fig. 2l when v = [C—mw']qw is reached,
graph traversal must resume with v/ = [D—C-], , but not with nodes for
which there exist transitions on C from some v” in ¢’ # q. For this purpose,

248 J. Farré and J. Fortes Gélvez

Fig. 2. Illustration of simple context-recovery

we use node pairs (v,v), where v represents the current position in the item
graph, and v; its left-hand reference node, i.e., the kernel-item node from which
right-hand side traversals start. While graph traversal proceeds along some rule’s
right-hand side, the corresponding v; remains unchanged. Figure [2 shows nodes
corresponding to pairs (v,v) and (v,1') for traversal of aw, i.e., vj—»v and

Co.
Vi—v .

2.4 Subgraph Connections

Another aspect arises from lookahead transitions corresponding to further de-
scents into possible derivation subtrees after partial right-hand side exploration.
Figure B] illustrates this case: on a transition on b, the current position moves
down the subtree with root C' from v = [B—y-C¢|,, to v/ = [G%b{]q;). The

current v, = [A—a-Bf], cannot be used as left-hand reference for the nodes
corresponding to positions in this subtree. Thus, v becomes the reference node
v| for the subtree walk. In order to recover right-hand context after subtree of
root C' has been explored, a so-called subgraph connection is needed. It will per-
mit, after switching to the new subgraph, to retrieve the previous one if needed.
For this purpose, we keep sequences of pairs

K= (l/c(l), Vt(l)) e (V(m), Vém)),m > 1.

c

Last pair (l/c(m), l/t(m)) will also be noted (v, v), since Vt(m) represents the current

) its left-hand reference node. In Fig. B, x = (v, v)(v, V') after

the transition on b. We shall see in next section that in some cases uf@ # Y,
Unfortunately, the length of such sequences k is usually unbounded, since
(indirectly) recursive rules produce loops in the item graph. We ensure a finite

construction by bounding || within some constant , in such a way that, when

position and uﬁm

! Tts value could be set by the user, for instance, although k = 1 should be enough in
most practical cases.

A Bounded Graph-Connect Construction for LR-regular Parsers 249

B

recovery
through v

|

context recovery >
hrough Vl

/
g an

Fig. 3. Illustration of subgraph connection

appending another pair to a sequence of length h, the sequence’s first element
is lost. Thus, exact right-hand context cannot be computed if the lookahead
automaton construction requires to resume graph transitions involving lost ref-
erence nodes.

2.5 Skipping e-Deriving Nonterminals

Let us finally consider e-productions. Differently from previous methods, the
item graph allows to follow transitions on e-deriving nonterminals without
lengthening the graph sequence x. If current position is [B—y-pCv'], > as in
Fig. [@ —dashed boxes represent sequences of e-deriving nontermlnals—, and
next exploration symbol can be a € First(C), a graph connection is performed

after skipping the sequence n of e-deriving nonterminals, and the pair (v],7) is
added to k, with I/t—>l/l—>1/ Thus, in general, 1/()—>1/£7+1) n="¢.

Context is recovered in principle as described in previous sections. However,
we also need in general to skip sequences of e-deriving nonterminals for transi-
tions corresponding to up-right moves in the possible derivation trees, in order
to reach a position on the left of some X such that X="bz, as shown by the
upward e-skip path in Fig. @l For this purpose, amongst all paths allowed by the
LR(0)-automaton graph, we should only consider those followed by the down-
ward e-skip from vy, i.e., those leading from 14 to the current left-hand reference

(v] in Fig. [@)

250 J. Farré and J. Fortes Gélvez

S/

v = [B—=y-pCY']
vt

graph’

connection'

77 77
q dg,

v = [L—7-D7'] V"' = [D—E-XHN|

©

q q,

v = (5] L - [MW]]
a

downward
e-skip

Fig. 4. Illustration of skipping e-deriving nonterminals

2.6 General Context Recovery

Let us now summarize the above considerations in order to present the general
case for single (upward) context-recovery steps from current sequence (v, v).

In general, we have Vlﬁn/ = [A—af],. If y="¢, we have to consider
an upward step to resume exploration for the (precise, if possible) right-hand
context of A, ie., we have to compute those sequences £’(v],v’) such that

v A = [BH(pA@b]q, and which are compatible with current sequence. We
distinguish the following cases:

1. ¢/ is lower than 1 in the derivation tred] (leftmost tree in Fig. H). Only v
changes, i.e., V] = v.
2. Otherwise, there are two subcases:
a) k is empty, i.e., current sequence contains only one pair (v;,v) (middle
tredd in Fig.Blwith no v4). If no graph connection has been performed yet,

2 In this case, o = €.

3 The possible positions of the different nodes are shown. For instance, in this tree,
lower v, passes to higher v; when ¢ = ¢, and higher v, —which is only possible when
 # e— does not move.

A Bounded Graph-Connect Construction for LR-regular Parsers 251

o vy

v vy Ve

.B . C . B
RS v‘_7//\\

ascent in same subtree ascent in same graph ascent to connected graph

Fig. 5. Illustration of single context-recovery steps

or, if performed and subsequently resumed, no truncation (to h pairs)

has taken place, then all (v/,2') such that vj-1; and v} A are exact.
However, in case of truncation some of such (v/,7’) may be in excess,
resulting in precision loss.

b) Otherwise current subgraph is connectedﬁ i.e.,, k = K1 (Ve,vt). There are
two possibilities:

i. v/ is lower than v; (middle tree in Fig.[l). According to the discussion
in Sect. [Z5] only those v} on a downward e-skip path 7 from v, are
precise.

ii. Otherwise v/ can only be at the same level as v; (rightmost tree in
Fig.[). The connected subgraph is resumed, i.e., last pair is removed
from current sequence and v; is replaced by /.

The following function performs such single context-recovery steps:

0(r(n,v)) =
{1 (e, V') | s 0] 1/ = [B—pZnAp],,n="e, (v, V) (1), v")}
U {k(m], V) [ve=5v] v = [B=o A np=e, (m,)11,)} if k=k1(ve, 1)
{w,) [,)], v")} otherwise,
such that (v, V)11 (v, V') iff l/l/iﬂ/lﬁ)lj = [A—=aB1],, Vl/iﬂ/, and y="¢.
Its closure, which allows any number of context recovering steps, is defined
as the minimal set such that 0* (k) = {k} U{x" |k" € 0(r"), K" € 6*(r)}.

3 Construction of Lookahead Automata

States r in the lookahead DFA correspond to sets J, of lookahead items. A
lookahead item u = [j, k] will describe a current sequence (i.e., current position

. . n
4 In this case, a="¢, since we always have v,—>v;, n="¢.

252 J. Farré and J. Fortes Gélvez

and its recovery context) x for some action j in conflict. By convention, j = 0

for a shift action, and j = ¢ for a reduction according to Aba.

3.1 Transitions from Lookahead States

The following function computes the next set of lookahead items after some
terminal-symbol transition:

@h(J,»,a) =

O, k(.)] [5w, V) € Iy, v 25 =[AaX BY], B="e, Y =*a}

. . Y
U{[Jv H<Vc> Vt)(ylv V) h} | []7 H(ch Vt)] eJr, Vtin/lﬁ—>V: [A%ﬁy"ﬂqv
np=*e,Y=">"a,y="bx}).

The first subset corresponds to the case in which we are simply moving along the
right-hand side of some rule, or we descend in a subtree to immediately return
to the current level. To avoid a graph connection in the latter situation is of
practical interestd.

The second subset corresponds to a true descent in the derivation tree, i.e.,
exploration will continue in it. Thus, a graph connection is performed, in order
to correctly resume after the subtree exploration.

Finally, function © performs all necessary e-skip upward context-recovery
including removal of useless itemdd:

O(J,) = {lj, k' (v, V)] | K (n,v) € 0% (x),[j, k] € Jy, v=[A—a-f],, B="az}.

3.2 Initial LR(0)-Conflict Lookahead Item Sets

Let rd be the initial lookahead state associated with some conflict-state g. Its
associated set of lookahead items can be computed as follows.

Ja ={[0,(v,V)] | K, 2 v3V'}U é({[z, (v,)] \Aim,wiw’,zqiw € K,}).

[¢]

As for the definition of the transition function, an upward e-skip is applied.

3.3 Inadequacy Condition

A grammar G is inadequate iff, for some lookahead state r,

Gkl sl € T G # T

5 In order to make grammars more readable, productions such as type-name — IDENT
and var-name — IDENT are frequently used. Rejecting such grammars because the
graph connection looses precise context would be unfortunate.

5 They are now useless for subsequent transitions if First(3) = {¢}.

A Bounded Graph-Connect Construction for LR-regular Parsers 253

Since two lookahead items with the same s will follow exactly the same
continuations and thus accept the same language, we can predict that discrim-
ination amongst their actions will be impossible. Such grammars are rejected.
Otherwise, a correct parser is produced.

Since those k exactly code up to at least the first A terminals of right-hand
context, inadequacy condition implies that the grammar is not LALR(h).

3.4 Construction Algorithm

In each state r of the lookahead DFA, action j can be decided on symbol a if all
lookahead items [y, k;(v;, [Ai—ai-Bi],,)] in J, with First(8;) > a share the same
action j. Otherwise, a transition is taken on a to continue lookahead exploration.
Accordingly, the following construction algorithm computes the lookahead DFA’s
action-transition table At. Obviously, only new item sets (corresponding to new
states) need to be incorporated to Set-list for subsequent processing.

DFA(h) GENERATOR:
for each conflict-state ¢ do
initialize Set-list with Jrg
repeat
let J, be next item-set from Set-list
Ps:={(j,a) | [j, s(v,[A=a-B],)] € Jr,a € First(B)}
for a € T|3(j,a) € Ps do
if #(j',a) € Ps|j' # j then At(r,a) :=j
else J,» := O4(J-,a); add J,» to Set-list; At(r,a) := goto r’
until end of Set-list or inadequacy (rejection)

4 Example

We will illustrate our method with a simplified grammar for HTML forms, as
the one discussed in [13]. Forms are sequences of tagged values:

Company=BigCo

address=1000 Washington Ave

NYC NY 94123

Since a value can span several lines, the end of line is not only a delimiter
between tag-value pairs. And since letters can belong to a value, a sequence
of letters represents a tag only when immediatly followed by an = sign. Thus,
in order to know if a delimiter ends a tag-value pair, or if it belongs to the
value being processed, an unbounded number of characters must be read. We
shall use the following example grammar Gy for HTML forms, in which [stands
for any letter, and c¢ stands for any character other than a letter or the = sign
(separately including space and end-of-line does not basically modify the problem
but complicates the example).

s Ls4 SEHF S3 SeF FA T=V
T2 TS 71T v5Loe v 3 v V2 ve

254 J. Farré and J. Fortes Gélvez

4.1 Solutions with Commonly Used Parser Generators

It is easy to see that G is neither LR(k) nor LL(k) for any k A
The ANTLR solution, as given in [I3], can be roughly described as follows
(terminals are in capitalized letters):

// parser

form : (TAG string)+ ;

string : (CHAR)+ ;

// scanner

TAG C(ar ..z | A L 020)+ ;

FORMTOKEN : (TAG ’=>) ==> TAG ’=’ {$setType(TAG);} // predicate

| . {$setType(CHAR) ;} ;

This solution is rather complex and tricky: it needs to define a scanner that
uses a syntactic predicate (and thus reads characters until an = or a non-letter is
found) to set the token kind (TAG, whose value is a letter sequence, or CHAR, whose
value is a single character). In the proper “grammar” (defined by the parser),
no delimiter ends a tag-value pair, what makes the grammar ambiguous, e.g.,
t=xyz=v can be interpreted in two possible ways, as t=x yz=v or as t=xy z=v,
since tags are defined as letter sequences followed by =. Parsing is unambiguous
only because the scanner reads the whole tag when encountering its first letter.

Furthermore, this solution is inefficient: for each letter of a letter sequence in
a value, the predicate is checked, and, in the worst case, parsing time is O(n?)
on the input length.

No better solution can be easily found with Yacc; TAG and CHAR are tokens,
and the trick is to let Lex do the work in a way analogous to ANTLR:

[a-zA-Z]+/= return TAG; /* TAG only if followed by an = */
return CHAR;

Again, scanning can be O(n?). Means offered by Yacc to resolve conflicts
(token priority) are of no help. Letters can be read only once by adding

[a-zA-Z]+/["=] return CHAR; /* CHAR only if not followed by an = */

to the Lex code. This simply shows that making letter sequences a token is not
enough, if done independently of the right-hand context.

4.2 The Bounded Graph-Connect LRR Solution

G ¢ is LR-regular because there exist discriminant right-hand regular languages
that allow to decide if next character is a form separator, or if it belongs to
the value being processed. These languages can be respectively described by
the regular expressions —|cit= and I|cl*(c|H). A user of ANTLR (or Yacc+Lex)
should give these regular expressions as syntactic predicates for a clean solution.

" One can argue that, on this example, sequences of letters can be a token. This simply
would result in an LALR(3) or LL(3) grammar, that neither Yacc nor ANTLR can
handle without help from the user, as shown here.

A Bounded Graph-Connect Construction for LR-regular Parsers 255

Fig. 6. LR(0) states and kernel-item graph for grammar Gy

Finding these regular expressions is not that easy, especially for someone not
trained in compiler/translator writing.

Let us see how our method correctly solves the problem, without user help.
Figure [6] shows the corresponding LR(0) states and their underlying graph of
kernel items. This automaton has one conflict state, qio. Its (kernel) items are
used for the initial state of a lookahead DFA, whose construction (for h = 1) is

summarized in Fig. [7] Here is how 6* works for (v,v),v = [F—=T = V] in r:

q10

— On one hand, [S’—>~S—1]qoﬂ>u, [S’—>~S—|]q0i>[5—>F~]q2, followed
by a mnew context-recovery step: [S'—-S] qoi[S’—>S~—|] 5 and
(5" —-5],, 2 [S—S-cF],,.

— On the other hand, [S—>S’C~F]qsﬂ>u7 and [S—>Sc-F]q6£>[S—>ScF-]q9;

again, another context-recovery step takes place and, since

[S’—>-S—|]q0£>[5—>ScF-] , we have the same transitions on S as

q9
above.

According to current-position nodes in the resulting lookahead item set J,,,
lookahead symbol 4 is only associated to reduction 4, and [to action 0 (shift),
so they can be decided. On the other hand, since ¢ does not allow to decide, a
transition is needed to rq.

Decisions and transitions are likewise computed for the remaining states,
resulting in the automaton shown in Fig. In r; a transition on [to ro is
needed because | € First(F'), while for 7o some graph transitions are actually

256 J. Farré and J. Fortes Gélvez

|0 FT =V [VoVedg] 1088, [S'=8H),]\ W [S=SeF], [F-T=V],]!
| [O,[F—>T=~V]q7,[V—>V~l]q1(]% [O,[S’—>~S—<]q0,[S—>S~cF]q1]¥[S—>Sc-F]%,[T—>T'l]q3] !

(0,551, [S—F,,] [0, [S—Se-F),, [SSScF,]
FoT =V

[0, [F—T =V] aro)

@l

[0, [FT =V, ,[V=VL],,] 4, [S—Se-F),, [T—TL],] \

Construction of ©1(Jr,,1) = Jp,

T TN »

[0,[8"—-54],,. [S'=5],, 1\ [4,[S=5e-Fl, [T,] |

[0, [F—=T =V], ,[V=V-1,,]
[0, [F—T =V], , [V~>V~c]qlo% [0, (8" —-5],,, [S—=5-cF],] \ [4, [S—Sc-F, , [FT-= V], \
[0, [8"—-5],, [S—F"],,] [0, [S—+Sc-Fl,,, [S>ScF],]
[0, [F=T =V],_,[F=T =V,
T (=*1)
0, [F=T =V],_ . [V=Vi],,]

Construction of J,,

lé 77) !

[0, [F~T =V], ,[V=V-] [0,[S" =5, [8'+S,) [4.[8'—5],,, [S—+ScF]

410] q0
0, [F=T =V], ,[V—=V-d 1; [0, [8"—-5],,, [S—5-cF],,]

i
|
|
l

q10

[0, [8"—-5],,, [S=F],,] [0, [S—Sc-Fl, , [S—ScF],,]

q0’

[0,[F>T =V],_,[F>T =V

q7’[qm]

0,[V—=V-d,, [V=Vel,,,]

f

Construction of J,;

&'[o,[vﬁv.c]m,[vﬁv.c]m] 7777777777 M,[S/H.s4]qo,[sﬁs.cp]ql]/f‘
L0, VsV, V=V, /Z [4, [—-5], [S"—S5,,] z&
[4, 8" =5, [S=F1) [4, [S—Se-F, , [S—ScF],]

F—-T =V

[4,[F=T =V, 1 a10]

Construction of J,

Fig. 7. DFA construction for grammar Gy

A Bounded Graph-Connect Construction for LR-regular Parsers 257

l
@ @ C2)

c,
N --»shift & - |\ = shift
~ »shift ‘o=
~ -wreduce 4 ~-w»reduce 4

_L

~

Fig. 8. Lookahead DFA for Gy

taken on T, since T'="*[. In this latter state, these downward transitions imply
a connect followed by truncation to h = 1, although the precision loss will not
affect the ability to resolve the conflict. Finally, ©1(J,,,l) = J;.,, what produces
a loop in the lookahead DFA, and terminates the construction.

The reader might like to verify that time complexity for parsing is linear
on input length. Following the automaton, it is easy to verify that each input
character is checked at most two times. For a sequence coly - - - l,c1 -+ - eplny1 - - -,
c1 # =, coly - lyc1 is checked a first time, and ¢(is shifted. Next, the [; are
checked, and then shifted, one at a time. Finally, c;c;41,7 = 1,...,m — 1 are
checked and ¢; is shifted, until input is ¢, 041 - - -, which brings back to the first
step.

Note that GLR, while producing a nondeterministic parser, gives the same
complexity: it maintains two stacks as long as it cannot decide whether a letter
belongs to a value or to a tag.

5 Conclusions

Available parser generation tools are not sufficiently powerful to automatically
produce parsers for computer language grammars, while previous attempts to
develop LR-regular parsers have failed to guarantee sufficient parsing power,
since their context recovery is based on LR(0) states only.

Recent research on NDR parsing has provided with an item graph-connecting
technique that can be applied to the construction of lookahead DFA to resolve
LR conflicts. The paper shows how to build such DFA from an LR(0) automa-
ton by using the dependency graph amongst kernel-items. By combining e-skip
with compact graph-connect coding, we overcome the difficulties of previous ap-
proaches. As a result, largely improved context-recovery is obtained while staying
relatively simple.

While less powerful than NDR, these LRR parsers naturally preserve the
properties of canonical derivation, correct prefix, and linearity. They accept a
wide superset of LALR(h) grammars, including grammars not in LR, and thus
permit to build practical, automatic generation tools for efficient and reliable
parsers.

258 J. Farré and J. Fortes Galvez
References
1. J. Aycock and R. N. Horspool. Faster generalized LR parsing. In S. Jahnichen, ed-

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

itor, Compiler Construction. 8th International Conference, CC’99, Lecture Notes
in Computer Science #1575, pages 32—-46. Springer, 1999.

. T. P. Baker. Extending look-ahead for LR parsers. J. Comput. Syst. Sci.,

22(2):243-259, 1981.

M. E. Bermudez and K. M. Schimpf. Practical arbitrary lookahead LR parsing.
Journal of Computer and System Sciences, 41:230-250, 1990.

P. Boullier. Contribution a la construction automatique d’analyseurs lexicogra-
phiques et syntaxiques. PhD thesis, Université d’Orléans, France, 1984. In French.
K. Culik IT and R. Cohen. LR-regular grammars — an extension of LR(k) gram-
mars. J. Comput. Syst. Sci., 7:66-96, 1973.

J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94-102, Feb. 1970.

J. Farré and J. Fortes Galvez. A basis for looping extensions to discriminating-
reverse parsing. In S. Yu, editor, Fifth International Conference on Implementation
and Application of Automata, CIAA 2000. To appear in LNCS. Springer.

J. Gosling, B. Joy, and G. Steele. The Java™ Language Specification. Addison-
Wesley, 1996.

D. Grune and C. J. H. Jacobs. A programmer-friendly LL(1) parser generator.
Software—Practice and Ezperience, 18(1):29-38, Jan. 1988.

S. Heilbrunner. A parsing automata approach to LR theory. Theoretical Computer
Science, 15:117-157, 1981.

A. Johnstone and E. Scott. Generalised recursive descent parsing and follow-
determinism. In K. Koskimies, editor, Compiler Construction. 7th International
Conference, CC’98, Lecture Notes in Computer Science #1383, pages 16-30.
Springer, 1998.

B. Lang. Deterministic techniques for efficient non-deterministic parsers. In
J. Loeckx, editor, Automata, Languages and Programming, Lecture Notes in Com-
puter Science #14, pages 255-269. Springer, 1974.

T. J. Parr. We are talking really big lexical lookahead here.

www. antlr.org/articles. html.

T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator.
Software—Practice and Ezxperience, 25(7):789-810, July 1995.

B. Seité. A Yacc extension for LRR grammar parsing. Theoretical Computer
Science, 52:91-143, 1987.

S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer, 1988-1990.

T. G. Szymanski and J. H. Williams. Non-canonical extensions of bottom-up
parsing techniques. SIAM J. Computing, 5(2):231-250, June 1976.

M. Tomita. Efficient Parsing for Natural Language. Kluwer, 1986.

T. A. Wagner and S. L. Graham. Incremental analysis of real programming lan-
guages. ACM SIGPLAN Notices, 32(5):31-43, 1997.

	Introduction
	Related Work
	Introduction to Our Approach

	Context Recovery and Subgraph Connections
	LR(0) Construction
	 The Underlying LR(0) Kernel-Item Graph
	Simple Context Recovery
	Subgraph Connections
	Skipping $unhbox voidb @x hbox {$varepsilon $}$-Deriving Nonterminals
	General Context Recovery

	Construction of Lookahead Automata
	Transitions from Lookahead States
	Initial LR(0)-Conflict Lookahead Item Sets
	Inadequacy Condition
	Construction Algorithm

	Example
	Solutions with Commonly Used Parser Generators
	The Bounded Graph-Connect LRR Solution

	Conclusions

