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Abstract. One of the key challenges facing computer architects and
compiler writers is the increasing discrepancy between processor cycle
times and main memory access times. To alleviate this problem for a
class of array-dominated codes, compilers may employ either control-
centric transformations that change data access patterns of nested loops
or data-centric transformations that modify the memory layouts of multi-
dimensional arrays. Most of the layout optimizations proposed so far
either modify the layout of each array independently or are based on
explicit data reorganizations at runtime.

This paper describes a compiler technique, called array unification, that
automatically maps multiple arrays into a single data (array) space to
improve data locality. We present a mathematical framework that en-
ables us to systematically derive suitable mappings for a given program.
The framework divides the arrays accessed by the program into several
groups and each group is transformed to improve spatial locality and
reduce the number of conflict misses. As compared to the previous ap-
proaches, the proposed technique works on a larger scope and makes use
of independent layout transformations as well whenever necessary. Pre-
liminary results on two benchmark codes show significant improvements
in cache miss rates and execution time.

1 Introduction

Processor cycle time continues to decrease at a much faster rate than main
memory access times, making the cache memory hierarchy performance crit-
ical. To address this issue, conventional cache management techniques must
be supported by software-oriented approaches. Throughout the years, several
compiler techniques have been proposed and implemented with the objective of
making memory access patterns of applications more cache-friendly. These in-
clude modifications to control structures (e.g., nested loops), careful placement
of load/store operations, and reformatting memory layouts for scalar, multi-field
(e.g., records), and array variables.

Modifications to control structures and smart load/store placement tech-
niques are known to be bounded by inherent data dependences in the code.

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 259-B73, 2001.
© Springer-Verlag Berlin Heidelberg 2001



260 M.T. Kandemir

Reformatting memory layouts, on the other hand, is less problematic as it does
not change the data dependence structure of the computation. In particular,
recent years have witnessed a vast group of layout optimization techniques that
target at codes with inherent data locality problems such as regular numerical
codes that manipulate large multi-dimensional arrays [119] or codes that utilize
pointer structures (e.g., linked lists and trees) [1].

Previous research on data transformations for numerical codes focussed pri-
marily on transforming a single array at a time. This special case is interesting
mainly because it may enable improved spatial locality for each transformed
array. For instance, the studies presented by Leung and Zahorjan [I1], Cier-
niak and Li [2], and Kandemir et al. [9] fall into this category. Most of these
transformations, like many loop-oriented optimization techniques, target only
the reduction of capacity misses, namely the misses that are due to small cache
sizes. However, in particular, in caches with low associativity, conflict misses can
present a major obstacle to realizing good cache locality even for the codes that
have specifically been optimized for data locality, thereby precluding effective
cache utilization. On top of this, as opposed to capacity misses, the degree of
conflict misses can vary greatly with slight variations in array base addresses,
problem (input) sizes, and cache line (block) sizes [17].

In this paper, we discuss a data space transformation technique, which we call
array unification, that transforms a number of array variables simultaneously.
It achieves this by mapping a set of arrays into a common array space and
replacing all references to the arrays in this set by new references to the new
array space. One of the objectives of this optimization is to eliminate inter-
variable conflict misses, that is, the conflict misses that are due to different
array variables. Specifically, we make the following contributions:

— We present a framework that enables an optimizing compiler to map multiple
array variables into a single data space. This is the mechanism aspect of
our approach and leverages off the work done in previous research on data
(memory layout) transformations.

— We present a global strategy that decides which arrays in a given code should
be mapped into common data space. This is the policy aspect of our approach
and is based on determining the temporal relations between array variables.

— We present experimental results showing that the proposed approach is suc-
cessful in reducing the number of misses and give experimental data showing
the execution time benefits.

— We compare the proposed approach to previous locality optimizations both
from control-centric domain [T9] and data-centric domain [1119].

The rest of this paper is organized as follows. Section Pl gives the background
on representation of nested loops, array variables, and data transformations and
sets the scope for our research. Section [3 presents the array unification in de-
tail. Section [ introduces our experimental platform and the benchmark codes
tested, and presents performance numbers. Section [ discusses related work and
Section Bl summarizes the contributions and gives an outline of future work.
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2 Background

Our focus is on affine programs that are composed of scalar and array assign-
ments. Data structures in the program are restricted to be multidimensional
arrays and control structures are limited to sequencing and nested loops. Loop
nest bounds and array subscript functions are affine functions of enclosing loop
indices and constant parameters. Each iteration of the nested loop is represented
by an iteration vector, I’, which contains the values of the loop indices from out-
ermost position to innermost. Each array reference to an m-dimensional array U
in a nested loop that contains n loops (i.e., an n-level nested loop) is represented
by R, I+ 0y, where I is a vector that contains loop indices. For a specific I = I”,
the data element R, I’ + o, is accessed. In the remainder of this paper, we will
write such a reference as a pair {R,, 0, }. The m X n matrix R, is called the
access (reference) matriz [19] and the m-dimensional vector o,, is called the off-
set vector. Two references (possibly to different arrays) {R,, 0.} and {Ry/, 04}
are called uniformly generated references (UGR) [6] if R, = R .

Temporal reuse is said to occur when a reference in a loop nest accesses the
same data in different iterations. Similarly, if a reference accesses nearby data,
i.e., data residing in the same coherence unit (e.g., a cache line or a memory
page), in different iterations, we say that spatial reuse occurs.

A data transformation can be defined as a transformation of array index
space [I1]. While, in principle, such a transformation can be quite general, in
this work, we focus on the transformations that can be represented using linear
transformation matrices. If G, is the array index space (that is, the space that
contains all possible array indices within array bounds) for a given m-dimensional
array U, a data transformation causes an element g € G to be mapped to g’ € G’,
where G’ is the new (transformed) array index space. Such a data transformation
can be represented by a pair {M,,, fu}, where M, is an m X m’ matrix and f,
is an m’-dimensional vector. The impact of such a data transformation is that
a reference such as {R,,, 0, } is transformed to {R',, 0"y}, where R',, = MR,
and o', = M,0, + fu. Most of the previous data transformation frameworks
proposed in literature handle the special case where m = m/. The theory of
determining suitable data transformation for a given array variable and post-
transformation code generation techniques have been discussed in [11/fg].

3 Array Unification

3.1 Approach

Consider the following loop nest that accesses two one-dimensional arrays using
the same subscript function:

for ¢ =1, N
b+ = U [i] + Us[i]
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If considered individually, each of the references in this nest has perfect spatial
locality as successive iterations of the ¢ loop access consecutive elements from
each array. However, if, for example, the base addresses of these arrays happen to
cause a conflict in cache, the performance of this nest can degrade dramatically.
In fact, in this code, it might even be possible to obtain a miss rate of 100%.
The characteristic that leads to this degradation is that, between two successive
accesses to array Uy, there is an intervening access from Us, and vice versa. In
other words, there is an iteration distance of 1 between successive uses of the
same cache line, and during this duration, the said cache line may be evicted
from cache due to the intervening access to the other array.

Let us now consider the following mapping of arrays U; and Us to the common
data space (array) X.

Uili] — X[2i — 1] and Us[i] — X[21],
in which case we can re-write the loop nest as follows{]

N

for i =1,
X[2i — 1] 4+ X[21]

b+

EEER-EE ([0

[ ) ey § m
X

Fig. 1. Unification of two one-dimensional arrays.

A pictorial representation of these mappings is given in Figure[Il Note that
in this new nest, for a given loop iteration, two references access two consecutive
array elements; that is, the reuse distance between two successive accesses to the
same cache line is potentially reduced to 0. Note that the same transformation
can be done with multidimensional arrays as well. As an example, consider the
following two-level nested loop:

for ¢ =1, N
for 7 =1, N
et = Ur[i] (5] + Uzli][]
Again, considering each reference separately, we have (potentially) perfect
spatial locality (assuming that the arrays have a row-major memory layout).

! Note that, here, for the first transformation, we have M,, = [2] and fu, = —1
whereas for the second transformation, M, = [2] and fu, = 0.
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However, conflict misses may prevent this nest from attaining this locality at
runtime. This would occur, for example, when two references have the same
linearized stride and have the base addresses that map close together in cache.
If we use the transformations

Usldl[j] — XTi][2] — 1] and Uz[d][5] — XTi][27],
we obtain the following nest:

for v =1, N
for j =1, N
et = X[d][2] — 1] + X [4][25];

Note that this transformation can be viewed as converting two NxN arrays to
a single Nx 2N array. In general, if we want to transform k two-dimensional arrays
U:[N][N] (1 <4 < k)— all accessed with the same subscript expression [i][j] —to
a single two-dimensional array X[N][kN], we can use the following generic data

transformation:
10 0

Note that this transformation strategy can also be used whenreferences have
subscript expressions of the form [i F a][j F b]. So far, we have implicitly as-
sumed that the references accessed in the nest are uniformly generated. If two
arrays Uy and Us are accessed using references {Ry,, 0qy, } and {Ry,, Oy, }, re-
spectively, where R,, and R,, are not necessarily the same, we need to select
two data transformations { M, , fu, } and {M,,, fu, } such that the transformed
references { My, Ry, , My, 0u, + fu, } and { My, Ry,, My,0u, + fu,} will access
consecutive data items for a given iteration. Also, when considered individually,
each reference should have good spatial locality. As an example, for the following
nest, we can use the transformations

10 0
Mu1|:02:|7 fu1|:_ :| ;

01 0
o= 8] = ]

—_

for 1t =1, N
for 5y =1, N
et = Ur[i][5] + Uz[j]ld]

After these transformations, the references inside the nest will be X[i][2j —1]
and X[i][27] instead of Uy [i][j] and Us[j][é], respectively, exhibiting high group-
spatial reuse. It should be noted that such transformations actually involve both
independent array transformations and array unification. To see this, we can
think of M, as a composition of two different transformations. More specifically,

= [33] = 53] (o]
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It should be noted that array unification can also be used to optimize locality
performance of references with non-affine subscript functions. In fact, as noted by
Leung and Zahorjan [11], data layout optimizations promise a wider applicality
than loop-oriented techniques as far as non-affine references are concerned. This
is because, unlike loop restructuring, the legality of data transformations do not
rely on dependence analysis whereas the existence of even a single non-affine
reference may prevent the candidate loop transformation which would otherwise
improve data locality.

Let us consider the loop shown below assuming that f(.) is a non-affine
expression (which might even be an index array).

for ¢+ =1, N
b+ = Us[f(i)] + U2[f(7)]

If considered individually, each reference here may have very poor locality
as there is no guarantee that the function f(.) will take successive values for
successive iterations of ¢. In the worst case, this loop can experience 2N cache
misses. Now, consider the following data transformations:

Ur[f(i)] — X[f(4),0] and U[f(i)] — X[f (i), 1,

assuming that the new array X has a row-major layout. It is easy to see that,
due to the high probability that X[f (i), 1] and X[f(7), 2] will use the same cache
line, we might be able to reduce the number of misses to N. Notice that the data
transformations used here can be represented by

Mu1 = |:(]3:| a.ful = |:8:| and Mu2 = |:é:| 7.fu2 = |:(1):|

It should be noted that this transformation can reduce capacity as well as conflict
misses.

There is an important difference between such transformations and those
considered earlier for the affine-references case. The data transformation matrices
used for non-affine references need to be non-square. Of course, nothing prevents
us to use non-square transformations for affine references as well. Consider the
two-level nested loop shown above that has the references U [i][j] and Us[d][j].
Instead of using the transformations

Urli][j] — X[i][27 — 1] and Us[i][5] — XTi][27],
we could have easily used
Urli][j] — X[i][4][0] and Us[i][5] — X [d][5][1]-

Therefore, in general, we have the options of using a two-dimensional array of
size Nx 2N or a three-dimensional array of size NxNx2. The theory developed in
the rest of the paper can easily be adapted to the latter case as well.

A group of arrays with a unification characteristic is called an interest group.
The wunification characteristic of the arrays in the same interest group is that
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they have the same dimensionality and each dimension has the same extent and
the arrays are accessed with the same frequency in the innermost loop. The first
two requirements are obvious. As for the third requirement, we say that two
references are accessed with the same frequency if (in their subscript functions)
they use exactly the same set of loop index variables. For instance, for a three-
level nested loop with indices 4, j, and k from top, the references Uy [i + k][j] and
Us[i][j — k] are accessed with the same frequency whereas the references Uy [i][J]
and Us[j][k] are not accessed with the same frequency. The problem with this
last pair of references is that the reference Uz [j][k] traverses the array at a much
faster rate than the reference Ui [i][j] (as the former has the innermost loop index
k). It is known that a majority of the severe inter-variable conflict misses occur
between the references that are accessed with the same frequency [17]. Later
in the paper, we discuss more relaxed unification characteristics. Let us assume
for now, without loss of generality, that we have only one interest group (the
approach to be presented can be applied to each interest group independently),
and, that each nested loop in a given code accesses a subset of the arrays in
this interest group. Our objective is to determine a unification strategy so that
the overall data locality of the code is improved. Our approach makes use of a
graph structure where nodes represent array variables and edges represent the
transitions between them. Let us first consider the example code fragment below
to motivate our approach.

for 1 =1, N
b+ = U [i] + Usi]
for ¢t =1, N
c+ =Usli]+ ¢

If we transform only the arrays U; and Us using the mappings
Upli] — X[2¢ — 1] and Us[i] — X[2i],

we will have the statement b4+ = X[2i — 1] + X[2¢] in the first nest. It is easy to
see that, after these transformations, we have perfect spatial locality in both the
nests. On the other hand, if we transform only U; and Us using the mappings

Urli] — X[2i — 1] and Usli] — X[21],

we will have b+ = X[2i — 1] 4+ Us]¢] in the first nest and ¢+ = X[2i] + ¢ in the
second. The problem with this transformed code is that the references X[2i — 1]
and X [2i] iterate over the array using a step size of 2 and they are far apart
from each other. It is very likely that a cache line brought by X[2i — 1] will be
kicked off the cache by the reference Us[i] in the same or a close-by iteration.
Finally, let us consider transforming all three arrays using

Uili] — X[3i — 2, Us[i] — X[3i — 1], and Us[i] — X[3i].

In this case, we will have b+ = X[3i — 2] + X[3¢ — 1] in the first nest and
¢+ = X[3i] + ¢ in the second nest. Note that in the second nest, we traverse the
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array using step size of 3 which may lead to poor locality for, say, a cache line
size that can hold at most two elements. The preceding discussion shows that
(1) selecting the subset of arrays to be unified (from an interest group) might
be important, and that (2) it might not always be a good idea to include all the
arrays (even in a given interest group) in the unification process. For instance,
in the current example, the best strategy is to unify only the arrays U; and Us.
It is also easy to imagine that the use of the same array variable in different loop
nests can make the problem even more difficult.

3.2 Representation

In order to capture the temporal relations between array variables globally,
we use an undirected graph called array transition graph (ATG). In a given
ATG(V, E), V represents the set of array variables used in the program, and
there is an edge e = (v1,v2) € E with a weight of w(e) if and only if there
are w(e) transitions between the arrays represented by v; and ve. A transition
between v1 and vy corresponds to the case that the array variable represented by
vg is touched immediately after the array variable represented by v; is touched,
or vice versa. Although an ATG can be built by instrumenting the program and
counting the number of transitions between different array variables, in this pa-
per, we construct an ATG using the information (constant or symbolic) available
at compile-time.
Consider the following code fragment, whose ATG is given in Figure 2{a).

for ¢+ =1, N
Usli] = (Usli] = Ua[i]) + (U1 [i] = Uz[d])
for ¢ 1,

Usli] = (Ur[d] + Usli]) * Us]]

for ¢+ =1, N

Uyli] = (Usi] — Us[d]) = Uni]

=

Fig. 2. (a) Address Transition Graph (ATG). (b) An important path.

As explained earlier, in a given ATG, the edge weights represent the number
of transitions. For example, the weight of the edge between U; and Uy is 2N,
indicating that there are 2N transitions between these two array variables. N of
these transitions come from the first nest where U is accessed immediately after



Array Unification: A Locality Optimization Technique 267

U,. The remaning transitions, on the other hand, come from the last nest where
U, is written after U; is touched. Note that it makes no difference in which order
we touch the variables as long as we touch them consecutively. An important
thing to note about the ATG shown is that the edge weights differ from each
other and it makes sense to unify the arrays with large edge weights as these
are the arrays that are most frequently accessed one after another. For example,
we have 2N transitions between the variables U; and U, whereas we have only
N-1 transitions between U, and Us, which indicates that it is more important
to unify U; and Uy than unifying Uy and Us. The problem then is to select a
unification order (basically, paths in the ATG) such that as many high weight
edges as possible should be covered. Note that this problem is similar to the state
assignment with minimum Hamming distance problem, therefore, a polynomial-
time solution is unlikely to exist. In fact, Liao shows that a similar problem
(called offset assignment that involves selecting suitable placement order for
scalar variables) is NP-complete [13]. Eisenbeis et al. [5] also use a similar graph-
based representation. In the following, we present a polynomial-time heuristic
which we found very effective in cases encountered in practice. Also note that in
case a different memory access pattern is imposed by back-end, the code can be
profiled first to extract this access pattern, and then, based on that, a suitable
ATG can be constructed.

We start by observing that (after unification) a given array variable can have
only one left neighbor and one right neighbor. If we take a closer look at the
problem and its ATG, we can see that it is important to capture only the paths
with high weights. After we detect a path that contains edges with high weights
(henceforth called important path), then we can unify the array variables on this
path. Note that a given ATG may lead to multiple important paths. Figure[2(b)
shows an important path (using edges marked bold) that contains Uy, Uy, Us,
Us, and Us. Consequently, a solution for this example is to unify these variables
in that order. The transformed program is as follows:

for + =1, N

X[5i — 1] = (X[5] % X[5i — 4]) + (X[5i — 3]  Us[i])
for 1 =1, N

X[5i — 2] = (X[5i — 3] + X[5i]) * X[5¢ — 1]

for ¢t =1, N

X[5i—4] = (X[5i — 1] — X[5i — 2]) * X[5i — 3]

3.3 Formulation

We now present our strategy for determining the important paths whose vertices
are to be unified. Given an ATG and a number of important paths on it, the
cost of a unification strategy can be defined as the sum of the weights of the
edges that do not belong to any important path. Let us first make the following
formal definitions:

Definition 1 Two paths are said to be ‘disjoint’ if they do not share any ver-
tices.
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Definition 2 A ‘disjoint path cover’ (which will be referred to as just a ‘cover’)
of an ATG(V, E) is a subgraph C(V, E') such that, for every vertex v in C, we
have degree(v) < 3, and there are no cycles in C (degree(.) denotes the number
of edges incident on a vertex).

Definition 3 The ‘weight’ of a cover C is the sum of the weights of all the edges
in C. The ‘cost’ of a cover C is the sum of the weights of all edges in G but not
in C':

cost(C) = Z w(e)

(e€E)A(egC)

A cover contains a number of important paths and the array variables in
each important path can be unified. It can be seen that the cost of a unification
is the number of adjacent accesses to array variables that are mot adjacent in
an important path. Given the definitions above, if a maximum weight cover for
an ATG is found, then that also means that the minimum cost unification has
also been found. The thick lines in Figure Z{b) show a disjoint path cover for
the ATG given in Figure[2(a). The cost of this cover is 5N-1 which can be seen
from the edges not in the cover.

Our unification problem can modeled as a graph theoretic optimization prob-
lem similar to Liao’s [I3] modeling of the offset assignment problem for DSP
architectures and can be shown to be equivalent to the Maximum Weighted
Path Cover (MWPC) problem. This problem is proven to be NP-hard. Next, a
heuristic solution to the unification problem is given.

The heuristic is similar to Kruskal’s spanning tree algorithm. Taking the
ATG as input, it first builds a list of sorted edges in descending order of weight.
The cover to be determined initially is empty. In each iteration, an edge with
the maximum weight is selected such that the selected edges never form a cycle
and no node will be connected to more than two selected edges. Note that the
approach iterates at most V' — 1 times and its complexity is O(| E|log |E|+|V]).

We now focus on different unification characteristics that are more relaxed
than the one adopted so far, and discuss our approach to each of them. Specifi-
cally, we will consider three cases:

(1) Arrays that are accessed with the same frequency and have the same dimen-
sionality and have the same dimension extents up to a permutation can be
part of an important path (that is, they can be unified).

(2) Arrays that are accessed with the same frequency and have the same dimen-
sionality but with different dimension extents can be part of an important
path.

(3) Arrays that are accessed with the same frequency but have different dimen-
tionalities can be part of an important path.

An example of the first case is the following two-level nested loop where
arrays Uy and U, are of sizes NxM and MxN, respectively.
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for 1 =1, N
for =1, M
b+ = Up[i][j] + U2l5][d]

Note that this first case is quite common in many floating-point codes. As
before, we want to transform the references U, [i][] and Us[j][i] to X[i][27—1] and
X|[i][2] — 1], respectively. Our approach to this problem is as follows. Since the
dimension extents of the arrays U; and U, are the same up to a permutation, we
first use a data transformation to one of the arrays (say Us) so that the dimension
extents become the same. Then, we can proceed with our usual transformation
and map both the arrays to the common domain X.

In the second case, we allow the dimension extents of the arrays to be unified
to be different from each other. Consider the example below assuming that the
arrays Uy and Uy are of NxN and MxM, respectively, and N<M.

for 1 =1, N
for =1, N
b+ = Urli][5] + Uz[j]d]

In this case, we can consider at least two options. First, we can unify the
arrays considering the largest extent in each dimension. In the current example,
this corresponds to mappings

Uili]lj] — X[i][2j — 1] and Ta[i'][j] — X[i")[24'],

for 1 < i,7 <N and 1 < ¢/,j" <N. On the other hand, for N+1< 7,7 <M, we
can set X|[i'][25'] to arbitrary values as these elements are never accessed. A
potential negative side effect of this option is that if the elements X[i][2] — 1]
(when N+1< ¢, 5 <M) happen to be accessed in a separate loop, the corresponding
cache lines will be underutilized. The second option is to transform only the
portions of the arrays that are used together. For instance, in our example, we
can divide the second array above (Us) into the following three regions:

Ua1 [i[](1 < i,5 < N), Uso[i][j](N+1<i <M, 1<j<N),

and UQg[Z][]],(l < i <NN4+1<5< M).

After this division, we can unify U; with only Us; as they represent the elements
that are accessed concurrently.

To handle the third case mentioned above, we can use array replication.
We believe that the techniques developed in the context of cache interference
minimization (e.g., [17]) can be exploited here. The details are omitted due to
lack of space.

4 Experiments

The experiments described in this section were performed on a single R10K
processor (195 MHz) of the SGI/Cray Origin 2000 multiprocessor machine. The
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processor utilizes a two-level data cache hierarchy: there is a 32 KB primary (L1)
cache and a 4 MB secondary (L2) cache (unified). The access time for the L1
cache is 2 or 3 clock cycles and that for the L2 cache is 8 to 10 clock cycles. Main
memory access time, on the other hand, ranges from 300 to 1100 nanoseconds
(that is 60 to 200+ cycles).

The proposed framework has been implemented within the Parafrase-2 com-
piler. The current implementation has the following limitations. First, it uses a
restricted form of unification characteristic. It does not unify two arrays unless
they are accessed with the same frequency and are of the same dimensional-
ity and have the same extents in each dimension. Second, it works on a single
procedure at a time. It does not propagate the memory layouts across proce-
dures, instead it simply transforms the unified arrays explicitly between proce-
dure boundaries at runtime. Finally, except for procedure boundaries, it does not
perform any dynamic layout transformation. In other words, an array is never
unified with different groups of arrays in different parts of the code.

We use two benchmark codes: bmecm and charmm. The bmem is a regular array-
dominated code from the Perfect Club benchmarks. We report performance num-
bers for six different versions of the code: noopt, dopt, unf, noopt+, dopt+, and
unf+. Each version is eventually compiled using the native compiler on the Ori-
gin. noopt is the unoptimized (original) code, and dopt is the version that uses
individual data transformations for each array. It is roughly equivalent to data-
centric optimization schemes proposed in [§] and [2]. The version unf, on the
other hand, corresponds to the code obtained through the technique explained
in this paper. These three versions do not use the native compiler’s locality op-
timizations, but use back-end (low-level) optimizations. The versions noopt+,
dopt+, and unf+ are the same as noopt, dopt, and unf, respectively, except that
the entire suite of locality optimizations of the native compiler is activated.

Figure [3 shows the execution times (seconds), MFLOPS rates, L1 hit rates,
and L2 hit rates for these six versions using two different input sizes (small=~6
MB and large=~24 MB). We see that for both small and large input sizes, unf
performs better than noopt and dopt, indicating that, for this benchmark, array
unification is more successful than transforming memory layouts independently.
In particular, with a 14 MB input size, unf reduced the execution time by around
67% over the dopt version. We also note that the technique proposed in this
paper is not sufficient alone to obtain the best performance. For instance, with
the large input size, noopt+ generates 131.20 MFLOPS which is much better
than 94.78 MFLOPS of unf. However, applying tiling brings our technique’s
performance to 186.77 MFLOPS. These results demonstrate that control-centric
transformations such as tiling are still important even in the existence of array
unification. Finally, we also note that the dopt version takes very little advantage
of the native compiler’s powerful loop optimizations.

We next focus on a kernel computation from an irregular application, charmm.
This code models the molecular dynamic simulation; it simulates dynamic in-
teractions (bonded and nonbonded) among all atoms for a specific period of
time. As in the previous example, we experiment with two different input sizes
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~6 MB ~24 MB
noopt| noopt+| dopt dopt+ unf unf+ noopt| noopt+ dopt dopt+ unf unf+
Execution Time (sec):[2.169[ 0.793[1.890[ 0.791[1.409| 0.641[49.964| 7.631[32.734[ 6.928[10.627| 5.443
MFLOPS: 56.45(176.52(63.17(176.28|85.62(215.33| 20.07|131.20| 30.59|145.27| 94.78(186.77
L1 Hit Rate (%): 82.8 94.8| 87.5 93.5| 99.8 99.4 55.9 95.2 87.2 92.4 89.8 99.4
L2 Hit Rate (%): 96.9 98.7| 99.6 99.3| 98.6 99.6 95.2 98.0 82.0 99.3 95.8 97.9

Fig. 3. Performance results for bmcm.

(small=~240 KB and large=~12 MB). Since dopt version of this code is same
as the noopt version, we omit the former from consideration. We can make two
important observations from Figure[. First, as expected, control-centric locality
optimizations of the native compiler bring only a marginal benefit, most of which
is due to scalar replacement. Second, the L1 miss rates for the noopt version
are quite high due to irregular nature of the data access pattern exhibited by
the kernel. A simple array unification which maps two most frequently accessed
(through indexed arrays) arrays into a single array improves both miss rates and
performance.

Overall, for these two codes, we find array unification to be very successful.

~240 KB ~12 MB
noopt| noopt+ unf unf+ noopt noopt+ unf unf+
Execution Time (sec):[ 0.964[ 0.961| 0.804] 0.809[240.445[240.429[188.941[187.055
MFLOPS: 127.93(128.07(146.43(145.793| 119.98| 119.93| 167.82| 170.11
L1 Hit Rate (%): 70.6| 75.5 90.1 90.0 85.2 90.5 95.5 95.3
L2 Hit Rate (%): 98.1 96.0| 98.3 98.0 83.1 91.8 96.3 96.8

Fig. 4. Performance results for a kernel code from charmm.

5 Related Work

Wolf and Lam [19] present a locality optimization framework that makes use of
both unimodular loop transformations as well as tiling. Li [12] proposes a lo-
cality optimization technique that models the reuse behavior between different
references to the same array accurately. McKinley, Carr, and Tseng [14] present
a simpler but very effective framework based on a cost (cache miss) model. Sev-
eral other researchers propose different tiling algorithms with methods to select
suitable tile sizes (blocking factors) [7IT0]. The effectiveness of these techniques
is limited by the inherent data dependences in the code.

More recently, a number of researchers have addressed limitations of loop-
based transformations, and proposed data layout optimizations called data trans-
formations. Leung and Zahorjan [I1] and Kandemir et al. [§] propose data trans-
formations that apply individual layout optimizations for each array. While such
transformations are known to reduce some portion of conflict misses (in addition
to capacity misses) due to improved spatial locality in the inner loop positions,
they are not very effective to reduce inter-variable conflict misses. To reduce the
severe impact of conflict misses, Rivera and Tseng propose array padding [I§].
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Many research groups have also focused on combining loop and data trans-
formations in an integrated framework. Cierniak and Li [2], Kandemir et al.
9], and O’Boyle and Knijnenburg [16] investigate the integrated use of loop
and data transformations to enhance data locality. The large search space for
such integrated approaches generally forces them to limit the number of poten-
tial transformations. The data-centric array unification framework used in this
paper can also be integrated with loop transformations (although this issue is
beyond the scope of this paper).

Recently, a number of runtime-based approaches have been proposed to im-
prove locality of irregular array applications. Mellor-Crummey et al. [15], and
Ding and Kennedy [3] present data re-ordering techniques for irregular appli-
cations. While these techniques specifically focus on irregular applications, the
framework proposed in this paper can be used for both irregular and regular
applications.

Ding and Kennedy [4] present an inter-array data regrouping strategy to en-
hance locality. The main idea is to pack useful data into cache lines so that all
data elements in a cache line are consumed before the line is evicted from the
cache. Our work is different from theirs in several aspects. First, their imple-
mentation does not group arrays unless they are always accessed together. In
contrast, our approach has a more global view, and considers the entire proce-
dure with different nests accessing different subsets of the arrays declared. Sec-
ond, since we formulate the problem within a mathematical framework, we can
easily integrate array unification with existing loop and data transformations.
Third, it is not clear in their work how the arrays with multiple and different
(nonuniformly generated) references are handled.

6 Conclusions and Future Work

We have described a data optimization scheme called array unification. Our
approach is based on a mathematical framework that involves arrays, access
patterns, and temporal access relations between different array variables. The
general problem is formulated on a graph structure and temporal access relations
are captured by this representation. Subsequently, a heuristic algorithm deter-
mines the array variables to be unified and maps them into a common array
(data) space.

This work can be extended in a number of ways. First, we need a solid mech-
anism to integrate array unification with loop-based transformation techniques.
Second, the current approach works only on a single procedure at a time. A
mechanism that propagates the new array spaces (after unification) across pro-
cedure boundaries would further improve the performance.
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