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1 Introduction

In industrial contexts, safety regulations often mandate upper bounds on the
probabilities of failure. Now that embedded computers are part of many indus-
trial environments, it is often needed to analyze programs with non-deterministic
and probabilistic behavior. We propose a general abstract interpretation based
method for the static analysis of programs using random generators or random
inputs. Our method also allows “ordinary” non-deterministic inputs, not neces-
sarily following a random distribution.

1.1 Our Approach

Our method is set in the general framework of abstract interpretation. We first
introduce an adjoint semantics for probabilistic programs using “weight func-
tions”, basing ourselves on the standard semantics of probabilistic programs as
linear operators on measures [8,9,12] (see §1.4 for an explanation on measures).
Similarly as it has been done for the standard semantics [12], we introduce a
notion of abstract interpretation on weight functions. We then propose a highly
generic construction of abstract lattices, lifting an “ordinary” abstract lattice
used for the analysis of non-probabilistic programs to one suitable for proba-
bilistic programs.

As salient point of this method is that it starts from the description of an
output event (for instance, an anomalous condition) and computes back a de-
scription of areas in the input domain describing their probability of making the
behavior happen. This allows finding what parts of the input domain are more
likely to elicit anomalous behavior, as an extension to probabilistic programs of
ordinary backwards analysis.

We shall give all our examples using a simple imperative language extended
with nondeterministic and probabilistic inputs, for the sake of simplicity. This
by no means indicates our method is restricted to imperative languages. There
has been much work done, for instance, on the analysis of complex imperative
languages [1], and our method can be applied to lift it to probabilistic cases as
well.
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1.2 Comparison with Other Approaches

There has been several propositions of weakest precondition semantics and asso-
ciated sets of rules, similar to Dijkstra’s for non-probabilistic programs [7,11,14,
15]. However, these methods, while adequate for computer-aided program design
or verification, cannot be automated easily.

Abstract interpretation has already been applied to probabilistic semantics
[12]. However, the method that we describe here, while similar, considers different
semantics, hence leads to different informations about the programs. In [12],
following the standard semantics proposed by Kozen [8,9] and used in most
analysis schemes, the semantics of a program is a function mapping an input
probability measure onto an output probability measure, taking into account
the random generators and random inputs happening in the meantime. The
goal is to derive knowledge on the output from knowledge of the input. Here,
we derive weights on the input from an area in the output. Another notion of
forward probabilistic abstract interpretation has been proposed by Di Pierro
and Wiklicky [4], but it is unclear how it can handle problems except in simple,
discrete cases; furthermore, their model does not support nondeterminism.

Statistical sampling methods are already used to test software, and they were
improved to allow for both nondeterministic and probabilistic behavior [13] in a
mathematically sound fashion. However, when dealing with rare behavior, these
methods are greatly improved using additional knowledge on the system allowing
for stratified sampling or importance sampling [16, chap. 4]. The analysis we
describe in this paper could be used to supply data for importance sampling,
improving the speed of precision of the Monte-Carlo method of [13].

1.3 Nondeterminism and Probabilities

We shall make clear what we call “nondeterministic” and “probabilistic”. A
nondeterministic choice allows for several independent outcomes of the choice. A
probabilistic choice also allows for several outcomes, but constrains the frequency
of those outcomes. For instance, let us consider an input x ∈ [0, 1] to the program.
If it is nondeterministic, then the only thing we know is that it is in [0, 1].
Simply supposing it is probabilistic, without any additional knowledge, already
establishes that this variable has numerous properties such as an average and
a standard deviate, and implies statistical properties on successive uses of this
input.

With respect to program semantics, purely probabilistic programs are to be
treated much like nondeterministic nonprobabilistic ones [7], except that the val-
ues that are manipulated are (sub)probability measures on the set of program
environments instead of program environments. A notion of nondeterministic,
probabilistic programs arises when nondeterministic choice between several mea-
sures is allowed. Our analysis takes care of that most complex case.

1.4 Notations, Measures, and Integrals

Standard probability theory is based on measures [17,5]. A probability measure
µ on a set X is a function that assigns to each event (subset of X) its probability.
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For instance, the uniform probability measure on the segment [0, 1] assigns to
each segment [a, b] the probability b − a. The Dirac measure δx0 assigns 1 to
any event containing x0 and 0 otherwise; it modelizes a value that is “known for
sure” to be x0. For technical reasons, not all subsets are necessarily measurable
— this is not a problem in our case. A measurable space is the couple of a set
and an associated set of events (measurable subsets).

A function f is said to be measurable if and only if for any measurable
set X, f−1(X) is measurable; we shall often use the vector space M(X,R) of
measurable functions from a measurable space to R (the real field).

For technical reasons, we shall also use signed measures in this paper.
Signed measures over a measurable set X, using the norm of the total variation
[5] ‖ · ‖, constitute a vector space M(X). M+(X) will denote the positive mea-
sures. We shall consider continuous linear operators [10] over such spaces. As an
extension to the usual notion of the adjoint of a linear operator with respect to
a hermitian form [10, VIII, §4], we use adjoints of linear operators with respect
to a bilinear form.

We shall often use integrals, in the sense of Lebesgue integration [17].
∫
f dµ

denotes the integral of the function f with respect to the measure µ. For instance,
if the integration set is R and µ is the usual Lebesgue measure on the segment
[a, b] (the measure that assigns to each segment its length),

∫
f dµ is the usual

integral
∫ b

a
f(x) dx; if the measure µ is the Dirac measure at x0, then

∫
f dµ is

f(x0).
We shall often use the vector space B(X,R) of bounded measurable functions

from X to R, with the norm ‖f‖∞ = supx∈X |f(x)|.
L(X,Y ) is the vector space of linear functions from X to Y . The phrase

“linear function” shall always be taken in its linear algebra sense.

2 Adjoint Semantics

In his seminal papers, Kozen proposed semantics of probabilistic programs as
continuous linear operators on measure spaces. We shall see that operators rep-
resenting the semantics of probabilistic programs have adjoints, in a certain
sense that we shall define (§2.3). These adjoints are the basis of our analysis
techniques; furthermore, their existence yields a proof of a theorem of Kozen’s.

2.1 Intuition

Let us consider a very simple C program (Fig. 1) where centered_uniform()
is a random generator returning a double uniformly distributed in [−1, 1], in-
dependent of previous calls. We are interested in the relationship between the
probability of executing B depending on the probability distribution generated
in x by A. What we would therefore like is a (linear) function f mapping the
probability measure µ generated at A onto the probability f(µ) that program
point B is executed. It will be proved that there exists a “weight function” g such
that f(µ) =

∫
g dµ. We shall see how to compute such a g.

A plotting of g is featured in figure 2. Let us give a few examples of the use
of this function:
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double x, y;
... /* A */
y = centered_uniform()+centered_uniform();
x += y/2;
...
if (fabs(x) <= 1)
{

... /* B */
}

Fig. 1. A simple probabilistic program.

g

x
g(x)

Fig. 2. Weight function g such that the probability of outcome of step B (see Fig. 1)
given the probability measure µ at step A is

∫
g dµ. x is the value of variable x.

– The probability that B will happen if A drives x according to some uniform

distribution in [a, b] is
∫ b

a

g(x) dx.

– The probability that B will happen if A sets x to a constant C is g(C).

The set g−1(0) is the set of values at step A that have no chance of starting
a program trace reaching step B. Please note that this is slightly different from
the set of values that cannot start a program trace reaching step B. This is
the difference between “impossible” and “happening with 0 probability”. For
instance, if in the program of Fig 1 we put x=2; as statement A, then statement
B is reachable; however g(2) = 0 thus there is zero probability that statement B
is reached.

2.2 Summary of Semantics According to Kozen

The semantics of a probabilistic program c can be seen as a linear operator
[[c]]p mapping the input probability distribution (measure µ) onto an output
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double x, y;
... /* A */
if (x+y >= -1)
{

x += 2;
}
y = centered_uniform()+centered_uniform();
x += y/2;
...
if (fabs(x) <= 1)
{

... /* B */
}

Fig. 3. Another probabilistic program.

g(x, y)

0.5
0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

y

3
2

1
0

-1
-2

-3x
3210-1-2-3

weight function

Fig. 4. Weight function g such that the probability of outcome of step B (see Fig. 3)
given the probability measure µ at step A is

∫
g dµ. x and y are the respective values

of variables x and y.

measure [[c]]p.µ. Values given by random number generators can either be seen
as successive reads from streams given as inputs or are handled internally in the
semantics [8,9]; here we shall use the second approach, though both approaches
are equivalent. We shall not discuss here the technical details necessary to ensure
continuity of operators, convergences etc . . . and we shall refer the reader to
[12][extended version].

The semantics of a program c whose initial environment lies in the measurable
set X and whose final environment lies in the measurable set Y shall be given
as a linear operator (of norm less than 1 for the norm of total variation [5] on
measures). If c contains no calls to random number generators, [[c]] is just a
measurable function.
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We shall base ourselves on an ordinary denotational semantics: [[c]] is a func-
tion from set X to set Y if c has type X → Y . For the sake of simplicity, we shall
not deal with nontermination here so no ⊥ value is needed. To make meaningful
probabilities, X and Y are measurable sets (for instance, countable sets) and
[[c]] is assumed to be a measurable function. These restrictions are of a technical
nature and do not actually restrict the scope of the analysis in any way; the
reader shall refer to [12] for more details.

Let us summarize the probabilistic semantics [[c]]p : L(M+(X),M+(Y )):

Elementary constructs (assignments etc...) get simple semantics: [[c]]p.µ =
λX.µ([[c]]−1(X)).

Random number generation. Let us suppose each invocation of random
yields a value following distribution µR, each invocation being independent
from another, and stores the value into a fresh variable. Then [[c]]p.µ = µ⊗µR

where ⊗ is the product on measures.
Tests. Let us define φW (µ) = λX.µ(X ∩W ).

Then [[if c then e1 else e2]]p(µ) = [[e1]]p ◦φ[[c]](µ)+ [[e2]]p ◦φ[[c]]C (µ) where
XC denotes the complement of the subset X.

Loops [[while c do e]]p(µ) =
∑∞

n=0 φ[[c]]C ◦ ([[e]]p ◦ φ[[c]])n(µ), the limit being
taken set-wise [5, §III.10].

2.3 Adjoints and Pseudo-Adjoints

In this section, we shall recall the usual definition of an adjoint of a linear
operator and give a definition of a pseudo-adjoint. We shall also give some easy
properties, without proofs for the sake of brevity.

Let us consider two measurable sets (X,σX) and (Y, σY ). Let us first define,
for f a measurable function and µ a measure, 〈f, µ〉 =

∫
f dµ.

Proposition 1. Taking f ∈ B(X,R) and µ ∈ M(X), this defines a continuous
bilinear scalar form. Moreover, this form has the following properties:

– for all f and µ, |〈f, µ〉| ≤ ‖f‖∞.‖µ‖;
– 〈f, ·〉 = µ 7→ 〈f, µ〉 has norm ‖f‖∞;
– 〈·, µ〉 = f 7→ 〈f, µ〉 has norm ‖µ‖.

Corollary 1. If 〈f, ·〉 = 0 then f = 0. If 〈·, µ〉 = 0 then µ = 0.

Let us consider a linear operator H from the signed measures on X to the
signed measures on Y , and we can consider whether it admits an adjoint op-
erator R: ∫

(R.f) dµ =
∫
f d(H.µ) (1)

or 〈R.f, µ〉 = 〈f,H.µ〉.
Proposition 2. If an operator has an adjoint, then this adjoint is unique.
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Proof. Follows from corollary 1.

Lemma 1. If R is the adjoint of H:

– R is continuous if and only H is continuous;
– ‖R‖ = ‖H‖.

Corollary 2. The operator mapping an operator onto its adjoint is therefore a
linear isometry.

The reason why we consider such adjoints is the following lemma:

Lemma 2. If H ∈ L(M(X),M(Y )) has an adjoint operator R ∈ L(B(Y,R),
B(X,R)) and H is zero on all the Dirac measures, then H is zero.

The implications of this lemma on probabilistic program semantics is that if
we can prove, which we shall do later, that linear operators representing program
semantics have adjoints, then the semantics of two programs will be identical on
all input measures if and only if they are identical on discrete measures.

Proposition 3. In general, not all positive continuous linear operators on mea-
sures have adjoints in the above sense.

For technical reasons, we shall also have to use a notion of pseudo-adjoint.
Let H be a function from M(X) to M(Y ). Let us suppose there exists a func-
tion R such that for any measurable function f : Y → [0,∞] R(f) : X → [0,∞],
〈f,H.µ〉 = 〈R.f, µ〉. We shall then call R the pseudo-adjoint of H. As previ-
ously, we have:

Proposition 4. An operator has a unique pseudo-adjoint.

Adjoints and pseudo-adjoints are identical notions in well-behaved cases. A
continuity condition ensures that we do not get undefined cases, e.g. ∞ − ∞.

Lemma 3. If H is a continuous positive linear operator on measures (positive
meaning that µ ≥ 0 ⇒ H.µ ≥ 0) and R is a positive linear operator that is the
pseudo-adjoint of H, then R is the adjoint of H and ‖R‖ = ‖H‖.

2.4 Program Semantics Have Adjoints

A few facts are easily proved:

Proposition 5. Operators on measures that are lifted from functions (e.g.
fp where fp.µ is the measure X 7→ µ(f−1(X))) have (pseudo-)adjoints: the
(pseudo-)adjoint of fp is g 7→ g ◦ f .

Proposition 6. If H1 and H2 have (pseudo-)adjoints R1 and R2, then R2 ◦R1
is the adjoint of H1 ◦H2.
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Proposition 7. φW has (pseudo-)adjoint RW = f 7→ f.χW where χW is the
characteristic function of W .

Proposition 8. If H1 and H2 have respective (pseudo-)adjoint R1 and R2, then
H1 +H2 has (pseudo-)adjoint R1 +R2.

Proposition 9. If µR is a σ-finite positive measure, µ 7→ µ ⊗ µR has pseudo-
adjoint f 7→ (

x 7→ ∫
f(x, ·) dµR

)
.

This is an application of the Fubini-Tonelli theorem [5, VI.10].

Lemma 4. If f : X → [0;∞] is a positive measurable function and (µn)n∈N is
a sequence of positive measures, then∫

f d

( ∞∑
n=0

µn

)
=

∞∑
n=0

∫
f dµn. (2)

The sum of measures is taken set-wise.

Corollary 3. If (Hn)n∈N are operators on measures with respective pseudo-
adjoints (Rn)n∈N, then

∑∞
n=0Hn has pseudo-adjoint

∑∞
n=0Rn (these sum being

taken as simple convergences).

Theorem 1. Let c be a probabilistic program. Then the linear operator [[c]]p has
a pseudo-adjoint.

Corollary 4. Since program semantics operators are continuous, of norm less
than 1, they have adjoints of norm less than 1.

Kozen proved [8,9] the following theorem:

Theorem 2. Semantics of probabilistic programs differ if and only if they differ
on point masses.

Proof. This theorem follows naturally from the preceding corollary and lemma 2.

We shall often note T ∗ the adjoint of T . We therefore have defined an adjoint
semantics for programs: [[c]]∗p ∈ L(M(Y,R+),M(X,R+)).

3 Abstract Interpretation of Backwards Probabilistic
Semantics

We wish to apply the usual framework of abstract interpretation to the above
semantics; that is, for any program c, whose type (not considering probabilistic
and nondeterministic effects) is X → Y , we want:

– abstract domains X]
w and Y ]

w, representing sets of weight functions respec-
tively on X and Y ;

– a computable abstraction [[c]]∗p
] of [[c]]∗p.

The construction of the abstract shall be made compositionnally. We shall first
see briefly what we call “abstraction”. The reader shall refer to the standard
texts on abstract interpretation for more information [3].
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3.1 Abstract Interpretation

Taking nondeterminism into consideration, our program semantics is defined as
a function [[c]]∗[ from the set Yw = P(M(X,R+)) of sets of weight functions on
X to the set Xw = P(M(Y,R+)) of sets of weight functions on Y . To simplify
the treatment of such sets of weight functions and make operations effectively
computable, we choose to over-approximate them by sets of a “simpler” form.
Those sets are characterized by elements x]

w of a preordered abstract domain
X]

w (resp. Y ]
w). We also consider a γ : X]

w → Xw function, which maps an
element of the abstract domain to what it represents: if A ⊆ γ(A]), then A] is
said to be an abstraction of A and A a concretization of A].

A function H]
w : Y ]

w → X]
w is said to be an abstraction of an operator

Hw : Yw → Xw if for any weight function fw in Yw and any abstraction f ]
w of

fw, then H]
w(y]

w) is an abstraction of Hw(yw).
Our idea is the following: as seen earlier, our objective is to give bounds

on integrals of the form V = 〈[[c]]∗.χP , µ〉 where P is a subset of Y ; we take
an abstraction χ]

P of its characteristic function, then compute f ]
w = [[c]]∗](χ]

P ).
We then compute a bound V ′ such that for any weight function fw and any
concretization fw of f ]

w, 〈fw, µ〉 ≤ V ′; then V ≤ V ′. Of course, we choose the
abstract domain so that computing such a V ′ from f ]

w is easy.
For technical reasons, we shall also require the concretizations to be topolog-

ically closed with respect to the topology of simple convergence on the weight
functions. More precisely, we require that for any abstract element f ] and as-
cending sequence (fn)n∈N of concretizations of f ], then the point-wise limit
x 7→ limn→∞ fn(x) is also a concretization of f ].

3.2 Ordinary Backwards Abstract Interpretation

We shall suppose we have an abstraction of the normal, non-probabilistic, seman-
tics, suitable for backwards analysis: for any elementary construct (assignments,
arithmetic operations...) c such that [[c]] : X → Y , we must have a monotonic

function [[c]]−1]
: Y ] → X] such that for all A], [[c]]−1(γY (A])) ⊆ γX([[c]]−1]

(A)).
We also must have abstractions for the φ[[c]] functions.

Let us note the following interesting property of the “usual” assignment
operator: [[x := e]]−1 = π̄x ◦ φ[[x = e]] where π̄x is the “projection parallel to x”:
π̄x(W ) = {v | ∃v′ ∀x′ x′ 6= x ⇒ vx′ = vx}. It is therefore quite easy to build
reverse abstractions for the elementary constructs.

3.3 General Form of Abstract Computations

Let us now suppose we have an abstract domain with appropriate abstract op-
erators for the elementary constructs of the language (we shall give an example
of construction of such domains in the next section). We shall see in this section
how to deal with the flow-control constructs: the sequence, the test and the loop.
The abstract domain shall therefore also supply abstract operators R]

[[c]] and +].
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Sequence. Since [[e1;e2]]∗p = [[e1]]∗p ◦ [[e2]]∗p then [[e1;e2]]∗p
] = [[e1]]∗p

] ◦ [[e2]]∗p
].

Tests. Let us recall the reverse semantics of the if construct:

[[if c then e1 else e2]]∗p = R[[c]] ◦ [[e1]]∗p +R[[c]]C ◦ [[e2]]∗p (3)

This equation gets straightforwardly lifted to the abstract domain:

[[if c then e1 else e2]]∗p
] = R]

[[c]] ◦ [[e1]]∗p
] +] R]

[[c]]C
◦ [[e2]]∗p

] (4)

is a valid abstraction.

Loops. Let us recall the reverse semantics of the while construct:

[[while c do e]]∗p =
∞∑

n=0

(
R[[c]] ◦ [[e]]∗p

)n ◦R[[c]]C (5)

Defining fn recursively, as follows: f0 = λx.0 and fn+1 = ψfn, with

ψ(g) = R[[c]]C .f +R[[c]] ◦ [[e]]∗p.g,

we can rewrite equation 5 as [[while c do e]]∗p.f = limn→∞ fn. We wish to
approximate this limit in the measure space by an abstract element.

ψ gets lifted straightforwardly to an abstract operator:

ψ](g]) = R]

[[c]]C
.f ] +] R]

[[c]] ◦ [[e]]∗p
]
.g]. (6)

Let us define f ]
0 to be an abstraction of the set {f0} and f ]

n+1 = ψ](f ]
n). Obvi-

ously, for all n, fn ∈ γ(f ]
n). If there exists an N such that ∀n ≥ N , fn ∈ γ(f ]

N )
then limn→∞ fn ∈ γ(f ]

N ) since γ(f ]
N ) is topologically closed. We have therefore

found an abstraction of [[while c do e]]∗p.f .
If the lattice T ] is such that all ascending sequences are stationary, then

such a N will necessarily exist. In general, such a N does not exist and we are
forced to use so-called widening operators [3, §4.3], as follows: we replace the
sequence fn by the sequence defined by f̂ ]

0 = f ]
0 and f̂ ]

n+1 = f̂ ]
n∇nψ

](f̂ ]
n) where

∇n are widening operators:

– for all a and b, a v a∇b and b v a∇b;
– for all sequence (un)n∈N and any sequence (vn)n∈N defined recursively as
vn+1 = vn∇un, then (vn) is stationary.

Obviously, for all n, fn v γ(f̂ ]
n). Since (f̂ ]

n)n∈N is stationary after rank N , and
γ(f̂ ]

N ) is topologically closed, this implies that limn→∞ fn ∈ γ(f ]
N ) as above.

This proof extends to the cases where the body of the loop contains nonde-
terministic constructs in addition to probabilistic ones — we then consider a set
of ascending sequences, each having a limit in γ(f̂ ]

N ).
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4 A Generic Construction of Abstract Domains

Our goal now is to have an efficient way of representing sets of weight functions.
In this section we propose an abstract lattice based on step functions. As usual
in Lebesgue integration theory, a step function is a finite linear combination
of characteristic functions of (measurable) subsets of the domain (see Fig. 5);
this generalizes the usual definition when the domain is R. χM will denote the
characteristic function of subset M — that is, the function mapping x onto 1 if
x ∈ M and 0 elsewhere.

g(x, y)

0.5
0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

y

4
2

0
-2

-4x 420-2-4

step function

Fig. 5. An example of a step function: 0.2χ[−1,1]×[0,2]+0.3χ[0,3]×[1,4]+0.1χ[−3,0]×[−4,1].
The nonvertical slopes are of course an artefact from the plotting software.

4.1 Representation

Let us take an “ordinary” abstract interpretation lattice X] for the domain X.
This means we have a nondecreasing function γ : (X],v) → (P(X),⊆). We
shall only consider the set X]

w of step functions of the form
∑

k αk.χγA]
k

where

A]
k ∈ X]. This function can be represented in machine by a finite list of couples

(A]
k, αk)1≤k≤n.
The set X]

w is pre-ordered by the usual pointwise ordering: (A]
k, αk) v

(B]
k, βk) if and only if for all x ∈ X then

∑
k αk.χγA]

k
(x) ≤ ∑

k βk.χγB]
k
(x).

Please note that while the pointwise ordering ≤ on step function is in-
deed antisymmetric, v is only a preorder since representation is not unique:
(([0, 1], 1), (]1, 2], 1)) and (([0, 2], 1)) both represent χ[0,2]. Let us define

γw :

∣∣∣∣∣ (X
]
w,v) → (P(M(X,R+)),⊆)

(A]
k, αk) 7→ {f ∈ M(X,R+) | f ≤∑k αk.χγA]

k
} (7)

(X]
w,v) is therefore a suitable abstract domain for weight functions.
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4.2 Comparison

Our abstract lattice does not have unicity of representation, as noted above. Yet
comparisons and equivalence testings are easily computable, provided the un-
derlying abstract domain provides an intersection test — a computable function

(A], B]) 7→
{

1 if γ(A) ∩ γ(B) 6= ∅
0 otherwise.

Let us take two abstract values A]
w = ((A]

i , αi)1≤i≤m) and B]
w =

((B]
j , αj)1≤j≤n). Let us consider the set C of nonempty intersections

⋂
γ(A]

i)i∈I∩⋂
γ(B]

j)j∈J
6= ∅ where I is a subset of the indices 1..m and J is a subset of the

indices 1..n: each element of C is denoted by a couple (I, J).

Let us define w :
∣∣∣∣C → R

(I, J) 7→∑
i∈I αi −∑j∈J βi.

Then A]
w v B]

w ⇐⇒ ∀c ∈
C w(c) ≤ 0.

4.3 Abstract Operations

We must provide abstract operators for each construction of the language.

Basic Constructs. Let us now suppose we have an abstraction [[c]]−1]
of the

function [[c]]−1 : P(Y ) → P(X). Then an abstraction of [[c]]∗p is

[[c]]∗p
] = (X]

λ, αλ)λ∈Λ 7→ ([[c]]−1]
(X]

λ), αλ)λ∈Λ (8)

Random Number Generation. We shall obtain here an abstraction of
r:=random where r is a new variable and random follows probability measure
µR. Let us suppose the random variable lies in a set R. [[r:=random]]∗ is therefore
a linear operator from M(X ×R,R+) to M(X,R+).

Let us suppose that µR =
∑n

k=1 µk where each µk is concentrated on a subset
Mk or R. For instance, taking R = R, the uniform probability measure on [0, 1]
can be split into n measures µk, the Lebesgue measure on [k/n, (k + 1)/n]. Let
us call πX and πR the projections of X ×R onto X and R respectively.

Using prop. 9,

[[r:=random]]∗.χA = x 7→
n∑

k=1

∫
χA(x, y) dµk(y). (9)

But
∫
χA(x, y) dµk(y) ≤ µk(πR(A)), and

∫
χA(x, y) dµk(y) = 0 if x 6∈ πX(A).

Therefore

[[r:=random]]∗.χA ≤ µk(πR(A)).χπX(A). (10)

Lifting to abstract semantics is then easy: [[r:=random]]∗](A]
i , αi)1≤i≤m maps

to (A]
i,k, αi.βi,k)1≤i≤m,1≤k≤n where A]

i,k is an abstraction of πX(γ(A]
i) ∩ (X ×
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x

y

1

1

y

a
b 0.02

0.10
0.14
0.18
0.18
0.14
0.10
0.06
0.02

0.06

h(y)0.06.χ[−1.8,1.8]

|x| ≤ 1

=
∫ b

a

h(x) dx

Fig. 6. Construction of the output value of Fig. 7 for n = 10. The |x + y| ≤ 1
abstract area is sliced along divisions on the y axis. Each slice Sk is pro-
jected onto the y axis and the integral of the distribution function h of
(centered uniform()+centered uniform())/2 is taken on this projection, yielding a
coefficient αk. The slice is then projected on the x axis and this projection Bk, with the
αk coefficient is an element of the abstract value

∑n
k=i αk.χBk . The approximations

plotted in Fig. 7 are those sums, with various numbers of slices.

Mk)) and βi,k ≥ µk(πR(A)) (Fig. 6 explains how we built the approximations in
Fig. 7). Both the A]

i,k and the βi,k can be computed easily for many underlying
abstract domains, such as the nondependent product of intervals [2].

Of course, there is some amount of choice in the choice of how to cut µ into
µk. We suggest to cut into measures of equal weights. Of course, the higher
the number of µk’s, the better the immediate results (Fig. 7), nevertheless a
high number of elements in abstract values may necessitate an early use of
widenings (see 4.3). We hope the forthcoming implementation will help adjust
such heuristic parameters.

Tests. The semantics for tests gets straightforwardly lifted to abstract seman-
tics, provided we have abstract operators for RW and +:

[[if b then c1 else c2]]∗p
]
.f ] = R]

[[b]] ◦ [[c1]]∗p
]
.f ] +] R]

[[b]]C
◦ [[c2]]∗p

]
.f ] (11)
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Approx. n = 30
Approx. n = 10

g

x

g(x)

Fig. 7. Two approximations of the actual distribution of Fig. 2, resulting from the
abstract interpretation of the program of Fig. 1. Our generic lattice is parameterized
by the product lattice of intervals. Different discretizations of the probability measure
h(x) dx of (centered uniform()+centered uniform())/2 yield more or less precise
abstractions. Here, the interval [−1, 1] where h is nonzero is divided into n segments
of equal size, yielding n elements in the output abstract value.

Abstracting + is easy: +] is the concatenation operator on sequences (or
families); as for RW :

R]
W ] = (X]

λ, αλ)λ∈Λ 7→ (X]
λ ∩] W ], αλ)λ∈Λ (12)

Widening Operators. Using the above abstractions for RW and +], it is
easy (3.3) to find an approximation of the semantics of the loop, provided we
have suitable widening operators. We shall here propose a few heuristics for
widenings. Widenings are also useful since they provide a way to “simplify”
abstract elements, to save memory, even if such a simplification loses precision.

Let us suppose we have a widening sequence ∇k on X]. We shall now give
heuristics for computing x∇ky where x = (X]

i , αi)1≤i≤a and y = (Y ]
j , βj)1≤j≤b.

For the sake of simplicity, we shall suppose we aim at keeping Λ index sets less
than n elements for a certain fixed n. We shall suppose that a ≤ n.

The main idea is that of coalescing. For each element (X]
i ), find “close”

elements (Y ]
ji,1

), . . . , (Y ]
ji,m

), the closeness criterion being largely heuristic and
dependent on the chosen lattice; this criterion does not influence the correctness
of the method, only its precision and efficiency. We then pose

x∇ky = (X]
i ∇k

(
Y ]

ji,1
∪ · · · ∪ Y ]

ji,m
),max(αi, βji,1 + . . .+ βji,m)

)
. (13)
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Let us now take a sequence (x(k))k∈N such that x(k + 1) = x(k)∇y(k). Then for
all 1 ≤ i ≤ n, X(k + 1)i = X

(k)
i ∇v(k)

i for some v(k)
i , so the sequence (X(k)

i )k∈N

is stationary. Since this holds for all i, this means that (x(k)) is stationary.
The design of widenings is an inherently heuristic process, and we thus ex-

pect to have better widenings as implementation progresses and experiments are
possible.

5 Comparison with Other Methods

Let us first remark that our method is a natural extension of conventional back-
wards abstract interpretation. Indeed, let us consider only programs containing
no random-like operations; any program, even including random-like operations,
can be transformed into a program containing none by moving the streams of
random numbers into the environment of the program (this corresponds to the
first semantics proposed by Kozen [8,9]).

With such programs, our framework is equivalent to computing reverse im-
ages of sets: [[c]]∗p.µ.χW = µ([[c]]−1(W )) and our proposed abstract domain just

expresses that [[c]]∗p.µ.χW ≤ µ ◦ γ ◦ [[c]]−1]
(W ]). There are nevertheless two dif-

ferences that makes our abstract domain more interesting:

– in the presence of streams of random numbers, our abstract domain just
makes use of an ordinary abstract domain, while computing approximate
reverse images in the presence of infinite streams requires an abstract do-
main capable of abstracting infinite sequences so that the results remain
interesting;

– we can “simplify” abstract values representing weight functions heuristically
so that we do not waste time giving too much precision to negligible parts
of the domain.

6 Conclusions

We have proposed a general scheme for the backwards abstract interpretation of
nondeterministic, probabilistic programs. This scheme allows the effective com-
putation of upper bounds on the probability of outcomes of the program. It is
based on abstract interpretation, which it extends to an adequate “adjoint se-
mantics” of probabilistic programs. We propose a parametric abstract domain
for this analysis; this domain is based on an underlying “ordinary” abstract
domain, which can be any domain proposed for abstract interpretation of non-
probabilistic programs.
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