
Cryptographic Functions and Design Criteria
for Block Ciphers

Anne Canteaut

INRIA – projet CODES,
BP 105, 78153 Le Chesnay, France

Anne.Canteaut@inria.fr

Abstract. Most last-round attacks on iterated block ciphers provide
some design criteria for the round function. Here, we focus on the links
between the underlying properties. Most notably, we investigate the re-
lations between the functions which oppose a high resistance to linear
cryptanalysis and to differential cryptanalysis.

1 Introduction

The development of cryptanalysis in the last ten years has led to the defini-
tion of some design criteria for block ciphers. These criteria correspond to some
mathematical properties of the round function which is used in an iterated block
cipher. They essentially concern the confusion part of the round function, usu-
ally named S-box. Most notably, the use of a highly nonlinear round function
ensures a high resistance to linear attacks. Similarly, the resistance to differential
attacks is related to some properties of the derivatives of the round function. The
functions which are optimal regarding these criteria are respectively called al-
most bent and almost perfect nonlinear. For instance, such functions are used in
the block cipher MISTY [26]. However, these functions present some particular
properties which may introduce other weaknesses in the cipher (e.g. see [17]).
This paper describes the link between the design criteria related to differ-

ential attacks, linear attacks and higher order differential attacks. We provide
some tools for establishing a general relationship between the nonlinearity of a
function and its resistance to differential attacks. Most notably, we give a char-
acterization of almost bent functions using some divisibility property of their
Walsh coefficients. We also show that this structure is specific of optimal func-
tions. Most results in this paper rely on a joined work with P. Charpin and
H. Dobbertin [6,4,5].
The following section reviews the design criteria associated to some classi-

cal last-round attacks. Section 3 focuses on the functions which ensure the best
resistance to differential attacks, to linear attacks and to higher order differen-
tial attacks. We show in Section 4 that these optimal functions are related to
other optimal objects which appear in different areas of telecommunications. For
example, almost bent functions correspond to particular error-correcting codes
and to pairs of m-sequences with preferred crosscorrelation. Section 5 presents
the links between the previous design criteria, especially for the case of optimal
functions.
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2 Last-Round Attacks on Iterated Block Ciphers

In an iterated block cipher, the ciphertext is obtained by iteratively applying a
keyed round function F to the plaintext. In an r-round iterated cipher, we have

xi = F (xi−1,Ki) for 1 ≤ i ≤ r ,

where x0 is the plaintext, xr is the ciphertext and the r-round keys (K1, . . . ,Kr)
are usually derived from a unique secret key by a key schedule algorithm. For
any fixed round key K, the round function FK : x �→ F (x,K) is a permutation
of the set of n-bit vectors, Fn

2 , where n is the block size.
Most attacks on iterated block ciphers consist in recovering the last round

key Kr from the knowledge of some pairs of plaintexts and ciphertexts. For this
purpose, we consider the reduced cipher, i.e., the cipher obtained by removing
the final round of the original cipher. The reduced cipher corresponds to the
function G = FKr−1 ◦ . . .◦FK1 . The key point in a last-round attack is to be able
to distinguish the reduced cipher from a random permutation for all round keys
K1, . . . ,Kr−1. If such a discriminator can be found, some information on Kr can
be recovered by checking whether, for a given value kr, the function

x0 �→ F−1
kr
(xr)

satisfies this property or not, where x0 (resp. xr) denotes the plaintext (resp. the
ciphertext). The values of kr for which the expected statistical bias is observed
are candidates for the correct last-round key.
Different discriminators can be exploited. Most notably, a last-round attack

can be performed when the reduced cipher satisfies one of the following proper-
ties:

– The reduced cipher G has a derivative, DaG : x �→ G(x+a)+G(x), which is
not uniformly distributed. This discriminator leads to a differential attack [1];

– There exists a linear combination of the n output bits of the reduced cipher
which is close to an affine function. This leads to a linear attack [24,25];

– The reduced cipher has a constant k-th derivative for a small k. This leads
to a higher order differential attack [20];

– The reduced cipher, seen as a univariate polynomial in F2n [X], is close to
a low-degree polynomial. This leads to an interpolation attack [17] or to an
improved version using Sudan’s algorithm [16].

In most cases, such a property on the reduced cipher can be detected only if
the round function presents a similar weakness. Therefore, a necessary condition
for an iterated cipher to resist these attacks is to use a round function which
does not present any of the previous characteristics. Then, the round function
should satisfy the following properties for any round key K:

(i) For any a ∈ Fn
2 , a �= 0, the output distribution of DaFK : x �→ FK(x+ a) +

FK(x) should be close to the uniform distribution;
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(ii) For any a ∈ Fn
2 , a �= 0, the Boolean function x �→ a · FK(x) should be far

away from all affine functions;
(iii) The Boolean functions x �→ a · FK(x) should have a high degree;
(iv) The function FK , seen as a univariate polynomial in F2n [X], should be far

away from all low-degree polynomials.

Some of these conditions may be sufficient in particular cases to guarantee
that the iterated cipher resists the corresponding attack (e.g. see [31]).
Note that the first three properties are invariant under both right and left

composition by a linear permutation of Fn
2 . Then, they only concern the con-

fusion part of the round function. In the following, we only investigate the first
three properties, since the mathematical nature of the last criterion is quite
different.

3 Almost Perfect Round Functions

A Boolean function f of n variables is a function from Fn
2 into F2. It can be

expressed as a polynomial in x1, . . . , xn, called its algebraic normal form. The
degree of f , denoted by deg(f), is the degree of its algebraic normal form.

3.1 Resistance against Differential Attacks

The resistance of an iterated cipher with round function FK against differen-
tial cryptanalysis can be quantified by some properties of the derivatives (or
differentials) of FK .

Definition 1. [22] Let F be a function from Fn
2 into Fm

2 . For any a ∈ Fn
2 , the

derivative of F with respect to a is the function

DaF (x) = F (x+ a) + F (x) .

For any k-dimensional subspace V of Fn
2 , the k-th derivative of F with respect

to V is the function
DV F = Da1Da2 . . . Dak

F ,

where (a1, . . . , ak) is any basis of V .

It is clear that an iterated cipher is vulnerable to a differential attack if there
exists two nonzero elements a and b in Fn

2 such that, for any round key K, the
number of x ∈ Fn

2 satisfying

FK(x+ a) + FK(x) = b (1)

is high. Therefore, a necessary security condition is that, for any K,

δFK
= max

a,b �=0
#{x ∈ Fn

2 , FK(x+ a) + FK(x) = b}

should be small. It clearly appears that the number of solutions of Equation (1)
is even (because x0 is a solution if and only if x0 + a is a solution). Then, we
deduce
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Proposition 1. [31] For any function F from Fn
2 into Fn

2 , we have

δF ≥ 2 .
In case of equality, F is said to be almost perfect nonlinear (APN).

Note that the terminology APN comes from the general bound

δF ≥ 2n−m

for a function from Fn
2 into F

m
2 , where the functions achieving this bound are

called perfect nonlinear functions [28]. Such functions only exist when n is even
and n ≥ 2m [29].
The definition of APN functions can be expressed in terms of second deriva-

tives:

Proposition 2. A function F from Fn
2 into Fn

2 is APN if and only if, for any
nonzero elements a and b in Fn

2 , with a �= b, we have

DaDbF (x) �= 0 for all x ∈ Fn
2 .

All known APN functions are functions of an odd number of variables. Ac-
tually, it is conjectured that, for any function F from Fn

2 into F
n
2 with n even,

we have
δF ≥ 4 .

This statement is proved for some particular cases, most notably for power func-
tions [2,10].

3.2 Resistance against Linear Attacks

The resistance against linear attacks involves the Walsh spectrum of the round
function.
In the following, the usual dot product between two vectors x and y is denoted

by x · y. For any α ∈ Fn
2 , ϕα is the linear function of n variables: x �→ α · x. For

any Boolean function f of n variables, we denote by F(f) the following value
related to the Walsh (or Fourier) transform of f :

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f) ,

where wt(f) is the Hamming weight of f , i.e., the number of x ∈ Fn
2 such that

f(x) = 1.

Definition 2. The Walsh spectrum of a Boolean function f of n variables f is
the multiset

{F(f + ϕα), α ∈ Fn
2} .

The Walsh spectrum of a vectorial function F from Fn
2 into Fn

2 consists of the
Walsh spectra of all Boolean functions ϕα ◦ F : x �→ α · F (x), α �= 0. Therefore,
it corresponds to the multiset

{F(ϕα ◦ F + ϕβ), α ∈ Fn
2 \ {0}, β ∈ Fn

2} .
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The security criterion corresponding to linear cryptanalysis is that all func-
tions ϕα ◦ FK , α �= 0 should be far away from all affine functions. This require-
ment is related to the nonlinearity of the functions FK .

Definition 3. The nonlinearity of a function F from Fn
2 into Fn

2 is the Ham-
ming distance between all ϕα ◦F, α ∈ Fn

2 , α �= 0, and the set of affine functions.
It is given by

2n−1 − 1
2
L(F ) where L(F ) = max

α∈Fn
2

max
β∈Fn

2

|F(ϕα ◦ F + ϕβ)| .

Proposition 3. [33,9] For any function F : Fn
2 → Fn

2 ,

L(F ) ≥ 2n+1
2 .

In case of equality F is called almost bent (AB).

For a function F from Fn
2 into F

m
2 , we have

L(F ) ≥ 2n
2

where the functions achieving this bound are called bent functions. It was proved
that a function is bent if and only if it is perfect nonlinear [28,29].
The minimum value of L(F ) where F is a function from Fn

2 into F
n
2 can only

be achieved when n is odd. For even n, some functions with L(F ) = 2n
2 +1 are

known and it is conjectured that this value is the minimum [32,12].

3.3 Resistance against Higher Order Differential Attacks

In a higher order differential attack, the attacker exploits the existence of a
k-dimensional subspace V ⊂ Fn

2 such that the reduced cipher G satisfies

DVG(x) = c for all x ∈ Fn
2

where c is a constant which does not depend on the round keys K1, . . .Kr−1. A
natural candidate for V arises when the degree of the reduced cipher is known.

Definition 4. The degree of a function F from Fn
2 into Fn

2 is the maximum
degree of its Boolean components:

deg(F ) = max
1≤i≤n

deg(ϕei ◦ F )

where (e1, . . . , en) denotes the canonical basis of Fn
2 .

Actually, we have

Proposition 4. [22] Let F be a function from Fn
2 into Fn

2 of degree d. Then,
for any (d+ 1)-dimensional subspace V ⊂ Fn

2 , we have

DV F (x) = 0 for all x ∈ Fn
2 .

Note that the dimension of the smallest subspace V satisfying DV F = 0 may be
smaller than deg(F ) + 1.
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4 Related Objects

The results concerning almost perfect functions widely apply in several areas
of telecommunications: almost perfect nonlinear and almost bent functions are
related to metric properties of some linear codes, especially of binary cyclic
codes with two zeros. Almost bent power functions also correspond to pairs of
maximum-length sequences with preferred crosscorrelation.

4.1 Links with Error-Correcting Codes

Carlet, Charpin and Zinoviev have pointed out that both APN and AB properties
can be expressed in terms of error-correcting codes [8].
Since both APN and AB properties are invariant under translation, we here

only consider the functions F such that F (0, . . . , 0) = 0. We use standard nota-
tion of the algebraic coding theory (see [23]). Any k-dimensional subspace of Fn

2
is called a binary linear code of length n and dimension k and is denoted by [n, k].
Any [n, k]-linear code C is associated with its dual [n, n−k]-code, denoted by C⊥:

C⊥ = {x ∈ Fn
2 , x · c = 0 ∀c ∈ C} .

Any k × n binary matrix G defines an [n, k]-binary linear code C:
C = {xG, x ∈ Fk

2}
We then say that G is a generator matrix of C.
Let (αi, 1 ≤ i ≤ 2n) denote the set of all nonzero elements of Fn

2 . We consider
the linear binary code CF of length (2n − 1) and dimension 2n defined by the
generator matrix

GF =
(

α1 α2 α3 . . . α2n

F (α1) F (α2) F (α3) . . . F (α2n)

)
, (2)

where each entry in Fn
2 is viewed as a binary column vector of length n. It clearly

appears that any codeword in CF corresponds to a vector (a · αi + b · F (αi), 1 ≤
i ≤ 2n). Therefore, its Hamming weight is given by

#{i, 1 ≤ i ≤ 2n, a · αi + b · F (αi) = 1} = 2n−1 − 1
2
F(ϕb ◦ F + ϕa) .

Moreover, a vector (c1, . . . , c2n) belongs to the dual code C⊥
F if and only if

2n∑
i=1

ciαi = 0 and
2n∑
i=1

ciF (αi) = 0 .

Then, we obviously have that the minimum distance of C⊥
F is at least 3. Moreover,

there exist three different indexes i1, i2, i3 such that

F (αi1) + F (αi2) + F (αi3) + F (αi1 + αi2 + αi3) = 0

if and only if C⊥
F contains a codeword of Hamming weight 4 (or 3 if αi1 + αi2 +

αi3 = 0).
Therefore, we obtain the following correspondence:
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Theorem 1. [8] Let F be a permutation from Fn
2 into Fn

2 with F (0) = 0. Let
CF be the linear binary code of length 2n − 1 and dimension 2n with generator
matrix GF described by (2). Then,

(i)

L(F ) = max
c∈CF ,c�=0

|2n − 2wt(c)| .

In particular, for odd n, F is AB if and only if for any non-zero codeword
c ∈ CF ,

2n−1 − 2n−1
2 ≤ wt(c) ≤ 2n−1 + 2

n−1
2 .

(ii) F is APN if and only if the code C⊥
F has minimum distance 5.

When the vector space Fn
2 is identified with the finite field F2n , the function F

can be expressed as a unique polynomial of F2n [X]. Now, we focus on power
functions F , i.e., F (x) = xs over F2n . In that case, the linear code C⊥

F associated
to x �→ xs is a binary cyclic code of length (2n − 1) with two zeros.
Definition 5. A linear binary code C of length N is cyclic if for any codeword
(c0, . . . , cN−1) in C, the vector (cN−1, c0, . . . , cN−2) is also in C.
If each vector (c0, . . . , cN−1) ∈ FN

2 is associated with the polynomial c(X) =∑N−1
i=0 ciX

i in RN = FN
2 [X]/(X

N − 1), any binary cyclic code of length N is
an ideal of RN . Since RN is a principal domain, any cyclic code C of length N
is generated by a unique monic polynomial g having minimal degree. This poly-
nomial is called the generator polynomial of the code and its roots are the zeros
of C. For N = 2n − 1, the defining set of C is then the set

I(C) = {i ∈ {0, · · · , 2n − 2}| αi is a zero of C} .
where α is a primitive element of F2n . Since C is a binary code, its defining set is
a union of 2-cyclotomic cosets modulo (2n − 1), Cl(a), where Cl(a) = {2ja mod
(2n − 1)}. Therefore, the defining set of a binary cyclic code of length (2n − 1)
is usually identified with the representatives of the corresponding 2-cyclotomic
cosets modulo (2n − 1). In this context, the linear code CF associated to the
power function F : x �→ xs on F2n is defined by the following generator matrix:

GF =
(
1 α α2 . . . α2

n−2

1 αs α2s . . . α(2
n−2)s

)
.

Then, the dual code C⊥
F consists of all binary vectors c of length (2

n − 1) such
that c GT

F = 0. The code C⊥
F is therefore the binary cyclic code of length (2

n −1)
with defining set {1, s}.

4.2 Crosscorrelation of a Pair of Binary m-sequences

A binary sequence (ui)i≥0 generated by a linear feedback shift register (LFSR)
of length n has maximal period when the feedback polynomial of the LFSR is
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primitive. Such a sequence is called an m-sequence of length (2n−1). A binary m-
sequence of length (2n −1) is identified with the binary vector of length (2n −1)
consisting of its first (2n −1) bits. A further property of m-sequences is that they
are almost uncorrelated with their cyclic shifts. This property is important in
many communication systems (as radar communications or transmissions using
spread-spectrum techniques) since it is often required that a signal can be easily
distinguished from any time-shifted version of itself. It is well-known that for
any m-sequence u of length (2n − 1) there exists a unique c ∈ F2n \ {0} such
that

∀i, 0 ≤ i ≤ 2n − 2, ui = Tr(cαi)

where α is a root of the feedback polynomial of the LFSR generating u (i.e., α is
a primitive element of F2n) and Tr denotes the trace function from F2n to F2.
When a communication system uses a set of several signals (usually corre-

sponding to different users), it is also required that each of these signals can be
easily distinguished from any other signal in the set and its time-shifted ver-
sions. This property is of great importance especially in code-division multiple
access systems. The distance between a sequence u and all cyclic shifts of another
sequence v can be computed with the crosscorrelation function:

Definition 6. Let u and v be two different binary sequences of length N . The
crosscorrelation function between u and v, denoted by θu,v, is defined as

θu,v(τ) =
N−1∑
i=0

(−1)ui+vi+τ .

The corresponding crosscorrelation spectrum is the multiset

{θu,v(τ), 0 ≤ τ ≤ N − 1} .
Since θu,v(τ) = N − 2wt(u+ στv) where σ denotes the cyclic shift operator,

the above mentioned applications use pairs of sequences (u, v) such that |θu,v(τ)|
is small for all τ ∈ {0, . . . , N − 1}.
If u and v are two different binary m-sequences of length (2n−1), there exists

an integer s in {0, . . . , 2n − 2} and a pair (c1, c2) of non-zero elements of F2n

such that

∀i, 0 ≤ i ≤ 2n − 2, ui = Tr(c1αi) and vi = Tr(c2αsi) .

If c1 = c2, the sequence v is said to be a decimation by s of u. Writing c1 = αj1

and c2 = αj2 , the crosscorrelation function for the pair (u, v) is given by:

θu,v(τ) =
2n−2∑
i=0

(−1)Tr(αi+j1+αsi+j2+τ ) =
∑

x∈F∗
2m

(−1)Tr(ατ′
[αj1−τ′

x+xs]) ,

where τ ′ = j2 + τ . It follows that the corresponding crosscorrelation spectrum
does not depend on the choice of j2. It is then sufficient to study the pairs (u, v)
where v is a decimation by s of u.
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Now, we show that the crosscorrelation spectrum of pairs of binary m-
sequences is related to the Walsh spectrum of a power function.

Proposition 5. Let n and s be two positive integers such that gcd(s, 2n−1) = 1
and s is not a power of 2. Let {θs(τ), 0 ≤ τ ≤ 2n − 2} be the crosscorrelation
spectrum between an m-sequence of length (2n − 1) and its decimation by s. Let
F be the power function x �→ xs over F2n . Then, for any α ∈ Fn

2 , α �= 0, we
have

{θs(τ), 0 ≤ τ ≤ 2n − 2} = {F(ϕα ◦ F + ϕβ)− 1, β ∈ Fn
2 \ {0}} .

Most notably,
max

0≤τ≤2n−2
|θs(τ) + 1| = L(F ) .

In particular when n is odd, the lowest possible value for maxτ |θs(τ) + 1| is
2

n+1
2 .

Definition 7. The crosscorrelation θu,v between two m-sequences u and v of
length (2n − 1) is said to be preferred if it satisfies

max
τ

|θu,v(τ) + 1| = 2
n+1

2 .

Therefore, the decimations s which lead to a preferred crosscorrelation exactly
correspond to the exponents s such that x �→ xs is an almost bent permutation
over F2n .

5 Relations between the Security Criteria

Now, we establish the links between both APN and AB properties. Chabaud and
Vaudenay [9] proved that any AB function is APN. Here, we refine this result,
since we give a necessary and sufficient condition for an APN function to be AB.
We use the following relation involving the Walsh coefficients of a function.

Proposition 6. Let F be a function from Fn
2 into Fn

2 . Then, we have

∑
α∈Fn

2 \{0}

∑
β∈Fn

2

F4(ϕα ◦ F + ϕβ) = 23n+1(2n − 1) + 22n∆ ,

where ∆ = #{(x, a, b) ∈ (Fn
2 )

3, a �= 0, b �= 0, a �= b, such that DaDbF (x) = 0}.
Most notably, we have

∑
α∈Fn

2 \{0}

∑
β∈Fn

2

F4(ϕα ◦ F + ϕβ) ≥ 23n+1(2n − 1),

with equality if and only if F is APN.
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Proof. For any Boolean function f of n variables, we have [3, Prop. II.1]
∑

β∈Fn
2

F4(f + ϕβ) = 2n
∑

a,b∈Fn
2

F(DaDbf) .

By applying this relation to all ϕα ◦ F , we deduce

S =
∑

α∈Fn
2 \{0}

∑
β∈Fn

2

F4(ϕα ◦ F + ϕβ)

= 2n
∑

α∈Fn
2 \{0}

∑
a,b∈Fn

2

F(DaDb(ϕα ◦ F ))

= 2n
∑

α∈Fn
2 \{0}

∑
a,b∈Fn

2

F(ϕα ◦DaDbF )

= 2n
∑

a,b∈Fn
2

∑
α∈Fn

2

F(ϕα ◦DaDbF )− 24n

where the last equality is obtained by adding the terms corresponding to α = 0
in the sum. Now, for any a, b ∈ Fn

2 , we have∑
α∈Fn

2

F(ϕα ◦DaDbF ) =
∑

α∈Fn
2

∑
x∈Fn

2

(−1)α·DaDbF (x) .

Using that ∑
α∈Fn

2

(−1)α·y = 2n if y = 0 and 0 otherwise,

we obtain ∑
α∈Fn

2

F(ϕα ◦DaDbF ) = 2n#{x ∈ Fn
2 , DaDbF (x) = 0} .

Therefore,
S = 22n#{x, a, b ∈ Fn

2 , DaDbF (x) = 0} − 24n .

Since DaDbF = 0 when either a = 0 or b = 0 or a = b, we get

S = 22n [2n(3(2n − 1) + 1) +∆]− 24n

= 23n+1(2n − 1) + 22n∆ .

Since ∆ ≥ 0 with equality if and only if F is APN (see Proposition 2), we obtain
the expected result.

We then derive the following theorem.

Theorem 2. Let F be a function from Fn
2 into Fn

2 . Let

∆ = #{(x, a, b) ∈ (Fn
2 )

3, a �= 0, b �= 0, a �= b, such that DaDbF (x) = 0} .
Then, we have
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(i)

∆ ≤ (2n − 1)(L(F )2 − 2n+1) ,

where equality holds if and only if the values occurring in the Walsh spec-
trum of F belong to {0,±L(F )}.

(ii) For any positive integer + such that all nonzero Walsh coefficients of F
satisfy

|F(ϕα ◦ F + ϕβ)| ≥ + ,

we have
∆ ≥ (2n − 1)(+2 − 2n+1) ,

where equality holds if and only if the values occurring in the Walsh spec-
trum of F belong to {0,±+}.

Proof. Let + be a positive integer. Let I(+) denote the following quantity

I(+) =
∑

α∈Fn
2 \{0}

∑
β∈Fn

2

[F4(ϕα ◦ F + ϕβ)− +2F2(ϕα ◦ F + ϕβ)
]

=
∑

α∈Fn
2 \{0}

∑
β∈Fn

2

F2(ϕα ◦ F + ϕβ)
[F2(ϕα ◦ F + ϕβ)− +2

]
.

By combining Proposition 6 and Parseval’s relation, we obtain that

I(+) = 23n+1(2n − 1) + 22n∆− 22n(2n − 1)+2
= 22n(2n − 1)(2n+1 − +2) + 22n∆ .

Now, any term in the sum defining I(+) satisfies

F2(ϕα ◦ F + ϕβ)
[F2(ϕα ◦ F + ϕβ)− +2

]
< 0 if 0 < |F(ϕα ◦ F + ϕβ)| < +
= 0 if |F(ϕα ◦ F + ϕβ)| ∈ {0,±+}
> 0 if |F(ϕα ◦ F + ϕβ)| > +

This implies that all terms appearing in I(L(F )) are negative. Then, we have

∆ ≤ (2n − 1)(L(F )2 − 2n+1) ,

with equality if and only if all terms in the sum are zero. This situation only
occurs if the values occurring in the Walsh spectrum of F belong to {0,±L(F )}.
Similarly, if all nonzero Walsh coefficients of F satisfy

|F(ϕα ◦ F + ϕβ)| ≥ + ,

then all terms appearing in I(+) are positive. Therefore,

∆ ≥ (2n − 1)(+2 − 2n+1) ,

with equality if and only if all terms in the sum are zero.
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Another proof of this result can be obtained by using the error-correcting code
corresponding to F [6]. In that case, the proof is based on Pless identities and
on some techniques due to Kasami [18]. As a direct application of the previous
theorem, we derive a characterization of almost bent functions.

Corollary 1. Let n be an odd integer and let F be a function from Fn
2 into Fn

2 .
Then, F is AB if and only if F is APN and all its Walsh coefficients are divisible
by 2

n+1
2 .

Proof. F is AB if and only if L(F ) = 2(n+1)/2. Using Theorem 2 (i), we obtain
that ∆ ≤ 0. Since ∆ is a non-negative integer, it follows that ∆ = 0, i.e., F is
APN. Moreover, the upper bound given in Theorem 2 (i) is achieved. Therefore,
the values occurring in the Walsh spectrum of F belong to {0,±2(n+1)/2}. This
implies that all Walsh coefficients are divisible by 2(n+1)/2.
Conversely, if all Walsh coefficients are divisible by 2(n+1)/2, then all nonzero

Walsh coefficients satisfy

|F(ϕα ◦ F + ϕβ)| ≥ 2(n+1)/2 .

From Theorem 2 (ii) applied to + = 2(n+1)/2, we obtain ∆ ≥ 0. If F is APN, we
have ∆ = 0 and the lower bound given in Theorem 2 (ii) is reached. Therefore,
the values occurring in the Walsh spectrum of F belong to {0,±2(n+1)/2}. This
implies that F is AB.

Note that both properties of AB functions derived from the sufficient condition
in the previous corollary have been proved in [9].
A first consequence of the divisibility of the Walsh coefficients of an AB

function is the following upper bound on its degree. This bound can be derived
from [7, Lemma 3].

Corollary 2. [8] Let n be an odd integer and F be an AB function from Fn
2

into Fn
2 . Then,

deg(F ) ≤ n+ 1
2

.

Therefore, there exists a trade-off between the security criteria involved by linear
cryptanalysis and by higher order differential attacks.
When F is a power function, F : x �→ xs, the corresponding code CF is the

dual of the binary cyclic code of length (2n − 1) with defining set {1, s} (see
Section 4.1). The weight divisibility of a cyclic code can be obtained by applying
McEliece’s theorem:

Theorem 3. [27] The weights of all codewords in a binary cyclic code C are
exactly divisible by 2� if and only if + is the smallest number such that (+ + 1)
nonzeros of C (with repetitions allowed) have product 1.

This leads to the following characterization of AB power functions.
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Corollary 3. Let n be an odd integer and let F : x �→ xs be a power function
over F2n . Then, F is AB if and only if F is APN and

∀u, 1 ≤ u ≤ 2n − 1, w2(us mod (2n − 1)) ≤ n− 1
2
+ w2(u)

where w2(u) corresponds to the number of 1s in the 2-adic expansion of u.

Thanks to McEliece’s theorem, the determination of the values of s such that
x �→ xs is almost bent on F2n is reduced to a combinatorial problem. Most
notably, this technique was directly used to prove that some power functions
are AB [5,15]. Moreover, it leads to a very efficient method for proving that a
given power function is not AB. For example, the APN power function x �→ xs

over F25g with s = 24g + 23g + 22g + 2g − 1 does not satisfy the condition of
Corollary 3 [6].
These recent results lead to the following list (up to equivalence) of known

AB permutations (Table 1). All these functions are power functions. Here, we
only give one exponent per cyclotomic coset modulo (2n−1). We do not mention
the exponent corresponding to the inverse permutation (which is AB too).

Table 1. Known AB power permutations xs on F2n

exponents s condition on n

2i + 1 with gcd(i, n) = 1 and 1 ≤ i ≤ (n − 1)/2 [13,30]

22i − 2i + 1 with gcd(i, n) = 1 and 2 ≤ i ≤ (n − 1)/2 [19]

2
n−1

2 + 3 [5]

2
n−1

2 + 2
n−1

4 − 1 n ≡ 1 mod 4 [15]

2
n−1

2 + 2
3n−1

4 − 1 n ≡ 3 mod 4 [15]

When n is even, the smallest known value of L(F ) for a function F from
Fn
2 into F

n
2 is L(F ) = 2n/2+1. The only known functions (up to equivalence)

achieving this bound are power functions. Since power permutations cannot be
APN, it clearly appears that the security criteria corresponding to differential
cryptanalysis and to linear cryptanalysis are not so strongly related. Moreover,
the divisibility of the Walsh coefficients of these highly nonlinear functions varies.
In particular, the degree of such a function is not upper-bounded since there is no
requirement on the divisibility of the Walsh coefficients. Table 2 gives all known
power functions achieving the highest known nonlinearity and the divisibility of
their Walsh coefficients.

6 Conclusion

The functions which opposes the best resistance to linear cryptanalysis possess
a very strong algebraic structure. The AB property appears very restrictive. In
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Table 2. Known power permutations xs on F2n with the highest nonlinearity and
highest divisibility of their Walsh coefficients

exponents s condition on n divisibility

2n−1 − 1 22 [21]

2i + 1 with gcd(i, n) = 2 n ≡ 2 mod 4 2
n
2 +1 [13,30]

22i − 2i + 1 with gcd(i, n) = 2 n ≡ 2 mod 4 2
n
2 +1 [19]∑n/2

i=0 2
ik with gcd(k, n) = 1 n ≡ 0 mod 4 2

n
2 [12]

2
n
2 + 2

n+2
4 + 1 n ≡ 2 mod 4 2

n
2 +1 [11]

2
n
2 + 2

n
2 −1 + 1 n ≡ 2 mod 4 2

n
2 +1 [11]

2
n
2 + 2

n
4 + 1 n ≡ 4 mod 8 2

n
2 [12]

particular, AB functions also guarantee the highest possible resistance against
differential cryptanalysis. But, besides the APN property, they can be charac-
terized by the divisibility of their Walsh coefficients. This particular structure
leads to an upper-bound on their degree (it then limits their resistance against
higher order differential attacks) and it may introduce some other weaknesses.
Therefore, it seems preferable to use as round function a function whose nonlin-
earity is high but not optimal. Most notably, the functions of an even number of
variables which have the highest known nonlinearity do not present any similar
properties. As an example, the inverse function over a finite field F2n with n
even (used in AES) offers a very high resistance against differential, linear and
higher order differential attacks. Moreover, its Walsh coefficients are divisible
by 4 only (which is the lowest possible divisibility).
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