
Specification of Mixed Systems in Korrigan
with the Support of a UML-Inspired Graphical

Notation

Christine Choppy1, Pascal Poizat2, and Jean-Claude Royer2

1 LIPN, Institut Galilée - Université Paris XIII,
Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

Christine.Choppy@lipn.univ-paris13.fr
2 IRIN, Université de Nantes

2 rue de la Houssinière, B.P. 92208, F-44322 Nantes cedex 3, France
{Pascal.Poizat,Jean-Claude.Royer}@irin.univ-nantes.fr

http://www.sciences.univ-nantes.fr/info/perso/permanents/poizat/

Abstract. Our Korrigan formalism is devoted to the structured
formal specification of mixed systems through a model based on a
hierarchy of views [4,20]. In our unifying approach, views are used to
describe the different aspects of a component (both internal and external
structuring). We propose a semi-formal method with guidelines for the
development of mixed systems, that helps the specifier providing means
to structure the system in terms of communicating subcomponents and
to describe the sequential components. While there is growing interest
for having both textual and graphical notations for a given formalism,
we introduce composition diagrams, a UML-inspired graphical notation
for Korrigan, associated with the various steps of our method. We shall
show how our method is applied to develop a Korrigan specification
(both in textual and graphical notation) and illustrate this approach on
a case study.

Keywords: formal specification, mixed specification, graphical notation,
symbolic transition systems, Korrigan, UML

1 Introduction

The use of formal specifications is now widely accepted in software development
to provide abstract, rigorous and complete descriptions of systems. Formal spec-
ifications are also essential to prove properties, to prototype the system and to
generate tests.

In the last few years, the need for a separation of concerns with reference
to static (data types) and dynamic aspects (behaviours, communication) ap-
peared. This issue was addressed in approaches combining algebraic data types
with other formalisms (e.g. LOTOS [17] with process algebras or SDL [7] with
State/Transition Diagrams), and also more recently in approaches combining Z
and process algebras (e.g. OZ-CSP [27] or CSP-OZ [8]). This is also reflected in

H. Hussmann (Ed.): FASE 2001, LNCS 2029, pp. 124–139, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Specification of Mixed Systems in Korrigan 125

object oriented analysis and design approaches such as UML [28] where static
and dynamic aspects are dealt with by different diagrams (class diagrams, in-
teraction diagrams, Statecharts). However, the (formal) links and consistency
between the aspects are not defined, or trivial. This limits either the possibili-
ties of reasoning on the whole component or the expressiveness of the formalism.
Some approaches encompass both aspects within a single framework (e.g. LTS
[24], rewriting logic [19] or TLA [18]). These “homogeneous” approaches ease
the verification and the definition of consistency criteria for the integration of
aspects, but at the cost of a loss of expressiveness for one of the aspects or a poor
level of readability. Moreover, the definition of a method remains an important
lack of most of these approaches.

The Korrigan formalism is devoted to the structured formal specification of
mixed systems through a model based on a hierarchy of views. Our approach aims
at keeping advantage of the languages dedicated to both aspects (i.e. Symbolic
Transition Systems for behaviours, algebraic specifications derived from these
diagrams for data parts, and a simple temporal logic and axiom based glue for
compositions) while providing an underlying unifying framework accompanied
by an appropriate semantic model. Moreover, experience has shown that our
formalism leads to expressive and abstract, yet readable specifications.

We propose, in this paper, a semi-formal method with guidelines for the devel-
opment of mixed systems with Korrigan. This method helps the specifier pro-
viding means to structure the system in terms of communicating subcomponents
and to describe the sequential components. While there is growing interest for
having both textual and graphical notations for a given formalism (e.g. SDL and
UML/XMI), we shall in the following introduce composition diagrams, a UML-
inspired graphical notation for Korrigan, associated with the various steps of
our method. We suggest to reuse some UML notation, but we also present some
proper Korrigan graphic notations. Since our model is component based we
have an approach which is rather different from UML on communications and
concurrent aspects. Thus we will present specific notations to define the dynamic
interface of a component, its communications with others and concurrency. We
shall show how our method is applied to develop a Korrigan specification (both
in textual and graphical notation) and illustrate this approach on a transit node
case-study.

The paper is organized as follows. Section 2 presents the Transit Node case
study. Section 3 gives an overview of Korrigan. It describes briefly the view
model and details the associated specification method. Then, in Section 4 we
present our UML-inspired notation diagrams for interfaces, compositions, be-
haviours, and communications. Finally, some related works are discussed in our
conclusion.

2 The Transit Node Case Study

This case study was adapted within the VTT project from one defined in the
RACE project 2039 (SPECS: Specification Environment for Communication



126 C. Choppy, P. Poizat, and J.-C. Royer

Software). It consists of a simple transit node where messages arrive, are routed,
and leave the node (Fig. 1). We do not give the full informal specification text
here but shortly describe what is needed in the context of this paper. The full
presentation of the case study may be found in [20].

.

.

.

.

.

.Faulty Collection

Wrong-cmsg

M Routes are defined and associated
with given data ports-out

N Data Ports-In N Data Ports-Out

Emission of messages for the routes
associated with this Data Port-out

Message Buffer
msg1
msg2

Data message emission

Control message arrival Obsolete or erroneous message emission

Control Port-outControl Port-In

Data message arrival

Fig. 1. Transit Node

The system to be specified consists of a transit node with one Control Port-
In that receives control messages, one Control Port-Out that emits erroneous or
obsolete messages, N Data Ports-In that receive data messages to be routed, N
Data Ports-Out that emit data messages, and M Routes through. Each port is
serialized, and all ports are concurrent to all others.

A data message is of the form Route(m).Data. The Data Port-In routes the
message to any one of the open Data Ports-Out associated with the message
route m where the message has to be buffered until the Data Port-Out can
process it. When a message is erroneous (e.g. its route is not defined) or obsolete
(its transit time is greater than a constant time T), it is eventually directed to
a faulty collection.

The control messages modify the transit node configuration by enabling new
data ports-in and out, or defining routes together with their associated data
ports. The Send-Faults control message is used to route messages from the faulty
collection to the Control Port-Out from which they will be eventually emitted.

3 Korrigan: A Formalism for Mixed Specification

In this Section, we will briefly present our model, the Korrigan specification
language and the associated method.



Specification of Mixed Systems in Korrigan 127

3.1 Korrigan and the View Model

Our model [4,20] is based upon the structured specification of communicating
components (with identifiers) by means of structures that we call views which
are expressed in Korrigan, the associated formal language (Fig. 2).

VIEW T
SPECIFICATION

imports A′

generic on G
variables V

hides A
ops Σ
axioms Ax

ABSTRACTION
conditions C
limit conditions Cl

with Φ
initially Φ0

OPERATIONS

Oi pre: P post: Q

Fig. 2. Korrigan syntax (views)

Views use conditions to define an abstract point of view for components.
These conditions are also used to define an inheritance relation for views. STS,
i.e. Symbolic Transition Systems1 are built using the conditions [21]. The main
interest with these transition systems is that (i) they avoid state explosion prob-
lems, and (ii) they define equivalence classes (one per state) and hence strongly
relate the dynamic and the static (algebraic) representation of a data type.

Views are used to describe in a structured and unifying way the different
aspects of a component using “internal” and “external” structuring. We define
an Internal Structuring View abstraction that expresses the fact that, in order
to design a component, it is useful to be able to express it under its different
aspects (here the static and dynamic aspects, with no exclusion of further aspects
that may be identified later on). Another structuring level is achieved through
the External Structuring View abstraction, expressing that a component may be
composed of several subcomponents. Such a component may be either a global
component (integrating different internal structuring views in an Integration
View), or a composite component (Composition View). Integration views follow
an encapsulation principle: the static aspect (Static View) may only be accessed
through the dynamic aspect (Dynamic View) and its identifier (Id). The whole
class diagram for the view model is given in Figure 3.

Components are “glued” altogether in external structuring views (Fig. 4) us-
ing both axioms and temporal logic formulas. This glue expresses a generalized
form of synchronous product (for STS) and may be used to denote different
concurrency modes and communication semantics. The δ component may be ei-
ther LOOSE, ALONE or KEEP and is used in the operational semantics to express
different concurrency modes (synchronous or asynchronous modes) and commu-
nication schemes. The axioms clause is used to link abstract guards that may
1 Mainly transition systems with guarded transitions and open terms in states and

transitions, see Figure 12 or [4].



128 C. Choppy, P. Poizat, and J.-C. Royer

Glue

STSPart

Static View Dynamic View

1 1

2..n
Internal Structuring View External Structuring View

Composition ViewIntegration View

View
DataPart

1

1

Fig. 3. Views class hierarchy (UML notation)

exist in components with operations defined in other components. The Φ and Φ0
elements are state formulas expressing correct combinations of the components
conditions (Φ) and initial ones (Φ0). The Ψ element is a set of couples of transi-
tion formulas expressing what transitions have to be triggered at the same time
(this expresses communication). The COMPOSITION clauses may use a syntactic
sugar: the range operator (i:[1..N] or i:[e1, . . . ,en]), a bounded universal
quantifier.

EXTERNAL STRUCTURING VIEW T
SPECIFICATION

imports A′

generic on G
variables V
hides A

COMPOSITION δ

is
idi : Obji<Ii>

axioms AxΘ

with Φ, Ψ
initially Φ0

Fig. 4. Korrigan syntax (compositions)

3.2 A Method for the Specification of Mixed Components

Methods are needed to help using formal specifications in a practical way. We
propose a method for the development of mixed systems, that helps the specifier
providing means to structure the system in terms of communicating subcompo-
nents and to give the sequential components using a semi-automatic concurrent
automata generation with associated algebraic data types. A previous version of
our method [21] is described in terms of the agenda2 concept [12,14]. The method
presented here is refined and accompanied with the use of visual diagrams.

Our method mixes constraint-oriented, resource-oriented and state-oriented
specification styles [29,30] and produces a modular description with a dynamic
behaviour and its associated data type. Our method is composed of four steps
(Fig. 5), with associated diagrams, for obtaining the specification.
2 Agendas describe a list of activities for solving a task in software engineering, and are

developed to provide guidance and support for the application of formal specification
techniques.



Specification of Mixed Systems in Korrigan 129

1 informal
description

3 sequential
components

4 data
types

2 concurrent
activity

Fig. 5. Method Step Dependencies at the Overall Level

These steps correspond to:

– the informal description of the system to be specified. The aim of this
first step is to sketch out the system characteristics (data, constraints and
functionalities).

– the concurrent activity description. The idea is to define the system ar-
chitecture in terms of a decomposition tree, and then to add communication
information between the elements of this tree. This part on communica-
tion may be achieved after some basic components have been described (or
reused). This step is composed of three sub-steps that may be iterated (Fig.
6).

communication 
interface

decomposition recomposition

2.1 2.2 2.3

Fig. 6. Method Step Dependencies for the Concurrent Activity

In the first one (2.1), the communication interface of the component being
described is given in term of an interface diagram.
Then, in a second step (2.2), the component is decomposed into concurrent
(possibly communicating) subcomponents using composition diagrams. Once
a sequential component is obtained, a further decomposition step is applied
to reflect the fact that components are indeed the integration of different
aspects (static and dynamic). Therefore, we have concurrent decompositions
(described by concurrent composition diagrams) and integration decompo-
sitions (described by integration composition diagrams), i.e. separation of
aspects steps.
In the third step (2.3), the different composition diagrams (either integration
or concurrent composition diagrams) are completed with the communica-
tions that take place between them. This can be done by reusing communi-
cation patterns. When they are completed with communication information,
the composition diagrams are called communication diagrams. Note that in
our Korrigan framework, both concurrency and integration are specified
in a unified way.



130 C. Choppy, P. Poizat, and J.-C. Royer

Table 1 gives the correspondence between the concurrent activity sub-steps,
the corresponding diagrams, and the corresponding Korrigan view struc-
tures. All the diagrams will be presented in the next Section.

Table 1. Method steps, diagrams and Korrigan view structures

step diagram Korrigan
communication interface interface Σ in Internal Structuring Views

(e.g. Fig. 8) SPECIFICATION part
decomposition composition External Structuring View

(e.g. Fig. 9) (partial: imports and is clauses)
recomposition communication External Structuring View

(e.g. Fig. 14) (full)

– the sequential component descriptions. The term “condition” refers to
preconditions required for a communication to take place, and also to con-
ditions that affect the behaviour when a communication takes place. The
operations are defined in terms of pre and postconditions over these con-
ditions. These concepts correspond to our formal language (see Fig. 2) but
gives a general method for a wider set of mixed specification languages (it
has been applied to LOTOS and SDL). A guarded automaton is then pro-
gressively and rigorously built from the conditions. Type information and
operation preconditions are used to define the automaton states and transi-
tions. A dynamic behaviour (described by a behavioural diagram) may then
be computed from the automaton using some standard patterns.

– the data type (functional) specifications. The last improvement is the as-
sisted computation of the functional parts (in Korrigan, the data type
parts of views). Our method reuses a technique [2] which allows one to get
an abstract data type from an automaton. This technique extracts a signa-
ture and generators from the automaton. Furthermore, the automaton drives
the axiom writing so that the specifier has only to provide the axioms right
hand sides.

After a preliminary presentation of our UML-inspired notation, we introduce
the various diagrams supporting our formal specification method illustrated with
the Transit Node case study.

4 A UML-Inspired Graphical Notation

UML [28] is a notation to be used for object-oriented analysis and design. Since
it is very expressive (it has 11 different diagram types), and its (informal) se-
mantics is unclear in some cases [23], it is common to restrict oneself to a subset
of it, but there are also proposals to modify/extend it [11,16].
We think that, in complement to the theoretical approach that tries to formalize



Specification of Mixed Systems in Korrigan 131

the UML [22,9], an interesting and more pragmatic approach is to reuse exist-
ing well-accepted semi-formal notations and use them as a graphical means to
improve the readability of formal languages and concepts. In order to be close
to the UML, we select a subset of UML that is relevant to illustrate concepts
of our approach. We also extend/modify it when needed. For instance (Fig. 8),
we use a simple class diagram together with informations related to the possible
communications (its interface) of the component. The interface symbols 3 we use
are described in Figure 7.

synchronous communication asynchronous communication

communication TO
a T componentTcommunication FROM

a T componentT communication with
a T componentT

Fig. 7. Communication Interfaces

There exist different kinds of compositions within the set-theoretic or the
object-oriented framework. We restrict ourselves to the strong composition of
critical systems and distributed applications, that is composition with depen-
dence, exclusivity and predominance. This can be compared with the strong
composition in UML (black diamond), therefore, we use this UML symbol to
represent it (Fig. 9). However, our approach is more component-oriented than
UML since we explicitly address communication issues in interfaces (Fig. 8)
and concurrency in communication diagrams (Fig. 15) whereas in UML they
are embedded within Statecharts.

4.1 Interface and Composition Diagrams

We introduce composition diagrams to decompose a component into subcom-
ponents. We denote by (de)composition both the separation/integration of the
different aspects of a component (static and dynamic), and the (de)composition
into concurrent communicating subcomponents. The Korrigan model enables
us to describe both, in a unifying way, using specific External Structuring Views,
respectively Integration and Composition Views.

Interface Diagrams. Following our method, at an abstract level of description,
the transit node may be described using its data and its functionalities.

We may now give the description of the transit node at the most abstract
level (Fig. 8). It has four functionalities. Its data are composed of three lists.
The transit node is parameterized by N, the maximal number of ports within.

3 Note that Korrigan has no support for asynchronous communication, hence it is
achieved through buffers.



132 C. Choppy, P. Poizat, and J.-C. Royer

TransitNode

outCmde !l:List[Msg]

inCmde ?m:Msg

routes: List[RouteNumber]
ports: List[PortNumber]
faults:List[Msg]

inData ?m:Msg

outData !m:Msg

N:Nat

Fig. 8. TransitNode Interface Diagram

Composition Diagrams. Following our method, we decompose the transit
node into control ports and data ports using two views: ControlPorts and
DataPorts. We then distribute the transit node functionalities and data in them.
Finally, we name the subcomponents of the transit node (control and data).
Figure 9 represents the first level of decomposition of the transit node.

TransitNode

ControlPorts

routes: List[RouteNumber]
ports: List[PortNumber]
faults:List[Msg]

inCmde ?m:Msg

outCmde !l:List[Msg]

control

DataPorts

DataPorts

inData ?m:Msg

outData !m:Msg

<<bind>>(N)
data

N:Nat N:Nat

Fig. 9. TransitNode Composition Diagram

At this step, we may retrieve a partial Korrigan specification for the tran-
sit node using its graphical representation. Such a specification would be partial
because the component views it uses (imports clause) may have not been de-
fined yet. The communications between the subcomponents (that is the “glue”
between them) will be specified in a latter step but this does not always implies
that the super-component is partial because there may not be any communica-
tions at all between two subcomponents.

Applying the same decomposition process on the DataPorts view, we obtain
the Figure 10 diagram. Note here that its subcomponents make use of the range
operator to express a set of identifiers. The OutputDataPort has a buffer to deal
with its serialization constraints. We do not treat the ControlPorts here by
lack of place, see [20].

Integration Composition Diagrams. As mentioned above, in Korrigan
the integration of the different aspects of components within a global one is also
a kind of composition. However, to distinguish between integration and concur-
rent composition, we use integration diagrams: composition diagrams where the
names of the integration components are put into gray boxes.



Specification of Mixed Systems in Korrigan 133

DataPorts

OutputDataPortInputDataPortinData ?m:Msg outData !m:Msg

buffer:List[Msg]

nbr:[1..N]nbr:[1..N]
in out

N:Nat

Fig. 10. DataPorts Composition Diagram

In the integration diagrams, the data that were in previous composition dia-
grams are transformed into corresponding static aspects. It is a matter of design
to choose if each data will have its corresponding static aspect view, or if several
may be incorporated into a single static aspect view. This last solution compli-
cates the description of the communication between aspects and diminishes the
reusability level of the components. It is important to note that when a compo-
nent has no data, it is integrated with a trivial (Null) static part. See [20] for
the case study diagrams.

4.2 Behavioural Diagrams

Basic components are specified using views. Such a view may be given as a
triple (SPECIFICATION, ABSTRACTION and OPERATIONS parts), or using the STS
derivation principles [21], as a couple (SPECIFICATION part and a STS). These
STSs may be related to Statecharts ([13], or UML ones) but for some differences:

– STSs are simpler (but less expressive) than Statecharts;
– STSs model sequential components (concurrency is done through external

structuring and the computation of a structured STS from subcomponents
STSs [4]);

– STSs are built using conditions which enable one to semi-automatically de-
rive them from requirements;

– STSs may be seen as a graphical representation of an abstract interpretation
of an algebraic data type [2].

We give in Figure 11 a part of the InputDataPort Korrigan specification,
and in Figure 12 the corresponding behavioural diagram.

In presence of generic components, we may use instantiation diagrams to
relate concrete components to their generic parent. Such views are reusable.
Generally, the static views are sets, lists or buffers, i.e. the description in dy-
namic terms of the inputs and outputs of a storage element. In Figure 13, the
instantiation process is used for the different static views describing lists.

There are also inheritance diagrams in our model [20].



134 C. Choppy, P. Poizat, and J.-C. Royer

DYNAMIC VIEW InputDataPort
SPECIFICATION

imports
Msg, RouteNumber, PortNumber

variables fc: FaultyCollection
ops

enable
FROM InputControlPort

inData ?m:Msg
FROM InputControlPort

askRoute !r:RouteNumber
TO InputControlPort

replyRoute ?l:List[PortNumber]
FROM InputControlPort

wrongRoute !m:Msg
TO FaultyCollection

correct !m:Msg
TO OutputDataPort

axioms see [20]

ABSTRACTION

conditions
enable, received, asked, replied,
routeErr

with
replied ⇒ enabled
asked ⇒ received
replied ⇒ asked
routeErr ⇒ replied

initially ¬ enabled
OPERATIONS

enable
pre: true
post: enable’ : true

inData
pre: enable ∧ ¬ received
post: received’ : true

...

Fig. 11. InputDataPort in Korrigan

Not
Enabled

Ready to
Receive

Ready to
Ask

Waiting
Reply

Route

Route

<F,F,F,F,F> <T,F,F,F,F>

<T,T,F,F,F> <T,T,T,F,F>

enable

enable enable

enable

enable

inData

askRoute

askRoute

<T,T,T,T,F>

Correct

Wrong

<T,T,T,T,T>

wrongRoute

correct

[l=[]]
replyRoute

[l<>[]]
replyRoute

InputDataPort

Fig. 12. InputDataPort Behavioural Diagram (STS)

4.3 Communication Diagrams

The communication diagrams are used to complement the composition diagrams
with the inter-component communication and concurrency schemes. They use a
graphical notation of the Korrigan glue rules (COMPOSITION parts in external
structuring views, Fig. 4).



Specification of Mixed Systems in Korrigan 135

PortNumberListMsgList

List

<<bind>>(RouteNumber)
<<bind>>(Msg)

<<bind>>(PortNumber)

RouteNumberList

ELEMENT

Fig. 13. List Instantiation Diagram

The axiomatic part of the glue (the axioms clause), the state temporal for-
mulas (Φ and Φ0), and the concurrency mode (δ) are put in the aggregating
component (i.e. DataPorts for the InputDataPort and OutputDataPort views)
as shown in Figure 14. Here there are no glue axioms.

DataPorts

ALONE

axioms { }
with true
initially true

OutputDataPortInputDataPortinData ?m:Msg outData !m:Msg

correct !m:Msg
TO o:OutputDataPort

in ?m:Msg
FROM i:InputDataPort

i:[1..N] out.iin.i

enable
FROM InputControlPort FROM InputControlPort

enable

i:[in.nbr:[1..N]]
o:[out.nbr:[1..N]]i o

nbr:[1..N]nbr:[1..N]
in out

N:Nat

Fig. 14. DataPorts Communication Diagram

Each element of the transition couples (Ψ) is treated by linking the involved
components with a node (boxes in Fig. 7). The parts of the couple relative to
each of these components is put on the lines. Only the links between input and
output ports have been represented, for example the communication between an
input data port routing a correct message to the corresponding ouput data port.
The elements above the links represent the participating components. Here we
use again range operators as a syntactical shorthand (one link is used in place
of the N×N that would be used without it):

∀nbri ∈ [1..N ], ∀nbro ∈ [1..N ], ∀m : Msg . i = in.nbri, o = out.nbro |
i.correct !m : Msg TO o −→�−→ o.in ?m : Msg FROM i



136 C. Choppy, P. Poizat, and J.-C. Royer

When components at different levels are involved, for example to treat the com-
munication between an input control port enabling4 both a given input data port
and a given output data port, we adopt a structured communication scheme and
do not add more links on the communication nodes. We add the communication
information on parents (in the decomposition tree) of the concerned subcompo-
nents, here TransitNode (Fig. 15). The obtaining of the Korrigan specification
for DataPort from its diagram is straightforward (Fig. 16).

control.in
enable !i

FROM control.in
enable
data.[in,out].ii:[1..N]

TransitNode

ControlPorts DataPorts

routes: List[RouteNumber]
ports: List[PortNumber]
faults:List[Msg]

control data

N:Nat

Fig. 15. TransitNode Communication Diagram (partial)

COMPOSITION VIEW DataPorts
SPECIFICATION

imports
InputDataPort,
OutputDataPort
variables N : Natural

COMPOSITION ALONE

is
in.nbr[1..N] : InputDataPort
out.nbr[1..N] : OutputDataPort

with true,{
i:[1..N].(

in.i.enable from s:Server,
out.i.enable from s:Server),

(i:[1..N].o:[1..N].(
i.correct !m to o:OutputDataPort,
o.correct ?m from i:InputDataPort),

...}

Fig. 16. DataPorts in Korrigan

Since Korrigan treats in a unified way both integration composition and
concurrent composition, then the process and notations we have presented on
4 This enabling scheme is used to implement the creation of object since there is no

direct support for this in Korrigan.



Specification of Mixed Systems in Korrigan 137

concurrent communication apply on integrations too (i.e. for example, we would
have communication diagrams between an OutputDataPort and its MsgList).

This representation of the communication is expressive enough to describe
different kinds of communication, for example, both point-to-point communica-
tion (ptp) and broadcast communication (broadcast) in a client-server pattern
[20]. Such a pattern may be used in the recomposition step of our method.

5 Conclusions and Related Work

We defined in previous works a formal approach based on view structures for
the specification of mixed systems with both control, communications and data
types. The corresponding formal language, Korrigan, allows one to describe
systems in a structured and unifying way.

In order to make formal methods more used in the industrial world, we
agree with [3]: most important properties of specifications methods are not only
the underlying theoretical concepts but more pragmatics issues such as readabil-
ity, tractability, support for structuring, possibilities of visual aids and machine
support. Therefore, we have built a software environment, ASK [5], for the de-
velopment of our Korrigan specifications.

In this paper, we propose a semi-formal method with guidelines for the
development of mixed systems with Korrigan. Our method is supported by
a UML-inspired graphical notation. We suggest, when possible, to reuse the
UML notation, but we also present some proper extensions. Since our model
is component-based, we have an approach which is rather different from UML
on communications and concurrent aspects. Thus we also describe specific nota-
tions to define dynamic interfaces of components, communications patterns and
concurrency. Our method is here applied to develop both textual and graphical
specifications and illustrated on a transit node case-study.

Our concerns about methods and graphical notations for formal languages
are close to [24,6] ones. However, we think we can reuse UML notations, or partly
extend it using stereotypes, rather than defining new notations. Moreover, our
approach is complementary to the theoretical approaches that try to formalize
the UML. Our notations are also more expressive and abstract than [24] as far
as communication issues are concerned.

Korrigan and UML-RT [25] partly address the same issues : architectural
design, dynamic components and reusability. However, UML-RT is at the design
level whereas Korrigan is rather concerned about (formal) specification issues.
There are also some other difference, mainly at the communication level, but the
major one is that, to the contrary of UML-RT, Korrigan provides a uniform
way to specify both datatypes and behaviours.

Our notation for the glue between communicating components may be also
related to [10]. The main differences are that our glue is more expressive than
LOTOS synchronizations, and that we have a more structured organization of
communication patterns.



138 C. Choppy, P. Poizat, and J.-C. Royer

We are now working on validation and verification procedures for our Kor-
rigan specifications. Due to the use of STS, i.e. Symbolic Transition Systems,
such procedures have to be adapted [15,26]. We also investigate the automatic
translation of Korrigan specifications into PVS following the [1] methodology.

References

1. Michel Allemand. Verification of properties involving logical and physical tim-
ing features. In Génie Logiciel & Ingénierie de Systèmes & leurs Applications,
ICSSEA’2000, 2000.

2. Pascal André and Jean-Claude Royer. A First Algebraic Approach to Heteroge-
neous Software Systems. 14th International Workshop on Algebraic Development
Techniques (WADT’99), Bonas, France, 1999.

3. M. Broy. Specification and top down design of distributed systems. In H. Ehrig,
C. Floyd, M. Nivat, and J. Thatcher, editors, TAPSOFT’85, volume 185 of Lecture
Notes in Computer Science, pages 4–28. Springer-Verlag, 1985.

4. Christine Choppy, Pascal Poizat, and Jean-Claude Royer. A Global Semantics for
Views. In T. Rus, editor, International Conference on Algebraic Methodology And
Software Technology (AMAST’2000), volume 1816 of Lecture Notes in Computer
Science, pages 165–180. Springer-Verlag, 2000.

5. Christine Choppy, Pascal Poizat, and Jean-Claude Royer. The Korrigan Envi-
ronment. Journal of Universal Computer Science, 2001. Special issue: Tools for
System Design and Verification, ISSN: 0948-6968. to appear.

6. Eva Coscia and Gianna Reggio. JTN: A Java-Targeted Graphic Formal Notation
for Reactive and Concurrent Systems. In Jean-Pierre Finance, editor, Fundamental
Approaches to Software Engineering (FASE’99), volume 1577 of Lecture Notes in
Computer Science, pages 77–97. Springer-Verlag, 1999.

7. Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL : Formal Object-oriented
Language for Communicating Systems. Prentice-Hall, 1997.

8. C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, Proc. 2nd IFIP Workshop on Formal Methods for Open Object-
Based Distributed Systems (FMOODS), pages 423–438, Canterbury, UK, 1997.
Chapman & Hall.

9. R. France and B. Rumpe, editors. UML’99 – The Unified Modelling Language,
volume 1723 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

10. Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition Opera-
tor for Process Algebras. In Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, and Protocol
Specification, Testing, and Verification (FORTE/PSTV’99), 1999.

11. Gianna Reggio and Egidio Astesiano. An extension of UML for modelling the non
purely reactive behaviour of active objects. Semi-Formal and Formal Specification
Techniques for Software Systems, Dagstuhl Seminar 00411, Report No. 288, H.
Ehrig, G. Engels, F. Orejas, M. Wirsing, October 2000.

12. Wolfgang Grieskamp, Maritta Heisel, and Heiko Dörr. Specifying Embedded Sys-
tems with Statecharts and Z: An Agenda for Cyclic Software Components. In
Egidio Astesiano, editor, FASE’98, volume 1382 of Lecture Notes in Computer
Science, pages 88–106. Springer-Verlag, 1998.

13. David Harel. On Visual Formalisms. Communications of the ACM, 31(5):514–530,
1988.



Specification of Mixed Systems in Korrigan 139

14. Maritta Heisel. Agendas – A Concept to Guide Software Development Activities.
In R. N. Horspool, editor, Systems Implementation 2000, pages 19–32. Chapman
& Hall, 1998.

15. M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138(2):353–389, 1995.

16. Bogumila Hnatkowska and Huzar Zbigniew. Extending the UML with a Multicast
Synchronisation. In T. Clark, editor, Proceedings of the third Rigorous Object-
Oriented Methods Workshop (ROOM), BCS eWics, ISBN: 1-902505-38-7, 2000.

17. ISO/IEC. LOTOS: A Formal Description Technique based on the Temporal Or-
dering of Observational Behaviour. ISO/IEC 8807, International Organization for
Standardization, 1989.

18. Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, 1994.

19. José Meseguer. Rewriting logic as a semantic framework for concurrency: a progress
report. In CONCUR’96 : Concurrency Theory, volume 1119 of Lecture Notes in
Computer Science, pages 331–372, Pisa, Italy, 1996.

20. Pascal Poizat. Korrigan: a Formalism and a Method for the Structured Formal
Specification of Mixed Systems. PhD thesis, Institut de Recherche en Informatique
de Nantes, Université de Nantes, December 2000. in French.

21. Pascal Poizat, Christine Choppy, and Jean-Claude Royer. From Informal Require-
ments to COOP: a Concurrent Automata Approach. In J.M. Wing, J. Woodcock,
and J. Davies, editors, FM’99 - Formal Methods, World Congress on Formal Meth-
ods in the Development of Computing Systems, volume 1709 of Lecture Notes in
Computer Science, pages 939–962, Toulouse, France, 1999. Springer-Verlag.

22. G. Reggio, M. Cerioli, and E. Astesiano. An Algebraic Semantics of UML Sup-
porting its Multiview Approach. In D. Heylen, A. Nijholt, and G. Scollo, editors,
Twente Workshop on Language Technology, AMiLP 2000, 2000.

23. G. Reggio and R. Wieringa. Thirty one Problems in the Semantics of UML 1.3
Dynamics. In OOPSLA’99 workshop ”Rigorous Modelling and Analysis of the
UML: Challenges and Limitations”, 1999.

24. Gianna Reggio and Mauro Larosa. A graphic notation for formal specifications
of dynamic systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Formal
Methods Europe (FME’97), volume 1313 of Lecture Notes in Computer Science,
pages 40–61. Springer-Verlag, 1997.

25. Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex Real-Time
Systems. Technical report, Rational Software Corp., 1998.

26. Carron Shankland, Muffy Thomas, and Ed Brinksma. Symbolic Bisimulation for
Full LOTOS. In Algebraic Methodology and Software Technology (AMAST’97), vol-
ume 1349 of Lecture Notes in Computer Science, pages 479–493. Springer-Verlag,
1997.

27. Graeme Smith. A Semantic Integration of Object-Z and CSP for the Specification
of Concurrent Systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Formal
Methods Europe (FME’97), volume 1313 of Lecture Notes in Computer Science,
pages 62–81. Springer-Verlag, 1997.

28. Rational Software. Unified Modeling Language, Version 1.3. Technical report,
Rational Software Corp., http://www.rational.com/uml, June 1999.

29. Kenneth J. Turner, editor. Using Formal Description Techniques, An introduction
to Estelle, LOTOS and SDL. Wiley, 1993.

30. C. A. Vissers, G. Scollo, M. Van Sinderen, and E. Brinksma. Specification Styles
in Distributed Systems Design and Verification. Theoretical Computer Science,
89(1):179–206, 1991.


	Introduction
	The Transit Node Case Study
	textsc {Korrigan}futurelet next : A Formalism for Mixed Specification
	textsc {Korrigan}futurelet next and the View Model
	A Method for the Specification of Mixed Components

	A UML-Inspired Graphical Notation
	Interface and Composition Diagrams
	Behavioural Diagrams
	Communication Diagrams

	Conclusions and Related Work

