Library-Based Design and Consistency Checking
of System-Level Industrial Test Cases

Oliver Niese!, Bernhard Steffen?, Tiziana Margaria®, Andreas Hagerer!,

Georg Brune?, and Hans-Dieter Ide?

! METAFrame Technologies GmbH, Dortmund, Germany
{ONiese, TMargaria, AHagerer}@METAFrame.de
2 Chair of Programming Systems, University of Dortmund, Germany
Steffen@cs.uni-dortmund.de
3 Siemens AG, Witten
{Georg.Brune, Hans-Dieter.Ide}@wit.siemens.de

Abstract. In this paper we present a new coarse grain approach to auto-
mated integrated (functional) testing, which combines three paradigms:
library-based test design, meaning construction of test graphs by combi-
nation of test case components on a coarse granular level, incremental
formalization, through successive enrichment of a special-purpose envi-
ronment for application-specific test development and execution, and
library-based consistency checking, allowing continuous verification of
application- and aspect-specific properties by means of model checking.
These features and their impact for the test process and the test engineers
are illustrated along an industrial application: an automated integrated
testing environment for CTI-Systems.

1 Introduction

The increasing complexity of today’s testing scenarios for telephony systems
demands for an integrated, open and flexible approach to support the manage-
ment of the overall test process, i.e. specification of tests, execution of tests and
analysis of test results. Furthermore, systems under test (SUT) become com-
posite (e.g. including Computer Telephony Integrated (CTI) platform aspects),
embedded (due to hardware/software codesign practices), reactive, and run on
distributed architectures (e.g. client/server architectures). As a consequence, it
becomes increasingly unrealistic to restrict the consideration of the testing ac-
tivities to single units of the systems, since complex subsystems affect each other
and require scalable, integrated test methodologies.

The requirements discussed in this paper exceed the capabilities of today’s
testing tools. To our knowledge there exist neither commercial nor academic
tools providing comprehensive support for the whole system-level test process.
In particular, most research on test automation for telecommunication systems
concentrates on the generation of test cases and test suites on the basis of a
formal model of the system: academic tools, like TORX [22], TGV [2], Autolink
[13], and commercial ones like Telelogic Tau [2I] presuppose the existence of

H. Hussmann (Ed.): FASE 2001, LNCS 2029, pp. 233-248] 2001.
© Springer-Verlag Berlin Heidelberg 2001



234 O. Niese et al.

fine-granular system models in terms of either automata or SDL descriptions,
and aim at supporting the generation of corresponding test cases and test suites.
This approach failed to enter practice in the scenario we are considering here,
because it did not fit the current test design practice, in particular because there
does not exist any fine granular formal model of the involved systems.

Therefore in our approach we aim at a formal methods-controlled,
component-based test design on top of a library of elementary but intuitively un-
derstandable test case fragments. This establishes a coarse-granular ‘meta-level’
on which

— test engineers are used to think,

— test cases and test suites can be easily composed,

— test scenarios can be configured and initialized,

— critical consistency requirements including version compatibility and frame
conditions for executability are easily formulated (see Section B)), and

— consistency is fully automatically enforced via model checking and error di-
agnosis.

Already after a few months of cooperation this coarse-granular test manage-
ment support was successfully put into practice, drastically strengthening the
pre-existing test environment. We are not aware of any other test environment
systematically addressing the needs of coordinating the highly heterogeneous
test process, let alone on the basis of formal methods.

The paper is organized as follows: Sect. 4 describes our application domain,
system level testing of telephony systems, presents a concrete scenario, and in-
troduces the requirements to the corresponding integrated testing environment.
Sect. [3 presents our test coordinator tool, Sect. @ describes the formal founda-
tions of its design and analysis core, Sect. Bl shows the aspect-oriented character
of the automated verification by discussing concrete classes of constraints, and
Sect. [6] discusses the impact of the new environment on the test development
practice. Finally Sect. [ draws our conclusions.

2 System-Level Testing of Telephony Systems

As a typical example of an integrated CTI platform, Fig. [l shows a midrange
telephone switch and its environment. The switch is connected to the ISDN
telephone network or, more generally, to the public service telephone network
(PSTN), and acts as a “normal” telephone switch to the phones. Additionally,
it communicates directly via a LAN or indirectly via an application server with
CTTI applications that are executed on PCs. Like the phones, CTT applications
are active components: they may stimulate the switch (e.g. initiate calls), and
they react to stimuli sent by the switch (e.g. notify incoming calls). In a system
level test it is therefore necessary to investigate the interaction between such
subsystems.

Typically, each participating subsystem requires an individual test tool (see
Sect. B)). Thus in order to test systems composed of several independent sub-
systems that communicate with each other, one must be able to coordinate a



Library-Based Design and Consistency Checking 235

Application PC*s .- |

= ™

i ISDN \
Network S

Rt
Fig. 1. Example of an Integrated CTI Platform

heterogeneous set of test tools in a context of heterogenous platforms. This task
exceeds the capabilities of today’s commercial test management tools, which typ-
ically cover the needs of specific subsystems and of their immediate periphery.
The remainder of this section explains and structures the corresponding cen-
tral requirements for practice-oriented test management along the typical cor-
responding lifecycle: test case design, test organization, and test coordination.

2.1 Test Design Requirements

The design of test cases, i.e., specifying which control or inspection activities
must be performed on the SUT and in which order, should neither require pro-
gramming skills nor any knowledge of how to apply/use a specific test tool. In
particular, concrete requirements concern the following areas:

Definition: Test cases should be graphically specifiable at the level of SUT-
usage. A generalization by means of parameters should be supported.

Reuse: A macro mechanism should support the reuse of (partial) test cases.
This automatically supports a hierarchical design style.

Validation: Consistency checks of tests cases at design time should guide the
designer towards building (only) plausibile test cases.

Variation: Rule-based controlled as well as randomized parameter variation
should enhance the expressiveness of the test results.

2.2 Test Organization Requirements

The central organizational aspects of the test process are:

Version control: (at the physical persistency level) Beside the test cases them-
selves, many other files referenced and used in test cases have to be orga-
nized, e.g. configuration files and test documentation. All these files evolve



236 O. Niese et al.

throughout the test process. Therefore, it is important to capture the history
of changes and the dependencies between versions.

Configuration management: It is mandatory, especially when considering in-
tegrated tests, that the SUT is in a well defined state before a test run is
started. This is a non-trivial task because we treat complex systems, where
the initialization is a distributed problem, and the initialization of one com-
ponent typically affects the state of the others.

Structuring of tests: Tests must be structured to

— provide a simple mechanism to build test suites from test cases according
to a variety of criteria, e.g. regression test or feature test for a certain
test scenario.

— eliminate redundant test cases. This may dramatically reduce the whole
test execution time, which is important for the scenario of Fig.[Il, where
new versions of the switch software must continuously be validated
against the CTI applications.

2.3 Test Coordination Requirements

The whole test execution process must be supported, including:

Initialization: SUT components and test tools must be set into a well-defined
starting state. Fast reinitialisation in case of repetition of a test case must
be possible.

Execution: Distributed executed test tools of different abilities and different
interconnection variants must be controlled in a way that emphasizes on the
aspects control of tool activities and determination of state and state changes
of SUT components for verification purposes. Reactions of SUT components
on stimuli must be retrieved and evaluated. The evaluation results shall
control succeeding test case steps. Timing constraints must be taken into
account when stimulating a SUT component.

Reporting: Reporting shall record a test run and shall facilitate documentation
and tracking of defects by providing sufficent details. A characterization
of the SUT, i.e., versions of SUT components and of test tools, must be
documented. Result and data of each step of the test case must be logged.
The status of a test run must be summarized.

The next section describes how we attacked the requirements according to the
test coordination aspect: design and execution of functional tests. Other aspects,
like a sophisticated configuration management or the structuring of tests, are left
to a subsequent phase.

3 The Test Coordinator

The realization of an adequate management layer for an automated test envi-
ronment was attacked according to pragmatic criteria, of vital importance in an



Library-Based Design and Consistency Checking 237

Test Coordinator

CORBA-ORB

CORBA-ORB CORBA-ORB

e.g. Rational SQA Robot or

e.g. Hardware-Tracer Mercury Winrunner

@
System
Under

Test

Internal Communication

e.g Switch e.g. CTI-Application

Fig. 2. Architectural Overview of the Test Environment

industrial development environment: first of all, the test environment should of-
fer a viable execution environment ( Test Coordination Requirements), then scale
up to the required complexity (Test Organization Requirements), and also ease
the test design phase (Test Design Requirements).

Accordingly, we built on an existing general purpose environment for the
management of complex workflows, (METAFrame Technologies’ Agent Building
Center (ABC)) [18], which already encompasses most of the above mentioned fea-
tures in an application-independent way. This way we were able to demonstrate
in a short time the practical satisfiability of the kernel requirements concern-
ing test coordination and test organization. In fact the currently available Test
Coordinator (Fig. @), which constitutes the test management layer of our envi-
ronment, includes a specialization of the ABC for this application domain, i.e.
system level testing of telephony systems. Meanwhile, the test management has
already proved to be capable of coordinating the different control and inspection
activities of integrated system-level tests.

Figure 2l shows the general architecture of the Test Coordinator. The SUT is
composed of several subsystems, e.g. a telephone switch in cooperation with a



238 O. Niese et al.

CTI application. Each subsystem is controlled via its own test toold]. The test
tools have access to external interfaces (@), (@) as well as to some internal ones
(®). They are steered by the Test Coordinator. For more details concerning the
integration process of the test tools see [8].

Up to now, the effort in the project was mainly devoted to the support
of test design and to the handling of advanced coordination and organization
requirements.

3.1 ABC’s Enabling Characteristics

The following characteristics of the ABC proved to be of major importance,
due to the heterogeneous composition of the team (researchers, developers, and
prospective industrial users coming from different groups within Siemens, with
different focus on the project).

Behaviour-Oriented Development: In general, application development in the
ABC, which goes far beyond the domain of CTI applications [I8/17], consists
of behaviour-oriented combination of building blocks on a coarse granular level.
Building blocks are identified on a functional basis, understandable to appli-
cation experts, and usually encompass a number of ‘classical’ programming
units (be they procedures, classes, modules, or functions). They are organized
in application-specific collections (palettes). In contrast to (other) component-
based approaches, e.g., for object-oriented program development, ABC focusses
on the dynamic behaviour: (complex) functionalities are graphically stuck to-
gether to yield flow graph-like structures embodying the application behaviour
in terms of control. This graph structure is independent of the paradigm of the
underlying programming language. In particular, we view this flow-graph struc-
ture as a control-oriented coordination layer on top of data-oriented communi-
cation mechanisms enforced, e.g., via RMI, CORBA or (D)COM. Concretely,
the test management layer communicates with individual test tools by means of
CORBA [10]. Accordingly, the purely graphical combination of building blocks’
behaviours happens at a more abstract level.

Incremental Formalization: The successive enrichment of the application-specific
development environment is two-dimensional. Beside the library of application-
specific building blocks, which dynamically grows whenever new functionalities
are made available, ABC supports the dynamic growth of a hierarchically orga-
nized library of constraints, controlling and governing the adequate use of these
building blocks within application programs. This library is intended to grow
with the experience gained while using the environment, e.g., detected errors,
strengthened policies, and new building blocks may directly impose the addition
of constraints. It is the possible looseness of these constraints which makes the

! Test tools can be e.g. proprietary hardware tracer for testing the switch or GUI
test tools such as Rational SQA Robot [12] or Mercury Winrunner [7] for the test of
applications.



Library-Based Design and Consistency Checking 239

constraints highly reusable and intuitively understandable. Here we consciously
privilege understandability and practicality of the specification mechanisms over
their completeness.

Library-Based Consistency Checking: Throughout the behaviour-oriented devel-
opment process, ABC offers access to mechanisms for the verification of libraries
of constraints via model checking. The model checker individually checks hun-
dreds of typically very small and application- and purpose-specific constraints
over the flow graph structure. This allows concise and comprehensible diagnostic
information in the case of a constraint violation, in particular as the information
is given at the application rather than at the programming level.

Taken together, these characteristics of the basic tool were actually the real
enablers for the project results, in particular, as they provided a means to seam-
lessly coordinate the cooperation between ABC team, CTT expert, test designers,
and test engineers.

4 Domain Modelling

This section summarizes the effort for instantiating the ABC as required for the
CTT application. This mainly consists of the design of some application-specific
building blocks, and the formulation of the frame conditions which must be
enforced during test case design and test suite design.

4.1 Test Building Blocks

The ABC team, the CTI experts and the test designers define and also classify
the building blocks occurring in the testing experiments, typically according
to technical criteria like version or specific hardware or software requirements,
origin (where they were developed) and, here, most importantly, according to
their intent for the specific application area.

The resulting classification scheme is a simplified version of the taxonomies
used in [6] and [I7]. At this stage, the building blocks occurring in the test cases
are organized in palettes, accessible from the Test Coordinator’s GUI (see Fig[3]
left), which are the basis for the test designers to graphically construct test cases
by drag-and-drop. The test case design is completed by

— connecting the test blocks by edges, and
— configuring the internal parameters.

The resulting test graphs are directly executable for test purposes, and, at the
same time, they constitute the models for our verification machinery by means
of model checking. Figure [3] shows a typical test graph for illustration.

The palettes are thus central to build the models, and they constitute a
vocabulary for the constraint definition in terms of modal formulas. Typically, the
design of the classification scheme and of the constraints goes hand in hand with
the definition of aspect-specific views and filters: both are mutually supportive
means to an application specific structuring of the design process.



240 O. Niese et al.

File Edit Options Modes Windows Actions Help
e
hackWindsu
~
Jm_wmw@
-~
me File Options Clipboard
[~ Available SIB Classes: ——————
- . ,
' e GuiCamman Phone SimplyPhone
(it T ]
s Search
E“““"“‘ @ SubStr| . RegEwp | . Ewect
et M Al Classes | M Result in Clipboard |
checkégeml_abel_Devlce
s 7]
o i
mwglExmlmlCaH_A
checkConnectState checkDisplay
Jastault
heckD\sFlay_A oy oy
s
‘m!m!m:mu checkLed digits
st
. fprihack LadArdDisplay
/ ‘ \ ofHaok onHaook
/pasua‘\edpammq.mm
ek Winoow_Posiproosssing
\\ i
et no_window
15mim|e%$med
Jostan
2
o
= =
[&] [1e e o [449 368

Fig. 3. A Test Graph and the Test Block Palettes

4.2 Models and Constraints

Formally, test graphs are modelled as flow graphs (see Fig. B), whose nodes
represent test blocks governing the stimulation of the SUT, and whose edges
represent branching conditions steering the flow of control.

Definition 1 (Test Model).
A test model is defined as a quadruple (S, Act, —, so) where

— S is the set of available test blocks,

— Act is the set of possible branching conditions,
— C S x Act x S is a set of transitions,

— Sq 18 the uniquely determined initial test block.

In ABC test models are subject to local and global constraints which, in con-
junction, offer a means to identify ‘critical’ patterns in the test graph already



Library-Based Design and Consistency Checking 241

during the early design phase. The classification of constraints into local and
global is important, since each kind requires a specific treatment. The on-line
verification during the design of a new test, however, captures both kinds of
constraints.

Local Constraints. Local constraints specify single test blocks in the context of
their immediate neighbours: they capture a test block’s branching potential as
well as its admissible subsequent parameterization. Their correctness is checked
by means of specific algorithms, which can be activated at need. The verification
of local constraints is invoked automatically during the verification process of
global properties.

Global Constraints: The Temporal Aspect. Global constraints allow users to spec-
ify causality, eventuality and other relationships between test blocks, which may
be necessary in order to guarantee frame conditions for e.g., executability and
version compatibility.

A test property is global if it does not only involve the immediate neighbour-
hood of a test block in the test modelﬁ, but also relations between test blocks
which may be arbitrarily distant and separated by arbitrarily heterogeneous
submodels (see Section [ for concrete examples).

The treatment of global properties is required in order to capture the essence
of the expertise of designers about do’s and don’ts of test creation, e.g. which
test blocks are incompatible, or which can or cannot occur before/after some
other test blocks. Such properties are rarely straightforward, sometimes they
are documented as exceptions in thick user manuals, but more often they are
not documented at all, and have been discovered at a hard price as bugs of
previously developed tests. They are perfect examples of the kind of precious
domain-specific knowledge that expert designers accumulate over the years, and
which is therefore particularly worthwhile to include in the test design environ-
ment for successive automatic reuse.

In the presented environment such properties are gathered as SLTL formu-
las (see below) in Constraint Libraries (see Fig. H] right), which can be easily
updated and which are automatically accessed by our model checker during the
verification.

Definition 2 (SLTL).
The syntazx of Semantic Linear-time Temporal Logic (SLTL) is given in BNF
format by:

D= A|-D| (PAD) | <c> D | G(P) | (PUD)
where A represents the set of atomic propositions overS, and c a possible branch-
ing condition expressed as a propositional logic formula over Act.

2 The neighbourhood consists of the set of all the predecessors/successors of a test
block along all paths in the model.



242 O. Niese et al.

The SLTL formulas are interpreted over the set of all legal test sequences, i.e.
alternating sequences of test blocks and conditions which start and end with test
blocks. The semantics of SLTL formulas is now intuitively defined as follows$]

— A is satisfied by every test sequence whose first element (a test block)
satisfies the atomic proposition A. Atomic propositions capture local test
block specifications formulated as simple propositional logic formulas.

— Negation — and conjunction A are interpreted in the usual fashion.

— Next-time operator < > :
<c> @ is satisfied by all test sequences whose second element (the first
condition) satisfies ¢ and whose continuatior satisfies @. In particular,
<tt> @ is satisfied by every test sequence whose continuation satisfies ®.

— Generally operator G:
G () requires that @ is satisfied for every suffix.

— Until operator U:
(PUW) expresses that the property @ holds at all test blocks of the sequence,
until a position is reached where the corresponding continuation satisfies the
property ¥. Note that @UW¥ guarantees that the property ¥ holds eventually
(strong until).

The definitions of continuation and suffix may seem complicated at first. How-
ever, thinking in terms of paths within a flow graph clarifies the situation: a
subpath always starts with a node (a test block) again (see also Fig. ().

The interpretation of the logic over test models is defined path-wise: a test
model satisfies a SLTL formula if all its paths do.

The introduction of derived operators supports a modular and intuitive
formulation of complex properties. Convenient are the dual operators:

Disjunction: @ V¥ =g4 = (=P A )
Eventually: F(®) =4 -~G(-®) = (&t U P)

5 Typical Constraints

This section summarizes some typical constraints in order to illustrate the style
and common patterns in temporal constraint specification for test cases. Techni-
cally, the following examples comprise modalities and examples for constraints
written in our first-order extension of SLTL [3]. From the application point of
view, we distinguish classes of constraints concerning different aspects of the ap-
plication domain, which in particular differ in their scoping, i.e. not necessarily
every test case must fulfill all constraints because it depends on the test purpose,
which constraints are bound to the test case, see Sect. [@.

3 A formal definition of the semantics, complete with taxonomies, can be found in [17].
4 This continuation is simply the test sequence starting from the second test block.



Library-Based Design and Consistency Checking 243

:he:kWindow
s

WIHHDW/TIELWWUDW
I'q
pressHookOf :/Q
default|
dialMumber :/Q

default|

EhEElesplay

S
passed/ failed
I'4

23

passedi ailEW

UﬂHUUk

default]

pressHookOn {’Q

default]

Fig. 4. Model Checking a Test Case

5.1 Legal Test Cases

This constraint class defines the characteristics of a correct test case, indepen-
dently of any particular SUT and test purpose. Specifically, testing implies an
evaluation of the runs wrt. expected observations done through verdicts. Precon-
dition for automated testing is the presence of evaluation points along each path
in the test graph. Additionally, to enable an automated evaluation of results,
verdict points should be disposed in a nonambiguous and noncontradictory way
along each path. To be expressive enough, a test graph should also foresee both
possible verdicts. This is captured as follows:

— ‘Every test run, i.e. every path in the test graph, must at least encounter
passed or failed.” This constraint expresses the property that every possible

path in the test graph rates the execution.

start = F (passed V failed)



244 O. Niese et al.

— ‘Every test graph must contain at least one path which encounters passed.’
This constraint captures the intuition that every test graph must provide the
possibility to exit successfully, i.e., with verdict passed. Since we here con-
sider linear time logic, in this paper we must express this property indirectly
by disprovinﬂ

start = G (— passed)

— ‘Once a verdict is assigned it cannot be changed.” This constraint ensures
that verdict points should be disposed in a nonambiguous and noncontradic-
tory way along each path, where

passed V failed = < ¢t > G (—passed V —failed)

Usually, such constraints are not explicitly formulated anywhere, since they are
mostly obvious for test engineers. However, being able to formulate them in an
automatically verifiable way changes this situation, because it is no longer a
matter of mere understanding but of a drastically reduced search effort.

5.2 POTS Test Cases

This constraint class defines the characteristics of correct functioning of Plain
Old Telephone Services (POTS), which build the basis of any CTI application
behaviour. This constraint class is still very general, and in practice relevant
for each specific test scenario we consider. In the following, we consider some
constraints explaining the end-user level behaviour of telephones:

— ‘Digits test blocks are only allowed to appear after a corresponding offHook
test block’, making sure that the phone is always properly initialized.

Vn. start = (—digits(n) U offHook(n) )

— ‘Every offHook must be followed by an onHook for this device’.

Vn. offHook(n) = F (onHook(n))

— ‘An onHook can only be executed when an offHook was initiated for this
device before’.

Vn. start = (—onHook(n) U offHook(n) )

In fact Fig. [4 demonstrates a model checker-produced counterexample for
the second property in terms of a violating path.

Other constraints of this class concern the different signalling and commu-
nication channels of a modern phone with an end user: signalling via tones,

> Our model checker actually also covers the full mu-calculus and could therefore
address a direct formulation of this property.



Library-Based Design and Consistency Checking 245

messaging via display, optic signalling via LEDs, vibration alarm. They must all
convey correct and consistent information, and possible degradation of service
in exceptional cases must respect consistency and follow a set of well-defined
precedence rules. For example, tones have highest priority, and in case of further
urgent signalling a display message may be suppressed but not overtaken.

Many other, somewhat more technical, constraints arise as soon as we con-
sider also the switch side of the system. They concern, e.g.:

— details of the communication protocols which regulates the communication
between the switch and peripherals (here simple telephones),

— the specific kind (analog, digital) of the protocol (e.g. ISDN, X25....)

— the layer in the protocol stack

— variations of the protocol implementation specific to the vendor (here, Sie-
mens), maybe even specific to single products or product lines.

One sees immediately that manageable organization of the constraints is a
key characteristic of a practicable solution.

5.3 Service Specific Test Cases

Modern midrange telephone systems for private use or in small businesses al-
ready include an amazing number of additional services in addition to POTS.
For example: signalling of an additional incoming call (a feature known as Call
Waiting), for ISDN systems the display of the caller’s number for incoming calls
(Calling Number Delivery), conference calls (Three Way Calling), forwarding
to other single or groups of numbers (Call Forwarding), embedded answering
machine functionality (Voice Mail), and many more.

Testing such a telephone system means evaluating the correct behaviour of
a set of phones in the context of one or more of those activated features, which
can be again described as a collection of sets of constraints [415].

5.4 SUT Specific Test Cases

Considering concrete CTI settings like the one described in Fig. 2] we addition-
ally need constraints about the correct initialization and functioning

— of the single units of the SUT (e.g. single CTT applications, or the switch),
— of the corresponding test tools,
— and of their interplay.

To give an idea of the complexity of the testing scenarios considered in prac-
tice, the concrete application already investigated in depth includes settings with
a switch, up to eight phones of different nature, a complex CTI application with
a server PC and a client PC serving several end-users, a running application
suite, consisting of five programs, where the phones and the PC clients interact,
and two test tools. The scenario is described in more detail in [9].



246 O. Niese et al.

6 Test Suite Development in the Integrated Testing
Environment

The resulting overall lifecycle for test development using the ABC-based Test
Coordinator is two-dimensional: both the application and the environment can
grow and be enriched during the development process.

6.1 Test Case and Test Suite Development

Based on libraries of test blocks and constraints, an initial test graph is graphi-
cally constructed via drag-and-drop from the test block palette and subsequently
validated either via graph tracing or under model checking control. In discussions
with test engineers and test designers it turned out that only very few simple
patterns of constraints are required in order to express most of the desired prop-
erties. Thus, end users of the testing environment should be able to input their
own constraints on the basis of very few corresponding templates without re-
quiting the help of experts in temporal logic. Test suites are then composed of
suitable sets of test cases to cover a certain application.

In the environment, distinct Constraint Libraries concern different aspects of
the application: Figure ] on the right, shows that the generic test library (ite)
and the POTS libraries (phone) are currently loaded, and the specific constraints
from those libraries have been selected for checking.

Typically, a test graph is built and modified by test designers in an aspect-
driven fashion: the testing expert chooses one or more constraints of interest,
expressing single aspects of the test case under construction, checks online the
correctness of the current test graph and modifies it in case of mistakes. This
cycle is iterated until all relevant aspects have been treated. Due to the on-
line verification with the model checker, constraint violations are immediately
detected.

6.2 Strengthening the Testing Environment

The test graph and test suite development is superposed by an orthogonal pro-
cess of incremental strengthening of the application-specific environment: this
happens by successively adding further test blocks and consistency constraints.
Both strengthenings proceed naturally, on demand, along the evolution of needs.

Strengthening the Model. Entire new palettes of test blocks may turn out to
become necessary when the environment or the application grow, e.g. to accom-
modate new test tools or new SUT’s (e.g., peripherals to the switch, mobile
phones, applications, ...). Sometimes new single test blocks may also be needed
e.g. when new releases of subsystems modify or extend their functionality.

New test blocks are also defined for the purpose of better test organization
(when it becomes clear that certain test graph fragments have a high potential
for reuse). The latter situation is supported by ABC’s macro facility [19], which



Library-Based Design and Consistency Checking 247

essentially allows test designers to encapsulate (fragments of) test graphs as
single, reusable test blocks. In the further development process, these blocks can
be used just as ‘ordinary’ test blocks as shown in Fig. Bl (left): the test block
marked with ‘M’ contains the full subgraph for Led and Display checks.

Strengthening the Constraints. New constraints naturally arise when considering
single new aspects of the current systems, and new Constraint Libraries when
considering new applications or ways of interactions. Here we use SLTL con-
straints to describe in an abstract and loose way single aspects of the behaviour
of a complex, distributed, heterogeneous system, which we can access only in a
blackbox or at best graybox fashion. This looseness is essential as most of the
hardware is sealed, and most of the software is third party.

7 Conclusions

We have presented a new coarse grain approach to automated integrated testing,
which combines library-based test design, incremental formalization, and library-
based consistency checking via model checking. The impact of these features for
the overall test process has been illustrated along an industrial application: an
automated integrated testing environment for CTI-Systems. In fact, the gentle
entry into practice due to incremental formalization was a ‘conditio sine qua non’
for the acceptance of the environment, because there has been some negative
experience with formal methods in the past. The main reason for the failure of
the prior approaches was their need of a full (formal) description of the SUT,
which does not exists. Together with the early prototyping ability of the ABC,
which allowed us to present a small running application within a couple of weeks,
this won overall confidence for a long-term cooperation. Now, nine months after
the first meeting, a prototype installation is already used by test engineers in
Siemens’ test laboratories.

We are convinced that our system will significantly reduce the testing effort,
as already the untrained use of the only partially instantiated integrated test
environment (ITE) led to noticeable reduction of the originally manual testing
time. We are currently enforcing both training of the testers on the ITE, and
refined instantiation with more test blocks, version information, and configura-
tion constraints. This does not require any changes on the ITE itself, and we
are optimistic that we will be able to give evidence in the very near future that
these improvements indeed dramatically strengthen the impact of the ITE. Gen-
eralizations of the currently considered functional tests to other forms of testing
like performance tests and stress tests are also possible, but require more effort
and are planned for a successive project phase.

References

1. V. Braun, T. Margaria, B. Steffen, H. Yoo: Automatic Error Location for IN Service
Definition, Proc. AIN’97, 2™¢ Int. Workshop on Advanced Intelligent Networks,
Cesena, 1997.



248

2.

10.
11.

12.
13.

14.
15.
16.

17.

18.

19.

20.

21.
22.

O. Niese et al.

J.-C. Fernandez, C. Jard, T. Jéron and C. Viho: An Ezperiment in Automatic
Generation of Test Suites for Protocols with Verification Technology, Science of
Computer Programming, 29, 1997.

. J. Hofmann: Program Dependent Abstract Interpretation, Diplomarbeit, Fakultét

fiir Mathematik und Informatik, Universitat Passau, August 1997.

. B. Jonsson, T. Margaria, G. Naeser, J. Nystrom, B. Steffen: On Modelling Feature

Interactions in Telecommunications, Proc. of Nordic Workshop on Programming
Theory, eds. B. Victor and W. Yi, 1999.

. B. Jonsson, T. Margaria, G. Naeser, J. Nystrom, B. Steffen: Incremental Require-

ments Specification of Evolving Systems, Feature Interactions in Telecommunica-
tions and Software Systems VI, eds. M. Calder and E. Magill, ISO Press, 2000.

. T. Margaria, B. Steffen: Backtracking-free Design Planning by Automatic Synthesis

in METAFrame Proc. FASE’98, Int. Conf. on Fundamental Aspects of Software
Engineering, Lisbon, Apr. 1998, LNCS 1382, pp.188-204, Springer Verlag.

. Mercury Interactive: Winrunner. http://www.winrunner.com

. O. Niese, T. Margaria, M. Nagelmann, B. Steffen, G. Brune, H.-D. Ide: An open

Environment for Automated Integrated Testing, 4" Int. Conf. on Software and
Internet Quality Week Europe (QWE’00), Brussels (Belgium), November 2000,
CD-ROM Proccedings, pp 584-593.

. O. Niese, M. Nagelmann, A. Hagerer, K. Strunck, W. Goerigk, A. Erochok, B.

Hammelmann: Demonstration of an Automated Integrated Testing Environment
for CTI Systems, Proc. FASE 2001, this volume. Genova (I), 2001.

Object Management Group: The Common Object Request Broker: Architecture and
Specification, Revision 2.3, Object Management Group, 1999.

The Raise Project homepage. http://dream.dai.ed.ac.uk/raise/

Rational: The Rational Suite description. http://www.rational.com/products.
M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe, Autolink - A Tool for Au-
tomatic and Semi-automatic Test Generation from SDL-Specifications, Technical
Report A-98-05, Medical Univ. of Liibeck, Germany, 1998.

ITU-T Recommendation Z.100, CCITT specification and description language, ’93.
Sun: Java Remote Method Invocation. http://java.sun.com/products/jdk/rmi.
B. Steffen, T. Margaria, A. Clalen, V. Braun: Incremental Formalization: a Key
to Industrial Success, in “Software: Concepts and Tools”, Vol.17(2), pp. 78-91,
Springer Verlag, July 1996.

B. Steffen, T. Margaria, V. Braun: The FElectronic Tool Integration Platform: Con-
cepts and Design Int. Journ. on Software Tools for Technology Transfer (STTT),
Vol. 1 N. 1+2, Springer Verlag, November 1997, pp. 9-30.

B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service De-
sign, In Correct System Design — Issues, Methods and Perspectives, LNCS 1710,
Springer Verlag, 1999, pp.390-415.

B. Steffen, T. Margaria, V. Braun, and N. Kalt: Hierarchical service definition,
Annual Review of Communication, Int. Engineering Consortium (IEC), Chicago
(USA), pages 847-856, 1997.

C. Stirling: Modal and Temporal Logics, In Handbook of Logics in Computer Sci-
ence, Vol. 2, pp. 478 — 551, Oxford Univ. Press, 1995.

Telelogic: Telelogic Tau. http://wwu.telelogic.com.

J. Tretmans and A. Belinfante: Automatic testing with formal methods, In Eu-
r70STAR’99: 7" European Int. Conference on Software Testing, Analysis & Review.
EuroStar Conferences, Galway, Ireland, November 8-12, 1999.



	Introduction
	System-Level Testing of Telephony Systems
	Test Design Requirements
	Test Organization Requirements
	Test Coordination Requirements

	The Test Coordinator
	{sf ABC}'s Enabling Characteristics

	Domain Modelling
	Test Building Blocks
	Models and Constraints

	Typical Constraints
	Legal Test Cases
	POTS Test Cases
	Service Specific Test Cases
	{it SUT} Specific Test Cases

	Test Suite Development in the Integrated Testing Environment
	Test Case and Test Suite Development
	Strengthening the Testing Environment

	Conclusions

