
Metamodelling and Conformance Checking with PVS

Richard F. Paige and Jonathan S. Ostroff

Department of Computer Science, York University,
Toronto, Ontario M3J 1P3, Canada. {paige,jonathan}@cs.yorku.ca

Abstract. A metamodel expresses the syntactic well-formedness constraints that
all models written using the notation of a modelling language must obey. We
formally capture the metamodel for an industrial-strength object-oriented mod-
elling language, BON, using the PVS specification language. We discuss how the
PVS system helped in debugging the metamodel, and show how to use the PVS
theorem prover for conformance checking of models against the metamodel. We
consider some of the benefits of using PVS’s specification language, and discuss
some lessons learned about formally specifying metamodels.

1 Introduction

Modelling languages such as UML [2], BON [7], and others have been used to capture
requirements, describe designs, and to document software systems. Such languages are
supported by tools, which aid in the construction of models, the generation of code from
models, and the reverse engineering of models from code.

A modelling language consists of two parts: a notation, used to write models; and
a metamodel, which expresses the syntactic well-formedness constraints that all valid
models written using the notation must obey [2]. Metamodels serve several purposes
that may be of interest to different modelling language users.

– Modellers: metamodels should be easy to understand by modellers. Thus, metamod-
els should be expressed so that their fundamental details can be easily explained to
modellers, without requiring them to understand much formalism.

– Tool Builders: metamodels provide specifications for tool builders who are con-
structing applications to support the modelling language. Thus, metamodels should
be precise and not open to misinterpretation.

– Modelling Language Designers: language designers have the responsibility to
ensure that metamodels are consistent. Thus, metamodels should be expressed in a
formalism so that automated reasoning about it can be carried out.

Different modelling language users have different goals, and therefore a metamodel
must possess a collection of different characteristics. Metamodels must be understand-
able, to assist in the use of the language and its supporting tools. They should be unam-
biguous and not open to misinterpretation. A metamodel should be expressed in a form
amenable to tool-based analysis, e.g., for consistency checking. And, to best deal with
complexity and issues of scale, a metamodel should be well-structured.

In this paper, we present a formal specification of the metamodel of the BON object-
oriented (OO) modelling language [7], written using the PVS specification language [3].

H. Hussmann (Ed.): FASE 2001, LNCS 2029, pp. 2–16, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Metamodelling and Conformance Checking with PVS 3

The PVS language has been designed for automated analysis, using the PVS system,
which provides a theorem prover and typechecker. We construct the formal specification
in two steps. We first specify the BON metamodel informally, using BON itself. In this
manner, we use BON’s structuring facilities to help understand the key abstractions used
in the metamodel and their constraints, before writing a formal specification. From the
BON version of the metamodel, we then construct a set of PVS theories that capture the
metamodel. The PVS theories can then be used, in conjunction with the PVS system, to
analyze and answer questions about the metamodel.

The specific contributions of this paper are as follows.

1. A formal specification of the syntactic well-formedness constraints for BON in
the PVS language. To our knowledge, this is the first formal specification of the
full metamodel of an OO modelling language in a form that is also amenable to
automated analysis.

2. A description of how the PVS language can be used for metamodelling, and how
the PVS system can be used to help debug and verify the metamodel.

3. Examples of how the PVS system can be used to reason about the metamodel. As a
specific example, we show how to prove that BON models satisfy the metamodel.

2 An Overview of BON

BON is an OO method possessing a recommended process as well as a graphical language
for specifying object-oriented systems. The fundamental construct in the BON language
is the class. A class has a name, an optional class invariant, and zero or more features. A
feature may be a query – which returns a value and does not change the system state –
or a command, which does change system state but returns nothing. Fig. 1(a) contains
an example of a BON model for the interface of a class CITIZEN . Features are in the
middle section of the diagram (there may be an arbitrary number of feature sections, each
annotated with names of classes that may access the features). Features may optionally
have contracts, written in the BON assertion language, in a pre- and postcondition form.
In postconditions, the keyword old can be used to refer to the value of an expression
when the feature was called. Similarly, the implicitly declared variable Result can be
used to constrain the value returned by a query. An optional class invariant is at the
bottom of the diagram. The class invariant is an assertion that must be true whenever
an instance of the class is used by another object. In the invariant, Current refers to the
current object.

Classes and features can be tagged with a limited set of stereotypes. The root class
contains a feature from which computation begins. A class name with a * next to it
indicates the class is deferred, i.e., some features are unimplemented and thus the class
cannot be instantiated; a + next to a class name indicates the class can be instantiated. A
++ next to a feature name indicates the feature is redefined, and its behaviour is changed
from behaviour inherited from a parent.

In Fig. 1(a), class CITIZEN has seven queries and one command. For example,
single is a BOOLEAN query while divorce is a parameterless command that changes
the state of an object. SET [G] is a generic predefined class with generic parameter G.
SET [CITIZEN] thus denotes a set of objects each of type CITIZEN .

4 R.F. Paige and J.S. Ostroff

spouse.spouse=Current;

p=Current

spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN

Result <-> (spouse=Void)!

divorce

? single

name, sex, age : VALUE

not

single and (old spouse).single

single or
parents.count=2;

children" c $ p c.parents

!

CITIZEN

invariant

∈∈

(a) Citizen interface

SUPPLIER2

SUPPLIER1

CHILD

ANCESTOR

(b) BON relationships

Fig. 1. BON syntax for interfaces and relationships.

BON models usually consist of classes organized in clusters (drawn as dashed
rounded rectangles – see Section 3), which interact via two kinds of relationships.

– Inheritance: Inheritance defines a subtype relationship between child and one or
more parents. The inheritance relationship is drawn between classes CHILD and
ANCESTOR in Fig. 1(b), with the arrow directed from the child to the parent class.
In this figure, classes have been drawn in their compressed form, as ellipses, with
interface details hidden.

– Client-supplier: there are two client-supplier relationships, association and aggre-
gation. Both relationships are directed from a client class to a supplier class. With
association the client class has a reference to an object of the supplier class. With
aggregation the client class contains an object of the supplier class. The aggregation
relationship is drawn between classes CHILD and SUPPLIER2 in Fig. 1(b), whereas
an association is drawn from ANCESTOR to class SUPPLIER1.

3 BON Specification of the Metamodel

We now present an informal specification of the BON metamodel, written in BON itself.
This description is aimed at promoting an understanding of the fundamental abstractions
and relationships that BON models use. We use BON to informally capture the meta-
model, and the BON description will be used to help produce a formal specification of
the metamodel in the PVS language.

Fig. 2 contains an abstract depiction of the BON metamodel. BON models are in-
stances of the class MODEL. Each model has a set of abstractions. The two clusters,
representing abstractions and relationships, will be detailed shortly.

Metamodelling and Conformance Checking with PVS 5

ABSTRACTIONS RELATIONSHIPS

MODEL
abs: SET[..]

Fig. 2. The BON metamodel, abstract architecture.

The class MODEL possesses a number of features and invariant clauses that will
be used to capture the well-formedness constraints of BON models. These features are
depicted in Fig. 3, which shows the interface for MODEL. We will not provide details
of the individual clauses of the class invariant of MODEL (these can be found in [5]).

invariant

disjoint_clusters;

unique_abstraction_names;
no_bidir_agg;
objects_typed;
parameters_named;
labels_unique;

covariant(f1,f2:FEATURE):BOOLEAN
closure:SET[INHERITANCE]

inh_wo_cycles;

invariant_strengthened;
unique_root_class;
single_inst_of_root;

rels: SET[RELATIONSHIP]
NONE

MODEL

primitives
model_covariance;

Fig. 3. Interface of class MODEL.

3.1 The Relationships Cluster

The relationships cluster describes the four basic BON relationships, as well as con-
straints on their use. The details of the cluster are shown in Fig. 4.

There are several important things to observe about Fig. 4.

– Type redefinition: BON allows types of features to be covariantly redefined [1]
when they are inherited: a type in the signature of a feature can be replaced with a
subtype. In class RELATIONSHIP, the attributes source and target are given types
ABSTRACTION . In INHERITANCE and CLIENT SUPPLIER, the types are rede-
fined to STATIC ABSTRACTION .

– Aggregation: an aggregation relationship cannot target its own source; this is pre-
cisely captured by the invariant on AGGREGATION . Associations, however, may
target their source because they depict reference relationships.

– Inheritance: a class cannot inherit from itself. This is captured by the invariant of
class INHERITANCE.

6 R.F. Paige and J.S. Ostroff

STATIC_RELATIONSHIP*

CLIENT_SUPPLIER*

label: STRINGinvariant
source /= target

invariant
source /= target

source++, target++: STATIC_ABSTRACTION source++, target++: DYNAMIC_ABSTRACTION

RELATIONSHIP*

source, target: ABSTRACTION

MESSAGE+

INHERITANCE+

AGGREGATION+ ASSOCIATION+

Fig. 4. The relationships cluster.

3.2 The Abstractions Cluster

The abstractions cluster describes the abstractions that may appear in a BON model. It
is depicted in Fig. 5. Details of the invariant clauses of individual classes may be found
in [5]; PVS specifications of several clauses will be presented in Section 4.

The features cluster of Fig. 5 will be described in Section 3.3. It contains the con-
straints relevant to features of classes. In particular, this cluster introduces the class
FEATURE to represent the abstract notion of a feature belonging to a class.

ABSTRACTION is a deferred class: instances of ABSTRACTIONs cannot be created.
Classification is used to separate all abstractions into two subtypes: static and dynamic
abstractions. Static abstractions are CLASSes and CLUSTERs. Dynamic abstractions are
OBJECTs and OBJECT CLUSTERs. Clusters may contain other abstractions according
to their type, i.e., static clusters contain only static abstractions.

3.3 The Features Cluster

The features cluster describes the notion of a feature that is possessed by a class. Features
have optional parameters, an optional precondition and postcondition, and an optional
frame. The pre- and postcondition are assertions; the cluster that metamodels assertions
can be found in [5]. Query calls may appear in assertions; the set of query calls that appear
in an assertion must be modelled in order to ensure that the calls are valid according to
the export policy of a class. Each feature will thus have a list of accessors, which are
classes that may use the feature as a client. A call consists of an entity (the target of the
call), a feature, and optional arguments. The frame is a set of parameterless queries that
the feature may modify. Fig. 6 depicts the cluster.

4 PVS Specification of the Metamodel

In this section, we present a formal specification of the BON metamodel in the PVS
specification language. We attempt to parallel the structure of the BON metamodel in

Metamodelling and Conformance Checking with PVS 7

contains+:SET[ABSTRACTION]

contains+:SET[ABSTRACTION]class:CLASS

contains+:
SET[ABSTRACTION]

invariant
invariant

contents:SET[..]

DYNAMIC_ABSTRACTION*

CLUSTER+

OBJECT+ OBJECT_CLUSTER+

ABSTRACTION*

invariant
source_is_current

STATIC_ABSTRACTION* contents:SET[..]

rels++:SET[MESSAGE]

contains*:SET[ABSTRACTION]
rels: SET[RELATIONSHIP]

rels++:SET[STATIC_RELATIONSHIP]

no_self_containment
no_self_containment

FEATURESclient_features,
features: SET[..]

add_client_features;
calls_are_queries;
no_name_clashes;
is_deferred_class;
deferred /= root;

deferred /= effective;
valid_class_inv;

feature_unique_names;
valid_static_rels;

invariant
all_names:SET[STRING]
redefined:SET[FEATURE]

external, root : BOOLEAN
deferred, effective, persistent,
super(f:FEATURE):FEATURE
parents: SET[CLASS]
rename_class
renamings:SET[RENAMING]
calls_in_inv:SET[CALL]

ASSERTION
invariant: DOUBLE_STATE_
contains+:SET[ABSTRACTION]

valid_pre_calls;

CLASS+

valid_post_calls;
valid_frames;

inv_consistency;
contract_consistency;

Fig. 5. The abstractions cluster.

PARAMETER

name: STRING

type: CLASS

parameters:LIST[..]

calls_in_post: SET[..]
calls_in_pre,

args:LIST[..]

FEATURE*

pre: SINGLE_STATE_ASSERTION
post: DOUBLE_STATE_ASSERTION

o: OBJECT
name: STRING

e

deferred /= effective;
parameters_unique;

calls_are_queries;

invariant
frame:SET[QUERY]
rename(s:STRING)
accessors: SET[CLASS]
name: STRING

deferred, effective,
redefined: BOOLEAN

DIRECT_CALL+ CHAINED_CALL+

isvalid+(c:CLASS):BOOLEAN isvalid+(c:CLASS):BOOLEAN

v

ENTITY

COMMAND+
Result: CLASS
no_contract:BOOLEAN

attribute_or_function
invariant

QUERY+

f:FEATURE
isvalid*(c:CLASS):BOOLEAN

invariant

CALL*

feature_exists

Fig. 6. BON metamodel, features cluster.

8 R.F. Paige and J.S. Ostroff

the PVS language. We present the PVS version of the metamodel selectively, and attempt
to give the flavour of using PVS for this purpose (the full metamodel can be found in
[5]).

4.1 Theory of Abstractions

A BON model can contain a number of abstractions, specifically classes, clusters, objects,
and clusters of objects. To express this in PVS, we introduce a new non-empty type and a
number of subtypes, effectively mimicking the inheritance hierarchy presented in Fig. 5.
This information is declared in the PVS theory abs_names.pvs.

abs_names: THEORY
BEGIN

ABS: TYPE+

% Static and dynamic abstractions.
STATIC_ABS, DYN_ABS: TYPE+ FROM ABS

% Instantiable abstractions
CLASS, CLUSTER: TYPE+ FROM STATIC_ABS
OBJECT, OBJECT_CLUSTER: TYPE+ FROM DYN_ABS

END abs_names

The PVS theory abstractions then uses abs_names to introduce further modelling
concepts as well as the constraints on abstractions that appear in models. Further concepts
that we need to model include features and entities (that appear in calls).

abstractions: THEORY
IMPORTING abs_names, rel_names

% Features are queries or commands.
FEATURE: TYPE+
QUERY, COMMAND: TYPE+ FROM FEATURE
ENTITY: TYPE+

We can now model feature calls (which may appear in an assertion associated with
a feature). Parameters and arguments are modelled as functions from features to finite
sequences of records. Calls are either direct (of the form o.f) or chained (of the form
o.p.q).

PARAM: TYPE = [# name:string, param_type: CLASS #]
IMPORTING sequences[PARAM]
parameters: [FEATURE -> finite_sequence[PARAM]]

% Direct and chained calls.
CALL: TYPE+
DIRECT_CALL, CHAINED_CALL: TYPE+ FROM CALL

Primitive BON classes, e.g., INTEGER, are modelled as PVS constants: objects
of CLASS type. We also define conversions so that the type checker can automatically
convert BON primitives into PVS types.

Metamodelling and Conformance Checking with PVS 9

bool_object, int_object, string_object, real_object, any_object: CLASS

% Example conversions that the PVS typechecker can automatically apply.
interp_bool: [bool_object -> bool]
interp_int: [int_object -> int]
CONVERSION interp_bool, interp_int

We must now describe constraints on abstractions. In the BON version of the meta-
model, these took the form of features and class invariants. In PVS, the well-formedness
constraints will appear as functions, predicate subtypes, and axioms. We start by defining
a number of functions that will later be used to constrain the model.

% The class that an object belongs to, and the features of a class.
object_class: [OBJECT -> CLASS]
class_features: [CLASS -> set[FEATURE]]

% The contents of a cluster. Note that clusters may be nested.
cluster_contents: [CLUSTER -> set[STATIC_ABS]]

A number of constraints will have to be written on features. To accomplish this, we
introduce a number of functions that will let us acquire information about a feature, such
as its properties, precondition, and postcondition.

feature_pre, feature_post: [FEATURE -> bool]

% Properties of a feature.
deferred_feature, effective_feature, redefined_feature: [FEATURE -> bool]

% The set of classes that can legally access a feature.
accessors: [FEATURE -> set[CLASS]]

We need to be able to capture the concept of a legal set of calls. Consider an assertion
in BON, e.g., a precondition. Such an assertion may call a query if the class owning the
query has given permission to do so. To accomplish this, we introduce functions that
give us all the calls associated with a precondition, postcondition, and invariant.

calls_in_pre, calls_in_post: [FEATURE -> set[CALL]]
calls_in_inv: [CLASS -> set[CALL]]

We now provide examples of axioms, which define the constraints on BON models.
The first example ensures that all features of a class have unique names (BON does not
permit overloading based on feature names or signatures).

feature_unique_names: AXIOM
(FORALL (c:CLASS): (FORALL (f1,f2:FEATURE):

(member(f1,class_features(c)) AND member(f2,class_features(c)))
IMPLIES (feature_name(f1) = feature_name(f2)) IMPLIES f1=f2))

A further axiom ensures that clusters do not contain themselves.

no_self_containment_cl: AXIOM
(FORALL (cl:CLUSTER): not member(cl,cluster_contents(cl)))

10 R.F. Paige and J.S. Ostroff

Here is an example of specifying that an assertion is valid according to the export
policy used in a model. The axiom valid_precondition_calls ensures that: (a) all
calls in a precondition are legal (according to the accessor list for each feature); and (b)
all calls in the precondition are queries.

valid_precondition_calls: AXIOM
(FORALL (c:CLASS): (FORALL (f:FEATURE): member(f, class_features(c)) IMPLIES

(FORALL (call:CALL): member(call, calls_in_pre(f)) IMPLIES
QUERY_pred(f(call)) AND call_isvalid(f(call)))))

Classes may possess stereotypes, e.g., they may be deferred or effective. Here is an
example, showing that a class cannot be both deferred and effective.

deferred_effective_ax: AXIOM
(FORALL (c:CLASS): (NOT (deferred_class(c) IFF effective_class(c))))

4.2 Theory of Relationships

The theory of relationships defines the three basic relationships and the well-formedness
constraints that exist in BON. To express the relationships in PVS, we introduce a new
non-empty type and a number of subtypes.As with abstractions, we mimic the inheritance
hierarchy that was presented in Fig. 4.

rel_names: THEORY
BEGIN

% The abstract concept of a relationship.
REL: TYPE+

% Instantiable relationships.
INH, C_S, MESSAGE: TYPE+ FROM REL
AGG, ASSOC: TYPE+ FROM C_S

END rel_names

The rel_names theory is then used by the relationships theory. In BON, all
relationships are directed (or targetted). Thus, each relationship has a source and a
target, and these concepts are modelled using PVS functions.

relationships: THEORY
BEGIN

IMPORTING rel_names, abstractions

% Examples of the source and target of a relationship.
inh_source, inh_target: [INH -> STATIC_ABS]
cs_source, cs_target: [C_S -> STATIC_ABS]

Now we can express constraints on the functions.We give one example of relationship
constraints: that inheritance relationships cannot be self-targetted.

% Inheritance relationships cannot be directed from an abstraction to itself.
inh_ax: AXIOM (FORALL (i:INH): NOT (inh_source(i)=inh_target(i)))

Metamodelling and Conformance Checking with PVS 11

The theory of relationships is quite simple, because many of the constraints on the
use of relationships are global constraints that can only be specified when it is possible
to discuss all abstractions in a model. Thus, further relationship constraints will be added
in the next section, where we describe constraints on models themselves.

4.3 The Metamodel Theory

The PVS theory metamodel uses the two previous theories – of abstractions and rela-
tionships – to describe the well-formedness constraints on all BON models. Effectively,
the PVS theory metamodel (described below) mimics the structure of the BON model
in Fig. 2: a model consists of a set of abstractions.

metamodel: THEORY
BEGIN
IMPORTING abstractions, relationships

% A BON model consists of a set of abstractions.
abs: SET[ABS]
rels: SET[REL]

Now we must write constraints on how models can be formed from a set of abstrac-
tions. The first constraint we write ensures that inheritance hierarchies do not have cycles.
We express this by calculating the inheritance closure, the set of all inheritance relation-
ships that are either explicitly written in a model, or that arise due to the transitivity of
inheritance.

inh_closure: SET[INH]

% Closure axiom #1: any inheritance relationship in a model is also
% in the inheritance closure.
closure_ax1: AXIOM

(FORALL (r:INH): member(r,rels) IMPLIES member(r,inh_closure))

% Closure axiom #2: all inheritance relationships that arise due to
% transitivity must also be in the inheritance closure.
closure_ax2: AXIOM

(FORALL (r1,r2:INH):
(member(r1,rels) AND member(r2,rels) AND inh_source(r1)=inh_target(r2))
IMPLIES (EXISTS (r:INH): member(r,inh_closure) AND

inh_source(r)=inh_source(r2) AND inh_target(r)=inh_target(r1)))

% Inheritance relationships must not generate cycles.
inh_wo_cycles: AXIOM

(FORALL (i:INH): member(i,inh_closure) IMPLIES
NOT (EXISTS (r1:INH): (member(r1,rels) AND i/=r1) IMPLIES

inh_source(i)=inh_target(r1) AND inh_target(i)=inh_source(r1)))

Two further functions will be used in ensuring syntactic covariant redefinition of
features. In BON, if a feature’s signature is redefined when it is inherited, it can be
changed to a subtype.

12 R.F. Paige and J.S. Ostroff

% is_subtype is true iff the second arg. is a descendent of the first
is_subtype: [CLASS,CLASS -> bool]

% The function covariant takes two features and results in true
% iff the second feature covariantly redefines the first.
covariant: [FEATURE,FEATURE -> bool]

covariant_ax1: AXIOM
(FORALL (que1,que2:QUERY): covariant(que1,que2) IFF

length(parameters(que1))=length(parameters(que2)) AND
(FORALL (i:{j:nat|j<length(parameters(que1))}):

is_subtype(param_type(parameters(que1)(i)),
param_type(parameters(que2)(i))) AND

is_subtype(query_result(que1),query_result(que2)))

The primary purpose of introducing the covariant function is to ensure that rede-
fined features obey the syntactic aspects of the covariant rule. The syntactic aspects of
covariance are captured in the metamodel via the axiom model_covariance, which
ensures that all feature redefinitions obey the covariance rule.

model_covariance: AXIOM
(FORALL (c:CLASS): member(c,abst) IMPLIES

(FORALL (f:FEATURE): member(f,redefined_features(c)) IMPLIES
covariant(f,super(c,f)))

We write an axiom demonstrating a well-formedness constraint on clusters: all clus-
ters in a model are disjoint or nested.

% All clusters in a model are disjoint.
disjoint_clusters: AXIOM

(FORALL (c1,c2:CLUSTER): (member(c1,abst) AND member(c2,abst)) IMPLIES
(c1=c2 OR empty?(intersection(cluster_contents(c1),cluster_contents(c2)))))

% No bidirectional aggregation relationships are allowed.
no_bidir_agg: AXIOM

(NOT (EXISTS (r1,r2:AGG): (member(r1,rels) AND member(r2,rels))
IMPLIES (cs_source(r1)=cs_target(r2) AND cs_target(r1)=cs_source(r2)))

A somewhat complicated axiom to formalize is to ensure that labels appearing on
a client-supplier relationship do not clash with names appearing in the feature list of
the relationship source, nor with any other client-supplier relationship from the same
source. This is reasonably straightforward to formalize in the case where the source of
the relationship is a class, but it becomes more complex when the source is a cluster.
First we present the case where the source is a class.

labels_unique_ax1: AXIOM
(FORALL (cs:C_S): (member(cs,rels) AND CLASS_pred(cs_source(cs))

IMPLIES NOT member(cs_label(cs),
{ n:string | (EXISTS (f:FEATURE):

member(f,class_features(cs_source(cs))) IMPLIES
n=feature_name(f)) }) AND
NOT (EXISTS (cs2:C_S): (member(cs2,rels) IMPLIES
cs_source(cs2)=cs_source(cs) AND cs_label(cs)=cs_label(cs2)))))

Metamodelling and Conformance Checking with PVS 13

A second axiom is needed in the case where the source of the client-supplier rela-
tionship is a cluster. In this case, we must require that at least one class contained within
the cluster does not have the name appearing on the relationship label.

labels_unique_ax2: AXIOM
(FORALL (cs:C_S): (member(cs,rels) AND CLUSTER_pred(cs_source(cs)))

IMPLIES (EXISTS (c:CLASS): member(c,all_classes(cs_source(cs))
IMPLIES NOT member(cs_label(cs),all_names(c))))

It was only when typechecking the PVS theories that we discovered the need for
labels_unique_ax2. Our original formulation considered only the case where the
source of a client-supplier relationship is a class. The typechecker provided us with an
obligation with the assumption CLASS_pred(cs_source(cs)), which is not true for
all BON models, since client-supplier relationships may be from clusters as well as
classes. Thus, PVS provided us with a counterexample to our original assumptions and
thereby suggested extra constraints that needed to be formalized.

The complete metamodel typechecks without any user intervention. It can be found
in [5].

5 Conformance Checking with the Metamodel

The metamodel presented in the previous section can be used to check that BON models,
which are instances of the metamodel, obey the well-formedness constraints. Confor-
mance checking is by proving PVS CONJECTUREs using the axioms of the metamodel.
We present two examples to demonstrate the general approach. More examples and
further discussion can be found in [5]. The two BON models in Fig. 7 will be used to
demonstrate the process.

B

A

C

i1

i2

i3

(a)

invariant
c.m

B

A

?

!

a.h and a.b.w

.....

C

NONE

a

b

c

m:BOOLEAN

w:BOOLEAN
C

A

h:BOOLEAN

(b)

Fig. 7. Models for conformance checking.

14 R.F. Paige and J.S. Ostroff

5.1 Inheritance Cycles

We start by showing that a model that possesses cycles in its inheritance graph does not
satisfy the metamodel. Consider Fig. 7(a) (labels are for reference only); this model is
not well-formed because of the cycle-introducing inheritance relationship from class A
to class C. If we can describe this model in PVS, then we should be able to conject and
prove that it is not well-formed. The conjecture is captured in the following theory.

use_metamodel2: THEORY
BEGIN
IMPORTING metamodel

a,b,c: VAR CLASS
i1,i2,i3: VAR INH

no_inh_cycles: CONJECTURE
(NOT (EXISTS (a,b,c:CLASS): member(a,abst) AND member(b,abst) AND

member(c,abst) AND a/=b AND b/=c AND c/=a IMPLIES
(EXISTS (i1,i2,i3:INH): (member(i1,rels) AND member(i2,rels) AND

member(i3,rels) AND i1/=i2 AND i2/=i3 AND i3/=i1 IMPLIES
member(i1,static_rels(b) AND member(i2,static_rels(c) AND
member(i3,static_rels(a)) AND inh_source(i1)=b AND inh_source(i2)=c AND
inh_source(i3)=a AND inh_target(i1)=a AND inh_target(i2)=b AND
inh_target(i3)=c))))

END use_metamodel2

The conjecture can be explained as follows: there cannot exist a model consisting of
the distinct classes a, b, and c with three inheritance relationships i1, i2, and i3 such that
i1 is directed from b to a, i2 is directed from c to b, and i3 is directed from a to c. To prove
the conjecture with PVS requires use of three axioms, two of which define the inheritance
closure of a model, with the third being inh_wo_cycles. After instantiating the axioms
with the abstractions contained in the model, the conjecture proves automatically using
(grind). See [5] for the full proof.

5.2 Obeying Export Policies of Classes

As a second example, we show how to check that a model correctly obeys the export
policies of all classes in the model. Consider the BON model in Fig. 7(b). Note that m is
a private feature of class C; thus the call c.m in the invariant of B is illegal. Similarly, the
call a.b.w in class C is illegal in the precondition of m, because w is accessible only to the
client A. We would like to show that this model does not obey the constraints in the BON
metamodel. We will show that, as an example, the invariant of B is not well-formed.
To prove that the model is not well-formed, we show that the class invariant for B is
ill-formed, by conjecting that the model in Fig. 7(b) cannot exist. The full conjecture
contains a number of terms that are not relevant to the proof (they can be found in [5])
but which would be included in a completely mechanical derivation of the conjecture;
we only include terms relevant to the proof in this presentation, due to space constraints.

Metamodelling and Conformance Checking with PVS 15

info_hiding: THEORY
BEGIN
IMPORTING metamodel

a, b, c: VAR CLASS
h, w, m: VAR QUERY
call1, call2, call3: VAR CALL

test_info_hiding: CONJECTURE
(NOT (EXISTS (a,b c: CLASS): EXISTS (h,w,m:QUERY):
EXISTS (call1,call2,call3: CALL):
member(c,accessors(h)) AND member(a,accessors(w)) AND
empty?(accessors(m)) AND f(call1)=h AND f(call2)=w AND
f(call3)=m AND member(call1,calls_in_pre(m)) AND
member(call2,calls_in_pre(m)) AND member(call3,calls_in_inv(b))))

END info_hiding

To prove the conjecture, we first skolemize three times, then flatten. We introduce the
axiom valid_class_invariant, and substitute class B and call call3 for the bound
variables of this axiom. We use typepred to bring the type assumptions on m into the
proof, and then one application of grind proves the conjecture automatically. The model
is invalid according to the well-formedness constraints of the metamodel.

6 Discussion and Conclusions

By producing a formal metamodel for BON, we have taken a step towards placing the
modelling language on a solid mathematical basis.We have captured the well-formedness
constraints that all BON models must obey, thus describing core information that is
essential for all tool builders and modellers to understand.

We learned several things about PVS and metamodelling in carrying out this exercise.
For one, we found the BON version of the metamodel extremely useful in constructing
the PVS version. The BON version provided structuring information and indications as to
how PVS theories might be related. We also determined several helpful heuristics that can
be used, in general, to help model object-oriented concepts in PVS. Class hierarchies can
be modelled using PVS types and subtypes. Class features can be described as functions
that take a variable as an argument. Commands are PVS functions that take an invoking
object as an argument and return a new object. We found the PVS CONVERSION facility
ideal for transforming BON built-in primitives, e.g., INTEGER, into PVS types. Finally,
we found that we could model BON’s covariant redefinition of feature signatures via
PVS’s subtyping mechanism. In principle, a formal translation of BON models into PVS,
and thereafter a tool, could be developed based on these heuristics.

We found the PVS type checker particularly helpful in debugging the metamodel.
Our initial metamodel contained several errors and omissions – e.g., that a client-supplier
relationship must always be from a class source, and that we erroneously required that a
feature must have one or more parameters – that the checker caught automatically. This
was used in updating the metamodel as it was being constructed.

By giving a PVS specification of the metamodel, we have the additional advantage
of being able to use the PVS system to analyze the metamodel. The PVS system allowed
us to carry out conformance checks of models against the metamodel, as demonstrated
in Section 5. The PVS specification allows us to do more than check models against

16 R.F. Paige and J.S. Ostroff

the metamodel: it allows us to ask questions about the metamodel, in particular, about
emergent properties of the metamodel. These properties are not explicitly described via
the axioms of the metamodel itself; rather, they are logical consequences of the axioms.
Thus, the PVS system can be used to help users of the metamodel answer pertinent
questions they may have about the metamodel.

Much work remains to be done.We plan to carry out further examples of conformance
checking, particularly concentrating on examples that require inductive proofs. We also
plan to validate the BON metamodel itself – i.e., prove that the version of the metamodel
described in Section 3 is a valid BON model; this will give us greater confidence in
the validity of our work. Comparisons of our work with other formal specifications of
metamodels will be worthwhile; preliminary efforts on this, for Alloy [6] and UML, can
be found in [5]. We also intend to tie this work in with a refinement calculus that we have
been creating for BON [4]. In this latter work, we have provided a formal semantics for
much of BON in terms of predicates. Thus, we aim to define relationships between the
BON metamodel – which captures syntactic constraints – and the formal semantics of
abstractions and relationships described elsewhere.

References

1. B. Meyer. Object-Oriented Software Construction, Prentice-Hall, 1997.
2. OMG Unified Modelling Language Specification 1.3, OMG, June 1999.
3. S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. The PVS Language Reference

Version 2.3, SRI International Technical Report, September 1999.
4. R. Paige and J. Ostroff.An Object-Oriented Refinement Calculus. Technical Report CS-1999-

07, York University, December 1999.
5. R. Paige and J. Ostroff. Precise and Formal Metamodelling with the Business Object Notation

and PVS. Technical Report CS-2000-03, York University, August 2000.
6. M. Vaziri and D. Jackson. Some Shortcomings of OCL, the Object Constraint Language of

UML. Technical Report, MIT Laboratory for Computer Science, December 1999.
7. K. Walden and J.-M. Nerson. Seamless Object-Oriented Software Development, Prentice-

Hall, 1995.

	Introduction
	An Overview of BON
	BON Specification of the Metamodel
	The Relationships Cluster
	The Abstractions Cluster
	The Features Cluster

	PVS Specification of the Metamodel
	Theory of Abstractions
	Theory of Relationships
	The Metamodel Theory

	Conformance Checking with the Metamodel
	Inheritance Cycles
	Obeying Export Policies of Classes

	Discussion and Conclusions

