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Abstract. The discussion of the relative merits of linear- versus branching-time
frameworks goes back to early 1980s. One of the beliefs dominating this dis-
cussion has been that “while specifying is easier in LTL (linear-temporal logic),
verification is easier for CTL (branching-temporal logic)”. Indeed, the restricted
syntax of CTL limits its expressive power and many important behaviors (e.g.,
strong fairness) can not be specified in CTL. On the other hand, while model
checking for CTL can be done in time that is linear in the size of the specifi-
cation, it takes time that is exponential in the specification for LTL. Because of
these arguments, and for historical reasons, the dominant temporal specification
language in industrial use is CTL.

In this paper we argue that in spite of the phenomenal success of CTL-based
model checking, CTL suffers from several fundamental limitations as a specifi-
cation language, all stemming from the fact that CTL is a branching-time for-
malism: the language is unintuitive and hard to use, it does not lend itself to
compositional reasoning, and it is fundamentally incompatible with semi-formal
verification. These inherent limitations severely impede the functionality of CTL-
based model checkers. In contrast, the linear-time framework is expressive and
intuitive, supports compositional reasoning and semi-formal verification, and is
amenable to combining enumerative and symbolic search methods. While we
argue in favor of the linear-time framework, we also we argue that LTL is not ex-
pressive enough, and discuss what would be the “ultimate” temporal specification
language.

1 Introduction

As indicated in the National Technology Roadmap for Semiconductorsl, the semicon-
ductor industry faces a serious challenge: chip designers are finding it increasingly diffi-
cult to keep up with the advances in semiconductor manufacturing. As a result, they are
unable to exploit the enormous capacity that this technology provides. The Roadmap
suggests that the semiconductor industry will require productivity gains greater than the
historical 30% per-year cost reduction. This is referred to as the “design productivity
crisis”.

Integrated circuits are currently designed through a series of steps that refine a more
abstract specification into a more concrete implementation. The process starts at a “be-
havioral model”, such as a program that implements the instruction set architecture of
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a processor. It ends in a description of the actual geometries of the transistors and wires
on the chip. Each refinement step used to synthesize the processor must preserve the
germane behavior of the abstract model. As designs grow more complex, it becomes
easier to introduce flaws into the design during refinement. Thus, designers use vari-
ous validation techniques to prove the correctness of the design after each refinement.
Unfortunately, these techniques themselves grow more expensive and difficult with de-
sign complexity. Indeed, for many designs, the size of the validation team now exceeds
that of the design team. As the validation process has begun to exceed half the design
project resources, the semiconductor industry has begun to refer to this problem as the
“validation crisis”.

Formal verification provides a new approach to validating the correct behavior of
logic designs. In simulation, the traditional mode of design validation, “confidence” is
the result of running a large number of test cases through the design. Formal verifica-
tion, in contrast, uses mathematical techniques to check the entire state space of the de-
sign for conformance to some specified behavior. Thus, while simulation is open-ended
and fraught with uncertainty, formal verification is definitive and eliminates uncertainty
=]

One of the most significant recent developments in the area of formal design ver-
ification is the discovery of algorithmic methods for verifying temporal-logic proper-
ties of finite-state systems [LERIRANGT]. In temporal-logic model checking, we verify
the correctness of a finite-state system with respect to a desired property by checking
whether a labeled state-transition graph that models the system satisfies a temporal logic
formula that specifies this property (see [&]). Symbolic model checking [&4] has been
used to successfully verify a large number of complex designs. This approach uses sym-
bolic data structures, such as binary decision diagrams (BDDs), to efficiently represent
and manipulate state spaces. Using symbolic model checking, designs containing on
the order of 100 to 200 binary latches can be routinely verified automatically.

Model-checking tools have enjoyed a substantial and growing use over the last few
years, showing ability to discover subtle flaws that result from extremely improbable
events. While until recently these tools were viewed as of academic interest only, they
are now routinely used in industrial applications [2/t4]. Companies such as AT&T,
Cadence, Fujitsu, HP, IBM, Intel, Motorola, NEC, SGI, Siemens, and Sun are using
model checkers increasingly on their own designs to ensure outstanding product quality.
Three model-checking tools are widely used in the semiconductor industry: SMV, a tool
from Carnegie Mellon University [[Z4]], with many industrial incarnations (e.g., IBM’s
RuleBase [[]); VIS, a tool developed at the University of California, Berkeley [[i]]; and
FormalCheck, a tool developed at Bell Labs [[£4] and marketed by Cadence.

A key issue in the design of a model-checking tool is the choice of the temporal
language used to specify properties, as this language, which we refer to as the temporal
property-specification language, is one of the primary interfaces to the tool. (The other
primary interface is the modeling language, which is typically the hardware description
language used by the designers). One of the major aspects of all temporal languages
is their underlying model of time. Two possible views regarding the nature of time in-
duce two types of temporal logics [53]. In linear temporal logics, time is treated as if
each moment in time has a unique possible future. Thus, linear temporal logic formulas
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are interpreted over linear sequences and we regard them as describing a behavior of a
single computation of a program. In branching temporal logics, each moment in time
may split into various possible futures. Accordingly, the structures over which branch-
ing temporal logic formulas are interpreted can be viewed as infinite computation trees,
each describing the behavior of the possible computations of a nondeterministic pro-
gram.

In the linear temporal logic LTL, formulas are composed from the set of atomic
propositions using the usual Boolean connectives as well as the temporal connective
G (“always”), F' (“eventually”), X (“next”), and U/ (“until”). The branching temporal
logic CTL* augments LTL by the path quantifiers I (“there exists a computation”) and
A (“for all computations”). The branching temporal logic CTL is a fragment of CTL* in
which every temporal connective is preceded by a path quantifier. Finally, the branching
temporal logic VCTL is a fragment of CTL in which only universal path quantification is
allowed. (Note that LTL has implicit universal path quantifiers in front of its formulas.)

The discussion of the relative merits of linear versus branching temporal logics goes
back to 1980 [RULAISII ARSI IOC IO . As analyzed in [[$4], linear and branch-
ing time logics correspond to two distinct views of time. It is not surprising therefore
that LTL and CTL are expressively incomparable [R3EZ0]. The LTL formula F'Gp
is not expressible in CTL, while the CTL formula AF AGp is not expressible in LTL.
On the other hand, CTL seems to be superior to LTL when it comes to algorithmic
verification, as we now explain.

Given a transition system M and a linear temporal logic formula ¢, the model-
checking problem for M and ¢ is to decide whether ¢ holds in all the computations of
M. When ¢ is a branching temporal logic formula, the problem is to decide whether ¢
holds in the computation tree of M. The complexity of model checking for both linear
and branching temporal logics is well understood: suppose we are given a transition sys-
tem of size n and a temporal logic formula of size m. For the branching temporal logic
CTL, model-checking algorithms run in time O(nm) [Ed], while, for the linear tempo-
ral logic LTL, model-checking algorithms run in time n2°(") [BH]. Since LTL model
checking is PSPACE-complete [L1], the latter bound probably cannot be improved.

The difference in the complexity of linear and branching model checking has been
viewed as an argument in favor of the branching paradigm. In particular, the compu-
tational advantage of CTL model checking over LTL model checking makes CTL a
popular choice, leading to efficient model-checking tools for this logic [[V]. Today, the
dominant temporal specification language in industrial use is CTL. This dominance
stems from the phenomenal success of SMV, the first symbolic model checker, which
is CTL-based, and its follower VIS, also CTL-based, which serve as the basis for many
industrial model checkers. (Verification systems that use linear-time formalisms are the
above mentioned FormalCheck, Bell Labs’s SPIN [iL3]], Intel’s Prover, and Cadence
SMV.)

In spite of the phenomenal success of CTL-based model checking, CTL suffers from
several fundamental limitations as a temporal property-specification language, all stem-
ming from the fact that CTL is a branching-time formalism: the language is unintuitive
and hard to use, it does not lend itself to compositional reasoning, and it is fundamen-
tally incompatible with semi-formal verification. In contrast, the linear-time framework
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is expressive and intuitive, supports compositional reasoning and semi-formal verifica-
tion, and is amenable to combining enumerative and symbolic search methods. While
we argue in favor of the linear-time framework, we also we argue that LTL is not expres-
sive enough, and discuss what would be the ultimate temporal specification language.
We assume familiarity with the syntax and semantics of temporal logic [RUA204].

2 CTL

2.1 Expressiveness

It is important to understand that expressiveness is not merely a theoretical issue; ex-
pressiveness is also a usability issue. Verification engineers find CTL unintuitive. The
linear framework is simply more natural for verification engineers, who tend to think
linearly, e.g., timing diagrams [£J] and message-sequence charts [24], rather than “bran-
chingly”. IBM’s experience with the RuleBase system has been that “nontrivial CTL
equations are hard to understand and prone to error” [2£] and “CTL is difficult to use
for most users and requires a new way of thinking about hardware” [[1]. Indeed, IBM
has been trying to “linearize” CTL in their RuleBase system []. It is simply much
harder to reason about computation trees than about linear computations.

As an example, consider the LTL formulas X F'p and F X p. Both formulas say the
same thing: “p holds sometimes in the strict future”. In contrast, consider the CTL for-
mulas AFAXpand AX AFp. Are these formulas logically equivalent? Do they assert
that “p holds sometimes in the strict future”? It takes a few minutes of serious pondering
to realize that while AX A F'p does assert that “p holds sometimes in the strict future”,
this is not the case for AF"AXp (we challenge the reader to figure out the meaning
of AFAXp). The unintuitiveness of CTL significantly reduces the usability of CTL-
based formal-verification tools. A perusal of the literature reveals that the vast majority
of CTL formulas used in formal verification are actually equivalent to LTL formulas.
Thus, the branching nature of CTL is very rarely used in practice. As a consequence,
even though LTL and CTL are expressively incomparable from a theoretical point of
view, from a practical point of view LTL is more expressive than CTL.

One often hears the claim that expressiveness “is not an issue”, since “all users want
to verify are simple invariance property of the form AGp”. Of course, the reason for
that could be the difficulty of expressing in CTL more complicated properties. Industrial
experience with linear-time formalism shows that verification engineers often use much
more complicated temporal properties, when provided with a language that facilitates
the expression of such properties. Further more, even when attempting to verify an
invariance property, users often need to express relevant properties, which can be rather
complex, of the environment of the unit under verification. We come back to this point
later.

Reader who is steeped in the concurrency-theory literature may be somewhat sur-
prised at the assertion that that CTL lacks expressive power. After all, it is known that
CTL characterizes bisimulation, in the sense that two states in a transition system are
bisimilar iff they satisfy exactly the same CTL formulas [[L1] (see also [[2&]]), and bisimu-
lation is considered to be the finest reasonable notion of equivalence between processes
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[[ze]. This result, however, says little about the usefulness of CTL as a property-
specification language. Bisimulation is a structural relation, while in the context of
model checking what is needed is a way to specify behavioral properties rather than
structural properties. Assertions about behavior are best stated in terms of traces rather
than in terms of computation trees (recall, for example, the subtle distinction between
AFAXpand AXAFp)H

2.2 Complexity

As we saw earlier, the complexity bounds for CTL model checking are better than those
for LTL model checking. We first show that this superiority disappears in the context of
open systems.

In computer system design, we distinguish between closed and open systems. A
closed system is a system whose behavior is completely determined by the state of the
system. An open system is a system that interacts with its environment and whose be-
havior depends on this interaction. Such systems are called also reactive systems [L3].
In closed systems, nondeterminism reflect an internal choice, while in open systems
it can also reflect an external choice [&/]. Formally, in a closed system, the environ-
ment can not modify any of the system variables. In contrast, in an open system, the
environment can modify some of the system variables. In reality, the vast majority of
interesting systems are open, since they have to interact with an external environment.

We can model finite-state open systems by open modules. An open module is sim-
ply a module with a partition of the states into two sets. One set contains system states
and corresponds to locations where the system makes a transition. The second set con-
tains environment states and corresponds to locations where the environment makes a
transition.

As discussed in [IZZ], when the specification is given in linear temporal logic, there is
indeed no need to worry about uncertainty with respect to the environment. Since all the
possible interactions of the system with its environment have to satisfy a linear tempo-
ral logic specification in order for a program to satisfy the specification, the distinction
between internal and external nondeterminism is irrelevant. In contrast, when the spec-
ification is given in a branching temporal logic, this distinction is relevant. There is a
need to define a different model-checking problem for open systems, and there is a need
to adjust current model-checking tools to handle open systems correctly.

We now specify formally the problem of model checking of open modules (module
checking, for short). As with usual model checking, the problem has two inputs: an open
module M and a temporal logic formula . For an open module A, let V3 denote
the unwinding of M into an infinite tree. We say that M satisfies ¢ iff ¢ holds in
all the trees obtained by pruning from Vjs subtrees whose root is a successor of an
environment state. The intuition is that each such tree corresponds to a different (and
possible) environment. We want ¢ to hold in every such tree, since, of course, we want
the open system to satisfy its specification no matter how the environment behaves.

2 Tt is also worth noting that when modeling systems in terms of transition systems, deadlocks
have to be modeled explicitly. Once deadlocks are modeled explicitly, the two process a(b+c)
and ab + ac, which are typically considered to be trace equivalent but not bisimilar [%]],
become trace inequivalent.
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A module M = (W, Wy, R, V') consists of a set W of states, a set Wy of initial
states, a total transition relation X C W x W, and a labeling function V : W — 9Frop
that maps each state to a set of atomic propositions that hold in this state. We model
an open system by an open module M = (W, W, , Wy, R, V), where (W, UW,,
Woy, R, V) is a module, W; is a set of system states, and W, is a set of environment
states. We use W to denote W, U W.. For each state w € W, let suce(w) be the set
of w’s R-successors; i.e., suce(w) = {w' : R(w, w’)}. Consider a system state w, and
an environment state w.. When the current state is w;, all the states in suce(w;) are
possible next states. In contrast, when the current state is w,, there is no certainty with
respect to the environment transitions and not all the states in succ(w,) are necessarily
possible next states. The only thing guaranteed is that not all the environment transi-
tions are impossible, since the environment can never be blocked. For a state w € W,
let step(w) denote the set of the possible sets of w’s next successors during an execu-
tion. By the above, step(w;) = {succ(w;)} and step(w.) contains all the nonempty
subsets of succ(we).

An infinite tree isaset ' C X* such thatif z - ¢ € T where t € X* and ¢ € X,
then also ¢ € T, and for all 0 < ¢’ < ¢, we have that z - ¢ € T. In addition, if
z € T, then z - 0 € T. The elements of 7" are called nodes, and the empty word €
is the root of T'. Given an alphabet X, a X-labeled tree is a pair (T, V') where T is
atreeand V : T — X maps each node of 7" to a letter in 2. An open module M
can be unwound into an infinite tree (T, Vas) in a straightforward way. When we
examine a specification with respect to M, it should hold not only in (Ts, Vas) (which
corresponds to a very specific environment that does never restrict the set of its next
states), but in all the trees obtained by pruning from (73, V3s) subtrees whose root is
a successor of a node corresponding to an environment state. Let exec(M) denote the
set of all these trees. Formally, (T, V') € exec(M) iff the following holds:

- e€Tand V(e) = wo.
- For all # € T with V(x) = w, there exists {wo, ..., wn} € step(w) such that
TAXEH = L2.0,2-1,...,2-n}and forall 0 < ¢ < n we have V(z - ¢) = w,.

Intuitively, each tree in exec(M) corresponds to a different behavior of the environ-
ment. Note that a single environment state with more than one successor suffices to
make exec(M ) infinite.

Given an open module M and a CTL* formula ¢, we say that M satisfies ¢, denoted
M |, ¢, if all the trees in exec(M) satisfy . The problem of deciding whether M
satisfies ¢ is called module checking. We use M = ¢ to indicate that when we regard
M as a closed module (thus refer to all its states as system states), then M satisfies .
The problem of deciding whether M = ¢ is the usual model-checking problem. Note
that while M |=, ¢ entails M = ¢, all that M = ¢ entails is that M (=, —. Indeed,
M =, ¢ requires all the trees in exec(M) to satisfy ¢. On the other hand, M | ¢
means that the tree (Ths, V) satisfies . Finally, M (=, —¢ only tells us that there
exists some tree in exec(M) that satisfies ¢o. We can define module checking also with
respect to linear-time specifications. We say that an open module M satisfies an LTL
formula ¢ iff M =, Ae.

Theorem 1. [2451]
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(1) The module-checking problem for LTL is PSPACE-complete.
(2) The module-checking problem for CTL is EXPTIME-complete.
(3) The module-checking problem for CTL* is 2EXPTIME-complete.

Thus, module checking for LTL is easier than for CTL (assuming that EXPTIME is
different than PSPACE), which is, in turn, easier than for CTL*. In particular, this results
shows that branching is not “free”, as has been claimed in [*"JI See [ for further
discussion on the complexity-theoretic comparison between linear time and branching
time.

Even in the context of closed systems, the alleged superiority of CTL from the com-
plexity perspective is questionable. The traditional comparison is in terms of worst-case
complexity. Since, however, CTL and LTL are expressively incomparable, a comparison
in terms of worst-case complexity is not very meaningful. A more meaningful compar-
ison would be with respect to properties that can be expressed in both CTL and LTL.
We claim that under such a comparison the superiority of CTL disappears.

For simplicity, we consider systems M with no fairness conditions; i.e., systems in
which all the computations are fair. As the “representative” CTL model checker we take
the bottom-up labeling procedure of [[i5]. There, in order to check whether M satisfies
v, we label the states of M by subformulas of ¢, starting from the innermost formu-
las and proceeding such that, when labeling a formula, all its subformulas are already
labeled. Labeling subformulas that are atomic propositions, Boolean combinations of
other subformulas, or of the form AX# or £X8 is straightforward. Labeling subfor-
mulas of the form A6, U8, £0,U8,, Al Uﬁz, or 6, Uﬁz involves a backward reach-
ability test. As the “representative” LTL model checker, we take the automata-based
algorithm of [[LLLf]. There, in order to check whether M satisfies ¢, we construct a
Biichi word automaton .4, for ~¢ and check whether the intersection of the language
of M with that of A, is nonempty. In practice, the latter check proceeds by check-
ing whether there exists an initial state in the intersection that satisfies CTL formula
EGtrue. For the construction of A, we follow the algorithms in [&1] or [28], which
improve [[Liid] by being demand-driven; that is, the state space of .4, is restricted to
states that are reachable from the initial state.

The exponential term in the running time of LTL model checking comes from a po-
tential exponential blow-up in the translation of ¢ into an automaton A-,. It is shown,
however, in [lZ] that for LTL formulas that can also be expressed in YCTL (the uni-
versal fragment of CTL) there is Biichi automaton .A-,, whose size is linear in |¢|.
Furthermore, this automaton has a special structure (it is “weak’), which enables the
model checker to apply improved algorithms for checking the emptiness of the inter-
section of M with .4, []. (See also [REIS.A] for a through analysis of the relationship
between LTL and CTL model checkers.)

2.3 Compositionality

Model checking is known to suffer from the so-called state-explosion problem. In a
concurrent setting, the system under consideration is typically the parallel composition

3 Note also that while the satisfiability problem for LTL is PSPACE-complete [E#], the problem
is EXPTIME-complete for CTL [B8EH] and 2EXPTIME-complete for CTL* LR
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of many modules. As a result, the size of the state space of the system is the product of
the sizes of the state spaces of the participating modules. This gives rise to state spaces
of exceedingly large sizes, which makes model-checking algorithms impractical. This
issue is one of the most important ones in the area of computer-aided verification and is
the subject of active research (cf. [i5]).

Compositional, or modular, verification is one possible way to address the state-
explosion problem, cf. [[Z4]. In modular verification, one uses proof rules of the follow-
ing form:

M, =y
Ms | s M| Ms E
0(1/)1’1/)2’1/))

Here M = 6 means that the module M satisfies the formula 8, the symbol “||” denotes
parallel composition, and C'(¢1, 12, ) is some logical condition relating t;, 12, and
1. The advantage of using modular proof rules is that it enables one to apply model
checking only to the underlying modules, which have much smaller state spaces.

A key observation, see [[LZa6 U BAXT], is that in modular verification the specifi-
cation should include two parts. One part describes the desired behavior of the module.
The other part describes the assumed behavior of the system within which the module
is interacting. This is called the assume-guarantee paradigm, as the specification de-
scribes what behavior the module is guaranteed to exhibit, assuming that the system
behaves in the promised way.

For the linear temporal paradigm, an assume-guarantee specification is a pair (¢, ¢),
where both ¢ and ¢ are linear temporal logic formulas. The meaning of such a pair is
that all the computations of the module are guaranteed to satisfy v/, assuming that all the
computations of the environment satisfy ¢. As observed in [[51], in this case the assume-
guarantee pair (¢, ¢’) can be combined to a single linear temporal logic formula ¢ —
1. Thus, model checking a module with respect to assume-guarantee specifications in
which both the assumed and the guaranteed behaviors are linear temporal logic formulas
is essentially the same as model checking the module with respect to linear temporal
logic formulas.

The situation is different for the branching temporal paradigm, where assumptions
are taken to apply to the computation tree of the system within which the module is in-
teracting [J&3]. In this framework, a module M satisfies an assume-guarantee pair (¢, ¢’)
iff whenever M is part of a system satisfying ¢, the system also satisfies ¢. (As is shown
in [£3], this is not equivalent to M satisfying ¢ — 1.) We call this branching modular
model checking. Furthermore, it is argued in [[£3], as well as in [REDLIRZA), that in
the context of modular verification it is advantageous to use only universal branching
temporal logic, i.e., branching temporal logic without existential path quantifiers. In a
universal branching temporal logic one can state properties of all computations of a
program, but one cannot state that certain computations exist. Consequently, universal
branching temporal logic formulas have the helpful property that once they are satisfied
in a module, they are satisfied also in every system that contains this module. The focus
in [[4£] is on using VCTL, the universal fragment of CTL, for both the assumption and
the guarantee. We now focus on the branching modular model-checking problem, where
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assumptions and guarantees are in both YVCTL and in the more expressive YCTL*, the
universal fragment of CTL*.

Let M = (W, Wy, R, V) and M’ = (W', W, R', V') be two modules with sets
AP and AP’ of atomic propositions. The composition of M and M’, denoted M || M,
is a module that has exactly these behaviors which are joint to M and M’. We define
M| M’ to be the module (W', Wy, R, V') over the set AP = AP U AP’ of atomic
propositions, where W' = (W x W') N {{w,w') : V(w) N AP' = V'(v') N AP},
Wor = (Wo x Wo ) "W, R = {{{w,w),{s,s")) : (w,s) € Rand (v',s') € R'},
and V' ({(w, w")) = V(w) U V'(w') for {w,w’) € W".

In modular verification, one uses assertions of the form (@) M (¢) to specify that
whenever M is part of a system satisfying the universal branching temporal logic for-
mula ¢, the system satisfies the universal branching temporal logic formula > too. For-
mally, {¢)M (1) holds if M||M' = ¢ for all M’ such that M||M’ = ¢. Here ¢ is an
assumption on the behavior of the system and ¢ is the guarantee on the behavior of the
module. Assume-guarantee assertions are used in modular proof rules of the following
form:

1)y My (i)
true) My {p1)
o)y Mo (ta)
true) Ms(ps)

(
E (true) My || Mo {1 A 1))
(

Thus, a key step in modular verification is checking that assume-guarantee as-
sertions of the form ()M () hold, which we called the branching modular model-
checking problem.

Theorem 2. [h4]

(1) The branching modular model-checking problem for YCTL is PSPACE-complete.

(2) The branching modular model-checking problem for YCTL* is EXPSPACE-com-
plete.

Thus, in the context of modular model checking, YCTL has the same computational
complexity as LTL, while YCTL* is exponentially harder. The fact that the complexity
for VCTL is the same as the complexity for LTL is, however, somewhat misleading.
VCTL is simply not expressive enough to express assumptions that are strong enough
to prove the desired guarantee. This motivated Josko to consider modular verification
with guarantees in CTL and assumptions in LTL. Unfortunately, it is shown in [aU] that
the EXPSPACE lower bound above applies even for that setting.

Another approach to modular verification for YCTL is proposed in [4], where the
following inference rule is proposed:

M1 j A1
Ar||Mz = Ay 5 My||[ M2 =
Mi|[As = ¢
Here A; and As are modules that serve as assumptions, and < is the simulation re-

finement relation [[23]]. In other words, if A/; guarantees the assumption A;, M5 under
the assumption A; guarantees the assumption A, and M; under the assumption A,
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guarantees ¢, then we know that M || M2, under no assumption, guarantees . The ad-
vantage of this rule is that both the < and |= relation can be evaluated in polynomial
time. Unfortunately, the simulation relation is much finer than the trace-containment
relation (which is the refinement relation in the linear-time framework). This makes it
exceedingly difficult to come up with the assumptions A; and A, above.

What do CTL users do in practice? In practice, they use the following rule:

My < As
- M || M
M1||A2':g0} 1|| 2'230

That is, instead of checking that M || M2 = ¢, one checks that M, ||As | ¢, where
Ao is an abstraction of M>. As CTL model checkers usually do not support the test
My < As, users often rely on their “intuition”, which is typically a “linear intuition”
rather than “branching intuition”l} In other words, a typical way users overcome the
limited expressive power of CTL is by “escaping” outside the tool; they build the “stub”
Ao in a hardware description language. Unfortunately, since stubs themselves could be
incorrect, this practice is unsafe. (Users often check that the abstraction A, satisfies
some CTL properties, such as AGE F'p, but this is not sufficient to establish that M5 <
As.)

In summary, CTL is not adequate for modular verification, which explains why
recent attempts to augment SMV with assume-guarantee reasoning are based on linear
time reasoning [&].

2.4 Semi-formal Verification

Because of the state-explosion problem, it is unrealistic to expect formal-verification
tools to handle full systems or even large components. At the same time, simulation-
based dynamic validation, while being able to handle large designs, covers only a small
fraction of the design space, due to resource constraints. Thus, it has become clear that
future verification tools need to combine formal and informal verification [[L&]. The
combined approach is called semi-formal verification (cf. [85]). Such a combination,
however, is rather problematic for CTL-based tools. CTL specifications and model-
checking algorithms are in terms of computation trees; in fact, it is known that there
are CTL formulas, e.g., AF A X p, whose failure cannot be witnessed by a linear coun-
terexample [[C3]] M In contrast, dynamic validation is fundamentally linear, as simulation
generates individual computations. Thus, there is an inherent “impedance mismatch”

4 Note that linear-time refinement is defined in terms of trace containment, which is a behavioral
relation, while branching-time refinement is defined in terms of simulation, which is a state-
based relation. Thus, constructing an abstraction A» such that M> < A, requires a very deep
understanding of the environment M.

5 One of the advertised advantages of model checking is that when the model checker returns
a negative answer, that answer is accompanied by a counterexample [[&!]. Note, however, that
validation engineers are usually interested in linear counterexamples, but there are CTL for-
mulas whose failure cannot be witnessed by a linear counterexample. In general, CTL-based
model checkers do always accompany a negative answer by a counterexample. A similar com-
ment applies to positive witnesses [25].
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between the two approaches. This explains why current approaches to semi-formal ver-
ification are limited to invariances, i.e., properties of the form AGp. While many design
errors can be discovered by model checking invariances, modular verification of even
simple invariances often requires rather complicated assumptions on the environment
in which the component under verification operates. Current semi-formal approaches,
however, cannot handle general assumptions. Thus, the restriction of semi-formal veri-
fication to invariances is quite severe, limiting the possibility of integrating CTL-based
model checking in traditional validation environments.

3 Linear Time

Our conclusion from the previous section is that CTL-based model checking, while
phenomenally successful over the last 20 years, suffers from some inherent limitations
that severely impede its functionality. As we show now, the linear-time approach does
not suffer from these limitations.

3.1 The Linear-Time Framework

LTL is interpreted over computations, which can be viewed as infinite sequences of truth
assignments to the atomic propositions: i.e., a computation is a function 7 : N — 27
that assigns truth values to the elements of a set Prop of atomic propositions at each
time instant (natural number). For a computation 7 and a point i € N, the notation
7,1 | ¢ indicates that a formula ¢ holds at the point ¢ of the computation 7. For
example, m,i = X iff m,i + 1 = . We say that 7 satisfies a formula ¢, denoted
T, iff 0 = .

Designs can be described in a variety of formal description formalisms. Regardless
of the formalism used, a finite-state design can be abstractly viewed as a labeled transi-
tion system, i.e., as a module M = (W, Wy, R, V), where IV is the finite sets of states
that the system can be in, W, C W is the set of initial states of the system, R C w?
is a total transition relation that indicates the allowable state transitions of the system,
and V : W — 2F7P assigns truth values to the atomic propositions in each state of
the system. A path in M that starts at u is a possible infinite behavior of the system
starting at u, i.e., it is an infinite sequence ug, u; . . . of states in W such that ug = w,
and u; R u;41 forall ¢ > 0l The sequence V (ug), V(u1) ... is a computation of M
that starts at u. The language of M, denoted L (M), consists of all computations of A
that start at a state in W,. We say that M satisfies an LTL formula ¢ if all computations
of L(M) satisfy ¢.

The verification problem for LTL is to check whether a transition system P satisfies
an LTL formula . The verification problem for LTL can be solved in time O(| P|-2/¢l)
[52]. In other words, there is a model-checking algorithm for LTL whose running time
is linear in the size of the program and exponential in the size of the specification. This
is acceptable since the size of the specification is typically significantly smaller than the
size of the program.

® Tt is important to consider infinite paths, since we are interested in ongoing computations.
Deadlock and termination can be modeled explicitly via sink state.
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The dominant approach today to LTL model checking is the automata-theoretic ap-
proach L] (see also [24]). The key idea underlying the automata-theoretic approach
is that, given an LTL formula ¢, it is possible to construct a finite-state automaton
A, that accepts all computations that satisfy . The type of finite automata on infinite
words we consider is the one defined by Biichi [iF] (c.f. [B8]). A Biichi automaton is
atuple A = (X, S, Sy, p, F), where X is a finite alphabet, S is a finite set of states,
So C S is a set of initial states, p : S x X — 27 is a nondeterministic transition
function, and F* C S is a set of accepting states. A run of A over an infinite word
w = ajay - - -, is a sequence sgs; - - -, Where sg € Sp and s; € p(s;—1,a;) forall ¢ > 1.
A run sg, s1, ... is accepting if there is some designated state that repeats infinitely
often, i.e., for some s € F' there are infinitely many :’s such that s; = s. The infinite
word w is accepted by A if there is an accepting run of A over w. The language of
infinite words accepted by A is denoted (A). The following fact establishes the corre-
spondence between LTL and Biichi automata: Given an LTL formula ¢, one can build
a Biichi automaton A, = (X, S, Sy, p, , F), where ¥ = 2P7° and || < 200¢D such
that (A, ) is exactly the set of computations satisfying the formula ¢ [LG2].

This correspondence enables the reduction of the verification problem to an auto-
mata-theoretic problem as follows [[LLZ]. Suppose that we are given a system M and an
LTL formula ¢: (1) construct the automaton A, that corresponds to the negation of
the formula ¢, (2) take the product of the system A/ and the automaton A-,, to obtain
an automaton Ay ,, and (3) check that the automaton Ajys , is nonempty, i.e., that it
accepts some input. If it does not, then the design is correct. If it does, then the design is
incorrect and the accepted input is an incorrect computation. The incorrect computation
is presented to the user as a finite trace, possibly followed by a cycle.

The linear-time framework is not limited to using LTL as a specification language.
There are those who prefer to use automata on infinite words as a specification formal-
ism [ILL4]]; in fact, this is the approach of FormalCheck [24]. In this approach, we are
given a design represented as a finite transition system A and a property represented
by a Biichi (or a related variant) automaton P. The design is correct if all computations
in L(M) are accepted by P, i.e., L(M) C L(P). This approach is called the language-
containment approach. To verify M with respect to P we: (1) construct the automaton
P¢ that complements P, (2) take the product of the system A and the automaton P°¢ to
obtain an automaton Az p, and (3) check that the automaton As p is nonempty. As
before, the design is correct iff A p is empty.

3.2 Advantages
The advantages of the linear-time framework are:

— Expressiveness: The linear framework is more natural for verification engineers.
In the linear framework both designs and properties are represented as finite-state
machines (we saw that even LTL formulas can be viewed as finite-state machines);
thus verification engineers employ the same conceptual model when thinking about
the implementation and the specification [2.].

— Compositionality: The linear framework supports the assume-guarantee method-
ology. An assumption on the environment is simply expressed as a property E.
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Thus, instead of checking that L(M) C L(P), we check that L(M) N L(E) C
L(P) [EX]. Furthermore, we can add assumptions incrementally. Given assump-
tions E1, . .., Ey, one needs to check that L(M) N L(E1) N...NL(Ex) C L(P).
The linear formalism is strong enough to express very general assumptions, as
it can describe arbitrary finite-state machines, nondeterminism, and fairness. In
fact, it is known that to prove linear-time properties of the parallel composition
M]||E1]] .. .|| Ek, it suffices to consider the linear-time properties of the compo-
nents M, F, ..., By [lL1].

Semi-formal verification: As we saw, in the linear framework language contain-
ment is reduced to language emptiness, i.e., a search for a single computation satis-
fying some conditions. But this is precisely the same principle underlying dynamic
validation. Thus, the linear framework offers support for search procedures that
can be varied continuously from dynamic validation to full formal verification. This
means that techniques for semi-formal verification can be applied not only to invari-
ances but to much more general properties and can also accommodate assumptions
on the environment [22]. In particular, linear-time properties can be compiled into
“checkers” of simulation traces, facilitating the integration of formal verification
with a traditional validation environment [2%]]. Such checkers can also be run as
run-time monitors, which can issue an error message during a run in which a safety
property is violated [L&].

Property-specific abstraction: Abstraction is a powerful technique for combating
state explosion. An abstraction suppresses information from a concrete state-space
by mapping it into a smaller, abstract state-space. As we saw, language containment
is reduced to checking emptiness of a system Aps , (or Axr p) that combines the
design with the complement of the property. Thus, one can search for abstractions
that are tailored to the specific property being checked, resulting in more dramatic
state-space reductions [52].

Combined methods: Nonemptiness of automata can be tested enumeratively [23]]
or symbolically [1]. Recent work has shown that for invariances enumerative and
symbolic methods can be combined [[XY]. Since in the linear framework model
checking of general safety properties can be reduced to invariance checking of the
composite system Aps , (or Apr,p) [5X], the enumerative-symbolic approach can
be applied to a large class of properties and can also handle assumptions.
Uniformity: The linear framework offers a uniform treatment of model checking,
abstraction, and refinement [[¥], as all are expressed as language containment. For
example, to show that a design P is a refinement a design P-, we have to check that
L(Py) C L(P-). Similarly, one abstracts a design M by generating a design M’
that has more behaviors than M, i.e., L(M) C L(M’). Thus, an implementor can
focus on an efficient implementation of the language-containment test. This means
that a linear-time model checker can also be used to check for sequential equiva-
lence of finite-state machines [[£9]. Furthermore, the automata-theoretic approach
can be easily adapted to perform quantitative timing analysis, which computes min-
imum and maximum delays over a selected subset of system executions [L/].
Bounded Model Checking: In linear-time model checking one searches for a
counterexample trace, finite or infinite, which falsifies the desired temporal prop-
erty. In bounded model checking, the search is restricted to a trace of a bounded
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length, in which the bound is selected before the search. The motivating idea is that
many errors can be found in traces of relatively small length (say, less than 40 cy-
cles). The restriction to bounded-length traces enables a reduction to propositional
satisfiability (SAT). It was recently shown that SAT-based model checking can of-
ten significantly outperform BDD-based model checkers [H]. As bounded model
checking is essentially a search for counterexample traces of bounded length, its
fits naturally within the linear-time framework, but does not fit the branching rime
framework.

3.3 Beyond LTL

Since the proposal by Pnueli [Xt] to apply LTL to the specification and verification of
concurrent programs, the adequacy of LTL has been widely studied. One of the con-
clusions of this research is that LTL is not expressive enough for the task. The first to
complain about the expressive power of LTL was Wolper [LLi3] who observed that LTL
cannot express certain w-regular events (in fact, LTL expresses precisely the star-free
w-regular events [[23]). As was shown later [24], this makes LTL inadequate for compo-
sitional verification, since LTL is not expressive enough to express assumptions about
the environment in modular verification. It is now recognized that a linear temporal
property logic has to be expressive enough to specify all w-regular properties [[Liid].
What then should be the “ultimate” temporal property-specification language?

Several extensions to LTL have been proposed with the goal of obtaining full w-
regularity:

— Vardi and Wolper proposed ETL, the extension of LTL with temporal connectives
that correspond to w-automata [[LGSN0A]), ETL essentially combines two perspec-
tive on hardware specification, the operational perspective (finite-state machines)
with the behavioral perspective (temporal connectives). Experience has shown that
both perspectives are useful in hardware specification.

— Baniegbal and Barringer proposed extending LTL with fixpoint operators [&] (see
also [[2x]), yielding a linear p-calculus (cf. [B4]), and

— Sistla, Vardi, and Wolper proposed QPTL, the extension of LTL with quantification
over propositional variables [Z1].

It is not clear, however, that any of these approaches provides an adequate solution from
a pragmatic perspective: implementing full ETL requires a complementation construc-
tion for Biichi automata, which is still a topic under research [32]; fixpoint calculi are
notoriously difficult for users, and are best thought as an intermediate language; and
full QPTL has a nonelementary time complexity [[21].

Another problem with these solutions is the lack of temporal connectives to describe
past events. While such connectives are present in works on temporal logic by philoso-
phers (e.g., [$212]), they have been purged by many computer scientists, who were
motivated by a strive for minimality, following the observation in [[Z] that in applica-
tions with infinite future but finite past, past connectives do not add expressive power.
Somewhat later, however, arguments were made for the restoration of the past in tem-
poral logic. The first argument is that while past temporal connectives do not add any
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expressive power the price for eliminating them can be high. Many natural statements
in program specification are much easier to express using past connectives [[x.]. In fact,
the best known procedure to eliminate past connectives in LTL may cause a significant
blow-up of the considered formulas [aY].

A more important motivation for the restoration of the past is again the use of tem-
poral logic in modular verification. In global verification one uses temporal formulas
that refer to locations in the program text [[&1]. This is absolutely verboten in modular
verification, since in specifying a module one can refer only to its external behavior.
Since we cannot refer to program location we have instead to refer to the history of the
computation, and we can do that very easily with past connectives [[J].

We can summarize the above arguments for the extension of LTL with a quote
by Pnueli [[&1]: “In order to perform compositional specification and verification, it is
convenient to use the past operators but necessary to have the full power of ETL.”

3.4 A Pragmatic Proposal

The design of a temporal property-specification language in an industrial setting is
not a mere theoretical exercise. Such an effort was recently undertaken by a formal-
verification group at Intel. In designing such a language one has to balance competing
needs:

— Expressiveness: The logic has to be expressive enough to cover most properties
likely to be used by verification engineers. This should include not only properties
of the unit under verification but also relevant properties of the unit’s environment.

— Usability: The logic should be easy to understand and to use for verification engi-
neers. At the same time, it is important that the logic has rigorous formal semantics
to ensure correct compilation and optimization and enable formal reasoning.

— Closure: The logic should enable the expression of complex properties from sim-
pler one. This enables maintaining libraries of properties and property templates.
Thus, the logic should be closed under all of its logical connectives, both Boolean
and temporal.

— History: An industrial tool is not developed in a vacuum. At Intel, there was al-
ready a community of model-checking users, who were used to a certain temporal
property-specification language. While the new language was not expected to be
fully backward compatible, the users demanded an easy migration path.

— Implementability: The design of the language went hand-in-hand with the design
of the model-checking tool [[f]. In considering various language features, their im-
portance had to be balanced against the difficulty of ensuring that the implementa-
tion can handle these features.

The effort at Intel culminated with the design of FTL, a new temporal property spec-
ification language [4]]. FTL is the temporal logic underlying ForSpec, which is Intel’s
new formal specification language. A model checker with FTL as its temporal logic is
deployed at Intel [Z]. The key features of FTL are as follows:

— FTL is a linear temporal logic, with a limited form of past connectives, and with
the full expressive power of w-regular languages,
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— it is based on a rich set of logical and arithmetical operations on bit vectors to
describe state properties,

— it enables the user to define temporal connectives over time windows,

— it enables the user to define regular events, which are regular sequences of Boolean
events, and then relate such events via special connectives,

— it enables the user to quantify universally over propositional variables, and

— itcontains constructs that enable the users to model multiple clock and reset signals,
which is useful in the verification of hardware design.

Of particular interest is the way FTL achieves full w-regularity. FTL borrows from
both ETL (as well as PDL [£4]), by extending LTL with regular events, and from QPTL,
by extending LTL with universal quantification over propositional variables. Each of
these extensions provides us with full w-regularity. Why the redundancy? The rationale
is that expressiveness is not just a theoretical issue, it is also a usability issue. It is not
enough that the user is able to express certain properties; it is important that the user
can express these properties without unnecessary contortions. Thus, one need not shy
away from introducing redundant features, while at the same time attempting to keep
the logic relatively simple.

There is no reason, however, to think that FTL is the final word on temporal property-
specification languages. First, one would not expect to have an “ultimate” temporal
property-specification language any more than one would expect to have an “ultimate”
programming language. There are also, in effect, two competing languages. Formal-
Check uses a built-in library of automata on infinite words as its property-specification
language [24], while Cadence SMVHl uses LTL with universal quantification over propo-
sitional variables. Our hope is that the publication of this paper and of [&], concomitant
with the release of an FTL-based tool to Intel users, would result in a dialog on the sub-
ject of property-specification logic between the research community, tool developers,
and tools users. It is time, we believe to close the debate on the linear-time vs. branch-
ing time issue, and open a debate on linear-time languages.

4 Discussion

Does the discussion above imply that 20 years of research into CTL-based model check-
ing have led to a dead end? To the contrary! The key algorithms underlying symbolic
model checking for CTL are efficient graph-theoretic reachability and fair-reachability
procedures (cf. [¥¥]]). The essence of the language-containment approach is that ver-
ification of very general linear-time properties can be reduced to reachability or fair-
reachability analysis, an analysis that is at the heart of CTL-based model-checking en-
gines. Thus, a linear-time model checker can be built on top of a CTL model checker,
as in Cadence SMYV, leveraging two decades of science and technology in CTL-based
model checking.

It should also be stated clearly that our criticism of CTL is in the specific context
of property-specification languages for model checking. There are contexts in which
the branching-time framework is the natural one. For example, when it comes to the

7 http://www-cad.eecs.berkeley.edu/™~ kenmcmil/smv/
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synthesis of reactive systems, one has to consider a branching-time framework, since
all possible strategies by the environment need to be considered [[X2%4]]. Even when
the goal is a simple reachability goal, one is quickly driven towards using CTL as a
specification language [22].

Even in the context of model checking, CTL has its place. In model checking one
checks whether a transition system A/ satisfies a temporal formula . The transition
system M is obtained either by compilation from an actual design, typically expressed
using a hardware description language such as VHDL or Verilog, or is constructed
manually by the user using a modeling language, such as SMV’s SML [[Z4]. In the lat-
ter case, the user often wishes to “play” with A, in order to ensure that M is a good
model of the system under consideration. Using CTL, one can express properties such
as AGAFp, which are structural rather than behavioral. A CTL-based model checker
enables the user to “play” with M by checking its structural properties. Since the reach-
ability and fair-reachability engine is at the heart of both CTL-based and linear-time-
based model checkers, we believe that the “ultimate” model checker should have both
a CTL front end and a linear-time front end, with a common reachability and fair-
reachability engine.
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