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Abstract This paper proposes a partial-order semantics for a stochas-
tic process algebra that supports general (non-memoryless) distributions
and combines this with an approach to numerically analyse the first pas-
sage time of an event. Based on an adaptation of McMillan’s complete
finite prefix approach tailored to event structures and process algebra,
finite representations are obtained for recursive processes. The behaviour
between two events is now captured by a partial order that is mapped
on a stochastic task graph, a structure amenable to numerical analysis.
Our approach is supported by the (new) tool FOREST for generating the
complete prefix and the (existing) tool PEPP for analysing the generated
task graph. As a case study, the delay of the first resolution in the root
contention phase of the IEEE 1394 serial bus protocol is analysed.

1 Introduction

In the classical view of system design, two main activities are distinguished:
performance evaluation and validation of correctness. Performance evaluation
studies the performance of the system in terms like access time, waiting time
and throughput, whereas validation concentrates on the functional behaviour of
the system in terms of e.g. safety and liveness properties. With the advent of
embedded and multi-media communication systems, however, insight in both the
functional and the real-time and performance aspects of applications involved
becomes of critical importance. The seperation of these issues does not make
sense anymore.

As a result, performance aspects have been integrated in various specification
formalisms. A prominent example is stochastic process algebra in which features
like compositionality and abstraction are exploited to facilitate the modular
specification of performance models. Most of these formalisms, however, restrict
delays to be governed by negative exponential distributions. The interleaving
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semantics typically results in a mapping onto continuous-time Markov chains
(CTMC) [111319], a model for which various efficient evaluation algorithms exist
to determine (transient and stationary) state-based measures. Although this
approach has brought various interesting results, tools, and case studies, the
state space explosion problem — in interleaving semantics parallelism leads to
the product of the component state spaces — is a serious drawback. Besides that,
the restriction to exponential distributions is often not realistic for adequately
modelling phenomena such as traffic sources or sizes of data files stored on web-
servers that exhibit bursty heavy-tail distributions.

This paper proposes a partial-order semantics for a stochastic process alge-
bra with general (continuous) distributions and combines this with techniques
to compute the mean delay between a pair of events. The semantics is based
on event structures [28], a well-studied partial-order model for process algebras.
These models are less affected by the state space explosion problem as parallelism
leads to the sum of the components state spaces rather than to their product.
Moreover, these models are amenable to extensions with stochastic informa-
tion [4]. A typical problem with event structures though is that recursion leads
to infinite structures, whereas for performance analysis finite representations are
usually of vital importanc. To overcome this problem we use McMillan’s com-
plete finite prefix approach [26]. This technique, originally developed for 1-safe
Petri nets and recently adapted to process algebra [24], constructs an initial part
of the infinite semantic object that contains all information on reachable states
and transitions.

In our stochastic process algebra the advance of (probabilistic) time and the
occurrence of actions is separated. This separation of discrete and continuous
phases is similar to that in many timed process algebras and has been recently
proposed in the stochastic setting [I6l17]. Most recent proposals for incorporat-
ing general distributions into process algebra follow this approach [3J6]. As a
result of this separation, interaction gets an intuitive meaning — “wait for the
slowest process” — with a clear stochastic interpretation. Moreover, abstraction
of actions becomes possible. We will show that due to this separation the com-
plete finite prefix approach for process algebra [24] can be easily exploited. We
use the prototype tool FOREST to automatically generate a complete finite prefix
from a (stochastic) process algebraic specification.

From the finite prefixes we generate so-called stochastic task graphs, acyclic
directed graphs where nodes represent tasks of which the delay is represented by
a random variable and arcs denote causal dependencies between tasks. Efficient
numerical analysis techniques exist for task graphs, and have been implemented.
For series-parallel graphs numerical results are exact and algorithms exist to
compute the distribution of the delay between a start and finish task. For ar-
bitrary graphs various approximate techniques exist to compute (rather exact)
bounds on the mean delay [21]. We use the PEPP tool suite [8]15] to analyse the
task graphs generated from the complete prefixes.

L Apart from discrete-event simulation techniques and analysis techniques for regular
structures (such as birth-death processes), that we do not consider here.
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Most attempts to incorporate general distributions in process algebra aim
at discrete-event simulation techniques [BI6/14]. To the best of our knowledge,
this paper presents the first approach to analyse stochastic process algebraic
specifications that may contain general distributions in a numerical manner.

The applicability of our approach is illustrated by analysing the root con-
tention phase within the IEEE 1394 serial bus protocol [20]. In particular, we
analyse the distribution of the delay between the detection of a root contention
and its first resolution.

The paper is organised as follows. In Sect. [2] we present a stochastic process
algebra with general distributions. In Sect. [B] we show how to obtain annotated
partial orders using the FOREST tool for finite prefixes. In Sect. @l we discuss how
these partial orders can be seen as task graphs that can be analysed with the
tool PEPP. In Sect. Bl we show how to combine FOREST and PEPP in order to
perform a mean delay analysis of events after a specific state. Sect. [@] contains
an application to the IEEE 1394 protocol, and Sect. [{lis devoted to conclusions
and further work. An extended version of this paper can be found in [3T].

2 A Stochastic Process Algebra

Let Act be a set of actions, a € Act, A C Act, and F', G be general continu-
ous probability distributions. The distinction between observable and invisible
actions plays no role in this paper. The stochastic process algebra used here is a
simple process algebra that contains two types of prefix processes: process a; B
(action prefir) that is able to immediately offer action a while evolving into B,
and (F); B (timed prefiz) that evolves into process B after a delay governed by
the continuous distribution F. That is, the probability that (F'); B evolves into
B before t time units is F'(¢). In the sequel such actions are called delay actions.
The syntax of our language is given by the following grammar:

B = stop|a;B‘(F>;B‘B+B‘B||AB ‘ P

The inaction process stop cannot do anything. The choice between By and Bs
is denoted by Bj + Ba. Parallel composition is denoted by By |4 Bz where A is
the set of synchronizing actions; By ||z Bs is abbreviated to By || Bz2. Processes
cannot synchronise on delay actions. The semantics of the parallel operator || 4

follows the semantics of the parallel operator of LOTOS [2] and thus allows
for multi-way synchronisation. Finally, P denotes process instantiation where a
behaviour expression is assumed to be in the context of a set of process definitions
of the form P := B with B possibly containing process instantiations of P. In
this paper, we assume that a process algebra expression has a finite number of
reachable states.

A few words on B + B> are in order. By + Bs behaves either as By or B,
but not as both. At execution the fastest process, i.e., the process that is enabled
first, is selected. This is known as the race condition. If this fastest process is not
uniquely determined, a non-deterministic selection among the fastest processes
is made.
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Ezample 1. In the rest of this paper we use the following stochastic process
algebra expression as a running example:

Bey := (a; (G); d; stop la,a a; (F1); ¢; (F); d; stop) | b; ¢; stop

3 Partial Orders, Finite Prefixes and FOREST

In [25)26], McMillan presents an algorithm that, for a given 1-safe Petri net, con-
structs an initial part of its occurrence net called unfolding or maximal branching
process [928]. The so-called complete finite prefix of the occurrence net contains
all information on reachable states and transitions. An important optimisation
of the algorithm has been defined in [I1]. This complete finite prefix can be used
as the basis for model checking [T0/[34].

In [24], Langerak and Brinksma adopt the complete finite prefix approach
for process algebra for a model similar to occurrence nets called condition event
structures. In doing so, they have given an event structure semantics to process
algebra. In this section, we briefly recall some definitions of [IT] and [24] that are
needed for the remainder of this paper. We show how to obtain partial orders
from local configurations. Finally, we introduce FOREST, a prototype tool which
is based on the results of [24].

Conditions and Events. A process algebra expression can be decomposed
into so-called conditions, which are action prefix expressions together with in-
formation about the synchronisation context [29]. A condition C' is defined by

C = stop | ;B | (F);B| Cla | |aC

where B is a process algebra expression. Intuitively, a condition of the form
C'||a means that C is the left operand of a parallel operator with action set
A. Similarly, a condition of the form ||4 C means that C is the right operand
of a parallel operator with action set C. For the construction of the complete
finite prefix, the distinction between action prefix conditions and time prefix
conditions plays no role; in the sequel both prefix conditions will be represented
by the expression a; B.

A condition event structure is a 4-tuple (C, E, >, <) with C a set of conditions,
E = Eqet U Egeray a set of events, 1 C C x C, the choice relation (symmetric
and irreflexive), and < C (C x E) U (E x C) the flow relation. The set E,.
is the set of action events and Egeq, is the set of delay events. Let E be a
set of events, then the function delay(FE) returns the delay events of E, i.e.
delay(E) = {e € E | e € Eqgelay ;- Condition event structures are closely related
to Petri nets; the conditions correspond to places whereas the events correspond
to transitions. In [24], actions and process instantiations are labelled with unique
indices. These indices are used to create unique event identifiers. Furthermore,
these indices are used to efficiently compute the finite prefix. For this paper,
these indices and identifiers are not important, and therefore omitted.
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States. A state is a tuple (S, R) with S C C a set of conditions, and R C S x S,
an irreflexive and symmetric relation between conditions called the choice rela-
tion: R C <. A state (S, R) corresponds to a ‘global state’ of the system; for
each process in the system it stores the possible next condition(s). In fact, a
state can always be represented by a process algebra expression. Conditions and
their choice relations can be obtained by decomposing a process algebra expres-
sion. The decomposition function dec, which maps a process algebra expression
B onto a state, is recursively defined by dec(B) = (S(B), R(B)) with

dec(stop) = ({stop}, 9)

dec(a; B) = ({a; B}, 9)

dec(By a Bz2) = (S(B1)[la UllaS(Bz2), R(B1)lla U |aR(Bz))
dEC(Bl + BQ) = (S(Bl) U S(BQ), R(Bl) U R(BQ) U (S(Bl) X S(BQ)))
dec(P) = dec(B)if P:=B

In [24] it is shown how this decomposition function can be used to construct a
derivation system for condition event transitions (i.e. the < relation).

Configurations. Let (C E,x, <) be a condition event structure. We adopt
some Petri net terminology: a marking is a set of conditions. A node is either
a condition or an event. The preset of a node n, denoted by en, is defined by
on={me CUE | m < n}, and the postset ne by ne = {m € CUE | n < m}.
The initial marking My is defined by My = {c € C |ec = @}. An event e is
enabled in a marking M if ee C M. Let M be a marking, then we define the
function enabled(M) as follows: enabled(M) = {e € E | ee C M}.

The transitive and reflexive closure of the flow relation < is denoted by <.
The conflict relation on nodes, denoted by #, is defined as follows: let n; and
ng be two different nodes, then n; # no iff there are two distinct nodes mq
and mg, such that m; < n; and mg < ng, with either (i) m; and ms are two
conditions in the choice relation, i.e. my <1 ma, or (i) my and my are two events
with em; Nemy # @. Two nodes n; and ny are said to be independent, notation
ny X no, iff =(n1 <ng) A =(n2 <np) A —=(ng Xing).

Let ¢ be a condition, then we define i(c) to be the set of conditions in choice
with ¢, i.e. 1(c) = {¢’ € C | ¢x '}, Similarly for a set of conditions C: (C) =
{de€C|3ceC:cxd}. For an event e € E, and M and M’ markings, there
is an event transition M~ M’ iff ee C M and M’ = (M U ece) \ (sc U < (e¢)).
An event sequence is a sequence of events e ... e, such that there are markings

My, ..., M, with My—=> M;— ... - M,,.
We call Econy = {e1, ..., en} a configuration of the condition event struc-

ture. A configuration E.,,s must be conflict-free and backward closed with re-
spect to the < relation. For an event e € E, the local configuration [e] is defined
by [e] = {¢’ € E | ¢/ < e}. The causal ordering < restricted to E x E induces a
partial order over a local configuration [e] (see [22128]30]).

A cut is a marking M which is maximal w.r.t. set inclusion and such that
for each pair of different conditions ¢ and ¢’ in M the following holds: ¢ < ¢’ or
¢ c. It can be shown [24] that each configuration corresponds to a cut which



First Passage Time Analysis of Stochastic Process Algebra 225

can be uniquely associated to a state. The state corresponding to the cut of a
configuration Ec.ny is denoted by State(Econs)-

Unfolding. In [24], Langerak and Brinksma present an algorithm to unfold a
process algebra expression B into a condition event structure Unf(B). The rep-
resentation Unf(B) may be infinite for recursive processes. In order to overcome
this problem they adopted McMillan’s approach to compute the so-called com-
plete finite prefix of a Petri net unfolding to the setting of condition event struc-
tures. The finite prefix algorithm is based on a partial order relation C, called
an adequate order. This relation is defined on finite configurations of Unf(B).
This adequate order C is used to identify so-called cut-off events which do not
introduce new global states. An event e is a cut-off event if Unf(B) contains a
local configuration [eg] such that (i) State([e]) = State([eo]) and (ii) [eo] T [e].
So, a cut-off event is an event of which the marking corresponds to a global state
which has already been identified ‘earlier’ in the unfolding. Conceptually a finite
prefix is obtained by taking an unfolding Unf(B) and cutting away all successor
nodes of cut-off events. It is clear that the finite prefix depends on the ade-
quate order C used to compare configurations. Furthermore, the complete finite
prefix approach only works for finite state processes, i.e. processes with a finite
number of reachable states. In this paper we adopt the adequate order of [24].
The complete finite prefix corresponding with this adequate order is denoted by
FP(B).

Ezample 2. Fig.Mshows the condition event structure of the unfolding Unf (Bey)
of the process algebra expression Be;. As the process algebra expression B, does
not contain process recursion, the unfolding Unf (B.,) is already finite by itself.
Conditions are represented by circles and events are depicted by squares. The
initial marking My is represented by the three conditions at the top of Fig.[Il. The
local configuration of event ¢ is [¢] = {a, (F1),b,c}. The state of configuration
[c] is formally represented by State([c]) = ({(G); d;stop|a,dlc, |a,a (F2); d; stop|c,
|| stop}, @). The process algebra expression corresponding with State([c]) is
((G); d;stop ||q,a (F2);d;stop) || stop. The local configuration of event d is [d] =
{a,b,(G), (F1),c, (F2),d}. The state of configuration [d] is represented by the
three leaf conditions. The partial order of the events within [d] is induced by
the flow relation < which is depicted by the arrows between the conditions and
events.

FOREST. FORESTH[SI] is a prototype tool that is based on the unfolding and
finite prefix algorithms of [24]. Given a process algebra expression B (with a finite
number of reachable states), FOREST computes the corresponding complete finite
prefix FP(B) as a condition event structure. The tool allows to use McMillan’s
original adequate ordering or the adequate ordering defined in [24]. FOREST is
used as a prototype tool to experiment with several aspects of the unfolding
algorithm, like alternative adequate orderings, independence algorithms, cut-off

2 FOREST stands for “a tool for event structures”.
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a; (G); d; stop || q,dlle IIa,d a; (F1); ¢; (F2); d; stop | c ||c b; c; stop

); ¢ (Fa); d; stopl|e

; (F2); d; stop | c

5top [l dllc O 0. stop]le

Fig. 1. Condition event structure of the unfolding Unf (Bey).

criteria, etc. For these experimental purposes, FOREST can either export the
finite prefix FP(B) to a textual representation or to a format suitable as input
for graph drawing tools like veg [32] or dot [12]. Future additions to FOREST will
include an interactive visual simulator and a model checking module. FOREST
has been implemented in C++ (4000 lines of code) and the development took
roughly eight man months.

This section has only briefly addressed the construction of the complete finite
prefix FP(B) of a process algebra expression B. For the remainder of this paper,
the most important aspect of the unfolding algorithm is that the construction of
the condition event structure induces a partial order on the events of a (local)
configuration. FOREST can be used to compute such partial orders.

4 Task Graph Analysis and PEPP

The tool PEPH] has been developed at the University of Erlangen [8[15] in
the early nineties of the previous century. The tool has a broad functional-
ity, amongst which program instrumentation, monitoring (using the hardware

3 PEPP stands for “Performance Evaluation of Parallel Programs”.
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(a) (b)

Fig. 2. Task graphs of (a) the local configuration of event d of the running
example Be, and (b) the local configuration of event root; of the root contention
protocol (discussed in Sect. [@]).

monitor ZM4) and trace analysis. In this paper, we only use the following func-
tionality of PEPP: (i) the creation of task graphs and (ii) the automatic analysis
of task graphs.

Task graphs consist of nodes connected by directed edges. Nodes, which rep-
resent tasks to be executed, can be of several types (e.g. hierarchical, cyclic and
parallel nodes) but here we will only use so-called elementary nodes that model
activities taking a certain amount of time, i.e. delay actions. The time that an
activity or task takes is governed by a continuous distribution function. The
dependency between tasks is modelled by the directed edges between the nodes.

PEPP supports several built-in distribution functions, like deterministic, ex-
ponential, approximate, and mixed Erlang distributions, the parameters of which
can be chosen by the user. It is also possible to use general distributions in a
numerical form, that can either be created by the user or by the additional tool
Capre [27]. A numerical representation of a distribution is given by a text file
containing the offset of the density function, the step size and the density values
for each step. CAPP also allows the graphical representation of distribution and
density functions. Nodes can be created interactively by the user via a graphical
interface. Nodes can be connected by edges representing causal dependencies.
These dependencies are required to be acyclic and the resulting graph is called
a task graph. In fact a task graph can be seen as a partial ordering of nodes.

Ezxample 3. Suppose we are interested in the running time of event d of B,
starting from the initial state. If we only consider the delay actions and the
causal dependencies of Unf (B, ) of Fig.[l we obtain the task graph of Fig. 2] (a).

Analysis of task graphs. After a task graph has been input to PEPP, the
run time distribution of the model can be analysed in several ways. The most
attractive mode of analysis is via SPASYY. In order to analyse a task graph

4 CaPP stands for “Calculation and Presentation Package”.
5 SPASS stands for “Series Parallel Structure Solver”.
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using SPASS it has to be in series-parallel reducible form. This means it can be
reduced to a single node by successively applying two reduction steps:

— Series reduction: in this reduction step a sequence of nodes is reduced to a
single node.

— Parallel reduction: in this reduction step several parallel nodes with the same
predecessors and successors are reduced to a single node.

SPASS analysis is an exact type of analysis; the SPASS reductions preserve the
performance analysis aspects. A series-parallel task graph is reduced by SPASS
to a single node with a distribution that represents the first passage time of the
complete task graph. This distribution function is calculated in a numerical way
and can be visualised (together with its corresponding density function) using
CAPP.

If a task graph is not series-parallel reducible it can be analysed using sev-
eral well-known approximate (bounding) methods [T5J2T]. The basic idea behind
these approximations is that nodes are added or deleted until the task graph be-
comes series-parallel reducible. This leads to upper and lower bounds of the first
passage time of the task graph. PEPP offers several of these bounding techniques.

It is also possible to approximate the analysis by transforming the task graph
into an interleaving transition system, and approximating the distributions by
deterministic and exponential distributions. This approximation suffers heavily
from state space explosion problems and does not exploit the advantages of the
partial order properties; for these reasons this analysis method has not been used
in this paper.

PEPP is a powerful analysis tool for stochastic task graphs. For simple ex-
amples these task graphs can easily be created in a manual way. For realistic
system designs, though, developing task graphs in a direct way becomes more and
more cumbersome and error prone. An effective solution to this problem, as first
recognised by Herzog in [18], is to automatically generate task graphs in a com-
positional manner from a stochastic process algebra specification. While [18] re-
veals some problems in using task graphs as a semantic model for (non-recursive)
stochastic process algebras, our approach — that is aimed at recursive processes —
is to generate task graphs from a finite event structure semantics.

5 First Passage Time Analysis

In Sect. 3, we discussed how a partial order of events of a local configuration [e]
can be obtained from a finite prefix FP(B) of an unfolding. In this section we
discuss how the partial orders generated by FOREST can be used for first passage
time analysis with PEPP.

Algorithm [ constructs a task graph of the local configuration of an event
e starting from the initial state of a process algebra expression. With PEPP we
can compute the first passage time of event e to occur (starting from the initial
state). If the partial order of [e] happens to be series-parallel reducible, PEPP
will even compute the distribution function of the runtime.



First Passage Time Analysis of Stochastic Process Algebra 229

Algorithm 1. Construct the task graph for [e] starting from the initial state of B.

1. Specify the target event e within the process algebra expression B.

2. Use FOREST to compute the finite prefix FP(B) until event e has occurred or the
complete finite prefix has been generated. If the prefix does not contain e (which
means that e is not reachable), then stop; apparently the problem was not well-
defined.

3. Consider the local configuration [e]; together with the causal ordering < this in-
duces a partial order P.

4. Project P onto the delay events. This yields a task graph that can be used as input
to PEPP.

But the analysis is not restricted to starting from the initial state. We can
also supply a set of independent events {ej,...,e,} as a starting point, and
ask for the passage time for an event e to occur after these events. There is
however a constraint involved here: if after the events {e1,...,e,} a delay ac-
tion is enabled, then this delay action has to be causally dependent on at least
one event in {ei,...,e,}. In other words, the following should hold: Ve., €
enabled(State([e1] U ... U [en])) : €en € Egelay = Jei € {e1,....en} 1 € < €en.
Otherwise there is no way to determine when such a delay event e, may have
started. Algorithm [l shows how to apply PEPP when the start state is deter-
mined by a set of independent events within the finite prefix FP(B). Of course,
the target event e has to be causally dependent on the events in {eq,...,e,}.
If this is not the case, Algorithm [I] - started in step 5 of Algorithm B — will
unsuccessfully terminate in step 2.

Note that the partial orders obtained by both algorithms are only useful for
PEepP if the configuration between the initial event(s) and the target event e
contains at least one delay event.

Example 4. Consider Fig. [l which corresponds to the condition event structure
of Unf(Beg). Suppose we are interested in the runtime of event d. The sets {a}
and {a,b} can both be used as input for Algorithm [ in fact, for this example
they will all yield the task graph of Fig. 2 (a). The singleton set {b} can also
be used as a starting point for Algorithm [ as the delay events (G) and (Fy)
are not enabled in State([b]); only the event a is enabled in State([b]). Again,
the task graph of Fig.[2 (a) will be computed. The singleton set {c}, however,
cannot be used as a valid input for Algorithm 2] as the delay event (G), which is
enabled in State([c]), does not depend on event ¢. The set {a, ¢} cannot be used
as input for Algorithm [2 either, because the events a and ¢ are not independent:
a<c.

6 The Root Contention Phase in IEEE 1394

This section discusses a small case study where we applied our approach to com-
pute the mean passage time of the first resolution of the root contention phase
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Algorithm 2. Construct the task graph for [e] starting from {ei,...,en}.

1. Specify the target event e within the process algebra expression B.
2. Use FOREST to compute the finite prefix FP(B) until the events {e1,...,e,} have
all occurred or the complete finite prefix has been generated. If FP(B) does not

contain all events of {e1,...,en}, then stop; apparently the problem was not well-
defined.
3. If there are conflicts among the events in {e1,...,en} then stop, as apparently the

problem is not well-defined; otherwise continue.

4. Calculate S = State([e1] U ... U [ex]).

5. Check if all enabled delay actions which causally depend on S are dependent on
at least one event from {ei,...,en}. If not, stop; apparently the problem is not
well-defined. Otherwise, apply Algorithm [ with S as initial state and compute the
partial order of the local configuration of target event e.

of the IEEE 1394 protocol [20]. Due to space limitations only the FOREST and
PEPP models of the root contention phase are discussed here. A more thorough
discussion can be found in [31].

FOREST. Fig. [ presents the specification of the root contention protocol in
our process algebra. The model itself is based on [33]. The two Node; processes
are connected to each other by two Wire; processes, that represent the commu-
nication lines between the components. Each Node; process has a Buf; process
which can hold a single message from the other Node(; ;). New messages from
Node(; _;) will simply overwrite older messages. Both nodes start (via Proc;) to
wait g;(t) units of time. If after waiting, the buffer is still empty (i.e. check_emp,),
the node will sent a send_reg; to its partner and will subsequently wait for an
acknowledgement. If this acknowledgement (i.e. check_ack;) arrives, Node; will
declare itself a child using action child;. On the other hand, if after waiting g;(t)
units of time, Node; receives a check_reg, action, it declares itself to be the leader
using action root;. The delay of the communication line is modelled by the delay
action (Fj).

The basic idea behind the protocol is that if the waiting times g;(t) of the two
nodes are different, the ‘slowest’ node will become root. Since with probability
one the outcomes of the waiting times g;(¢) will eventually be different, the root
contention protocol will terminate with probability one [33].

Apart from the performance analysis of the protocol that we report on in this
paper, the specification of Fig. [ may readily be used for a functional analysis
of the protocol. The condition event structure generated by FOREST for this
process algebraic expression contains 57 events (of which 8 are cut off-events)
and 210 conditions.

To illustrate both algorithms of Sect. [H we have identified a start state in
the process algebra expression of Fig. [3 (i.e. corresponding with the events
{e1,...,en}) from which we want to compute the first passage time to another
state (i.e. target event e). The start state is defined by the first occurrence of the
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The root contention protocol is modelled by the following stochastic process algebra
expression:

(Nodeo || Noder) [Gion (Wireo || Wirer)

with the following (process) definitions (¢ € {0,1}) :

Node; = (Proc; |Loc Buf;)
Proc; = (Gi); (check_emp,; SndReq; + check_req;; SndAck;)
SndAck;, := send_acki; root;; stop
SndReq, := send_req;; (check_req;; Proc; + check_ack;; child;; stop)
Buf; = check_emp,;; Buf; + recv_req,; BufReq, + recv_ack;; BufAck;
BufReq, := check_req;; Buf; 4+ recv_req,;; BufReq, + recv_ack;; BufAck;
BufAck; := check_ack;; Buf; + recv_req;; BufReq, + recv_ack;; BufAck;
Wire; = send_req;; WireReq, + send_ack;; WireAck;
WireReq; = (F); recv_req(;_;; Wire; + Wire;
WireAck; := (Fi); recv_ack—;); Wire; + Wire;
Glob == {send_req,, send_req,, send_acko, send_acki,

recv_req,, recv_req,, recv_acko, recv_acki}
Loc == {check_emp,, check_req;, check_ack;}

Fig. 3. Process algebra expression of the root contention protocol.

following actions: send_req, recv_req, send_req, and recv_req,. That is, just be-
fore both the check_req, and check_req, actions are about to happen. In the root
contention protocol, this corresponds to the situation in which both processes
are about to receive the parent request of their contender, which will initiate a
new contention resolution phase. In the graph representation of the correspond-
ing condition event structure, this set of starting events can easily be identified,
due to the flow relation < and the induced causal order <. The complete FP(B)
is omitted due to its size, though.

From these four events, we are interested in the delay until the first occurrence
of the event corresponding with action rooti, that is, the first resolution after
the contention, which declares Node; to be the root. Fig. [@ shows the partial
order of the events leading to this root; event. It is generated using the graph
drawing tool dot [12]. Note that the events check_req, and check_req, are indeed
the first events that can occur. Within FOREST, distribution events all have a
del _ prefix.

PEPP. For the runtime analysis with PEPPE7 only the delay events of the
partial order are of interest. Fig. 2 (b) shows the task graph as used by PEPP
containing only the delay events and the elementary start and end events; it is
the projection of Fig. @ on the delay events. For the events (Go) and (G1) we
have used the same uniform distribution function G(t), that is used in [5] for the

6 For our experiments we used version 3.3 of PEPP (released in July 1993) [7].
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| check_req_1 |

check_empty_0

| check_req_0 |

check_req_1

Fig. 4. Partial order of the events leading to the root; event.

transient analysis (via simulation) of the root contention protocol. A graphical
representation of the distribution function G(¢) is given in Fig. Bl The unit of
the Figures Bland [Blis ﬁ usec as PEPP requires fixed step-size. The parameters
D, N and I are parameters of the density function ¢(t) which is defined as tuple
g=(D,N,go,...,g1), where D is the displacement between 0 and go and N is
the order of the distribution [I5]. For the delay event (Fy) we used an uniform
distribution function F(t) between 25 and 1oz, assuming that the transmission
speed of the lines is 198m/usec.

We used PEPP to analyse the task graph corresponding with the local config-
uration of the root; event. Fig. @l shows a graphical representation of the density
function of the first passage time together with the average time (0.51 usec) of
the partial order leading to root;. Note that the results obtained only relate to
the time of the root contention when contention is resolved on the first attempt
of the protocol. It does not provide information on the transient behaviour of
the protocol.

7 Conclusions

In this paper we discussed a partial-order semantics for a stochastic process al-
gebra that supports general (non-memoryless) distributions and combined this
with an approach to numerically analyse the mean delay between two events.
Based on an adaption of McMillan’s complete finite prefix approach tailored
to event structures and process algebra, we used FOREST to obtain finite rep-
resentations for recursive processes. The behaviour between two events is now
captured by a partial order of events that can be mapped on a stochastic task
graph. We used PEPP for numerical analysis of such task graphs.
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Fig. 5. Distribution function G(¢).  Fig. 6. Density function of the run-
time of the configuration leading to
the root; event.

The paper presents a novel application of McMillan’s finite prefix algorithm.
Furthermore, the work can be seen as a successor of [4] in the sense that it shows
the practical feasibility of the use of event structure semantics for stochastic
analysis.

A clear advantage of our approach is that we are able to reason about both the
functional and non-functional aspects of systems using the same model and nota-
tion. Furthermore, as our approach uses general distributions, hence, it can still
be used when approximations through exponential distributions are no longer
realistic.

We foresee three different uses of our approach for performance modelling.
First, it is possible that the first passage time between two events is simply what
one is interested in, and then our approach yields the answer. Secondly, our
approach might play an auxiliary role in establishing the right parameters for
performance models of other types that can then be further analysed. Thirdly,
our approach might be the first step in a more evolved numerical calculation
exploiting more features of PEPP.

In the current setting we are able to compute the first passage time of a single
event. Our next step will be to try to adopt our approach to the combined run-
times of conflicting events and repetitive events. In [23], Langerak has shown how
to derive a graph rewriting system from the complete finite prefix of a condition
event structure. We are currently studying the use of a graph rewriting system
as the basis for transient analysis with PEPP, using its more advanced node
types like cyclic nodes, hierarchical nodes and probabilistic choice. This would
make it possible to compare our work with discrete-event simulation approaches
like ¢ [BJ6]. Furthermore, we are currently working on an (user) interface to
integrate FOREST and PEPP.
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