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Abstract. In previous work we have developed and prototyped a silicon

compiler which translates a functional language (SAFL) into hardware.

Here we present a SAFL-level program transformation which: (i) parti-

tions a speci�cation into hardware and software parts and (ii) generates

a specialised architecture to execute the software part. The architecture

consists of a number of interconnected heterogeneous processors. Our

method allows a large design space to be explored by systematically

transforming a single SAFL speci�cation to investigate di�erent points

on the area-time spectrum.

1 Introduction

In [12] we introduced a hardware description language, SAFL (Statically Allo-
cated Functional Language), and sketched its translation to hardware. An opti-
mising silicon compiler for SAFL targetting hierarchical RTL Verilog has been
implemented [18] and tested on a number of designs, including a small commer-
cial processor1. SAFL is a �rst-order functional language with an ML [10] style
syntax. We argue the case for functional languages over (say) Occam on the
grounds of easier and more powerful program analysis, transformation and ma-
nipulation techniques. The essential features of SAFL can brie
y be summarised
as follows:

{ programs are a sequence of function de�nitions;

{ functions can call other de�ned functions but recursive calls must be tail-
recursive2. (Section 2.5 addresses the exact technical restrictions.)

1 The instruction set of Cambridge Consultants XAP processor was implemented (see

www.camcon.co.uk). We did not include the SIF instruction.
2 Section 2.6.3 shows how this restriction can be removed by mapping general recursive

functions into software.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 236{251, 2001.
c
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This allows our SAFL silicon compiler to:

{ compile SAFL in a resource-aware manner. That is we map each function
de�nition into a single hardware-level resource; functions which are called
more than once become shared resources3 .

{ synthesise highly parallel hardware|referential transparency allows one to
evaluate all subexpressions in parallel.

{ statically allocate the storage (e.g. registers and memories) required by a
SAFL program.

The SAFL language is designed to facilitate source-to-source transformation.
Whereas traditional \black-box" synthesis systems synthesise hardware accord-
ing to user-supplied constraints, our approach is to select a particular implemen-
tation by applying transformation rules to the SAFL source as a pre-compilation
phase. We have shown that applying fold/unfold transformations [4] to SAFL
speci�cations allows one to explore various time-area tradeo�s at the hardware
level [12,13]. The purpose of this paper is to demonstrate how hardware/software
partitioning can be seen as a source-to-source transformation at the SAFL level
thus providing a formal framework in which to investigate hardware/software co-
design. In fact we go one step further than traditional co-design since as well as
partitioning a speci�cation into hardware and software parts our transformation
procedure can also synthesise an architecture tailored speci�cally for executing
the software part. This architecture consists of any number of interconnected
heterogeneous processors. There are a number of advantages to our approach:

{ Synthesising an architecture speci�cally to execute a known piece of software
can o�er signi�cant advantages over a �xed architecture [17].

{ The ability to synthesise multiple processors allows a wide range of area-
time tradeo�s to be explored. Not only does hardware/software partitioning
a�ect the area-time position of the �nal design, but the number of proces-
sors synthesised to execute the software part is also signi�cant: increasing
the number of processors pushes the area up whilst potentially reducing
execution time (as the processors can operate in parallel).

{ Resource-awareness allows a SAFL speci�cation to represent shared resources.
This increases the power of our partitioning transformation since, for exam-
ple, multiple processors can access the same hardware resource (see Figure 1
for an example).

1.1 A Brief Overview of the SAFL Language

SAFL is a language of �rst order recurrence equations; a user program consists
of a sequence of function de�nitions:

fun f1(~x) = e1; : : : ; fun fn(~x) = en

3 All sharing issues are handled automatically by our silicon compiler: arbiters are

inserted where necessary to protect shared resources and data-validity analysis is

performed facilitating the generation of eÆcient inter-resource interface logic [18].
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Programs have a distinguished function, main, (usually fn) which represents an
external world interface|at the hardware level it accepts values on an input
port and may later produce a value on an output port. The abstract syntax of
SAFL expressions, e, is as follows (we abbreviate tuples (e1; : : : ; ek) as ~e and
similarly (x1; : : : ; xk) as ~x):

{ variables: x; constants: c;

{ user function calls: f(~e);
{ primitive function calls: a(~e)|where a ranges over primitive operators (e.g.

+, -, <=, && etc.);

{ conditionals: e1 ? e2 : e3; and

{ let bindings: let ~x = ~e in e0 end

See Figures 3 and 4 for concrete examples of SAFL code.

1.2 Comparison with Other Work

Previous work on compiling declarative speci�cations to hardware has centred
on how functional languages themselves can be used as tools to aid the design
of circuits. Sheeran's et al. muFP [19] and Lava [2] systems use functional pro-
gramming techniques (such as higher order functions) to express concisely the
repeating structures that often appear in hardware circuits. In this framework,
using di�erent interpretations of primitive functions corresponds to various op-
erations including behavioural simulation and netlist generation. Our approach
takes SAFL constructs (rather than gates) as primitive. Although this restricts
the class of circuits we can describe to those which satisfy certain high-level prop-
erties, it permits high-level analysis and optimisation yielding eÆcient hardware.
(A more detailed comparison of SAFL with other hardware description languages
including Verilog, VHDL, ELLA and Lustre can be found in [13]).

Hardware/software co-design is well-studied and many tools have been built
to aid the partitioning process [3,6,1]. Although these systems di�er in their
approach to co-design they are similar in so far as partitioning is a \black-
box" phase performed as part of the synthesis process. By making partition-
ing visible at the source-level we believe our approach to be more 
exible|
hardware/software co-design is just one of a library of source-to-source transfor-
mations which can be applied incrementally to explore a wide range of architec-
tural trade-o�s.

The idea of converting a program into a parameterised processor and corre-
sponding instruction memory is not new; Page described a similar transforma-
tion [17] within the framework of Handel [16] (a subset of Occam for which a
silicon compiler was written). Whereas Page's transformation allowed a designer
to synthesise a single parameterised processor, our method allows one to gen-
erate a much more general architecture consisting of multiple communicating
processors accessing a set of (potentially shared) hardware resources.

The impact of source-to-source transformation has been investigated in the
context of imperative hardware description languages [20,14]. We argue that
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program transformation is a more powerful technique in the SAFL domain for
two reasons:

{ The functional properties of SAFL allow equational reasoning and hence
make a wide range of transformations applicable (as we do not have to worry
about side e�ects).

{ The resource-aware properties of SAFL give fold/unfold transformations pre-
cise meaning at the design-level (e.g. we know that duplicating a function
de�nition in the source is guaranteed to duplicate the corresponding resource
in the generated circuit).

2 Technical Details

The �rst step in the partitioning transformation is to de�ne a partitioning func-
tion, �, specifying which SAFL functions are to be implemented directly in
hardware and which are to be mapped to a processor for software execution.
Automated partitioning is not the subject of this paper; we assume that � is
supplied by the user. For expository purposes we initially describe a transforma-
tion where all processors are variants of a stack machine: Section 2.1 describes
the operation of the stack machine and Section 2.2 shows how it can be en-
coded as a SAFL function; a compiler from SAFL to stack code is presented
in Section 2.3. In Section 2.6 we generalise our partitioning transformation to a
network of heterogenous processors.

1M  : f, h

1M  : f, h 2M  : i, j
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Partitioning: (a) shows the call-graph of a SAFL speci�cation, P ; (b) shows the

call-graph of �̂(P ), where � = f(f;M1); (h;M1); (i;M2); (j;M2)g. IM 1 and IM 2

are instruction memory functions (see Section 2.2); (c) shows the structure of the

�nal circuit after compilation. The box marked `A' represents an arbiter (inserted

automatically by the SAFL compiler) protecting shared resource k; the bold arrows

represent calls, the dotted arrows represent return values.

Fig. 1. A diagrammatic view of the partitioning transformation
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Let M be the set of processor instances used in the �nal design. We de�ne a
(partial) partitioning function

� : SAFL function name *M

mapping the function de�nitions in our SAFL speci�cation onto processors inM.
�(f) is the processor on which function f is to be implemented. If f =2 Dom(�)
then we realise f in hardware, otherwise we say that f is located on machine
�(f). Note that multiple functions can be mapped to the same processor.

We extend � to a transformation function

�̂ : SAFL Program ! SAFL Program

such that given a SAFL program, P , �̂(P ) is another SAFL program which
respects the partitioning function �. Figure 1 shows the e�ect of a partitioning
transformation, �̂, where

M = fM1;M2g; and

� = f(f;M1); (h;M1); (i;M2); (j;M2)g

In this example we see that g and k are implemented in hardware since g; k =2

Dom(�). �̂(P ) contains function de�nitions: M1, M2, IM1, IM2, g and k where M1

and M2 are processor instances and IM1 and IM2 are instruction memories (see
Section 2.2).

2.1 The Stack Machine Template

Our stack machine can be seen as a cut-down version of both Landin's SECD
machine [9] and Cardelli's Functional Abstract Machine [5]. Each instruction has
an op-code �eld and an operand �eld n. The following instructions are de�ned:

PushC(n) push constant n onto the stack

PushV(n) push variable (from o�set n into the current stack)

PushA(n) push the value of the stack machine's argument an (see Sec-
tion 2.2) to the stack

Squeeze(n) pop top value; pop next n values; re-push top value

Return(n) pop result; pop link; pop n arguments; re-push result; branch
to link

Call Int(n) push address of next instruction onto stack and branch to ad-
dress n

Jz(n) pop a value; if it is zero branch to address n

Jmp(n) jump to address n

Alu2(n) pop two values; do 2-operand builtin operation n on them and
push the result

Halt terminate the stack machine returning the value on top of the
stack
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We de�ne a family of instructions to allow the stack machine to call external
functions:

Call Extf pop each of f 's arguments from the stack; invoke the external
function f and push the result to the top of the stack.

The stack machine template, SMT, is an abstract model of the stack machine
parameterised on the code it will have to execute. Given a stack machine pro-
gram, s, (i.e. a list of stack machine instructions as outlined above) SMT hsi is a
stack machine instance: a SAFL function encoding a stack machine specialised
for executing s. Our notion of a template is similar to a VHDL generic.

2.2 Stack Machine Instances

A stack machine instance, SMi 2M, is a SAFL function of the form:

fun SMi(a1, ..., ani
, PC, SP) = ...

where ni = max (farity(f) j �(f) = SMig)

Arguments PC and SP are used to store the program counter and stack pointer re-
spectively; a1, . . . , ani

are used to receive arguments of functions located on SMi.
Each stack machine instance is associated with an instruction memory function,
IMi of the form:

fun IMi(address) =

case address of 0 => instruction 0

| 1 => instruction 1

... etc.

SMi calls IMi(PC) to load instructions for execution.
For example, consider a stack machine instance, SMf ;h , where we choose to

locate functions f (of arity 2) and h (of arity 3). Then nf;h = 3 yielding signa-
ture: SMf ;h(a1; a2; a3; PC; SP). IMf;h is an instruction memory containing compiled
code for f and h. To compute the value of h(x; y; z) we invoke SMf ;h with argu-
ments a1 = x, a2 = y, a3 = z, PC = ext hentry (h's external entry point|see
Section 2.3) and SP = 0. Similarly to compute the value of f(x; y) we invoke
SMf ;h with arguments a1 = x, a2 = y, a3 = 0, PC = ext f entry and SP = 0. Note
how we pad the a-arguments with 0's since arity(f) < 3.

The co-design of hardware and software means that instructions and ALU
operations are only added to SMi if they appear in IMi. Parameterising the stack
machine template in this way can considerably reduce the area of the �nal design
since we remove redundant logic in each processor instance.

We can consider many other areas of parameterisation. For example we can
adjust the op-code width and assign op-codes to minimise instruction-decoding
delay [17]. Figure 4 gives the SAFL code for a 16-bit stack machine instance4.
An alu2 function, and an example stack machine program which computes tri-
angular numbers is shown in Figure 3.
4 Approximately 2000 2-input equivalent gates when compiled using the SAFL sili-

con compiler. For simplicity we consider a simple stack machine with no Call Ext

instructions.
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2.3 Compilation to Stack Code

Figure 2 gives a compilation function from SAFL to stack based code. Although
the translation of many SAFL constructs is self-explanatory, the compilation
rules for function de�nition and function call require further explanation:

Compiling Function De�nitions

The code generated for function de�nition

fun f(x1; : : : ; xk) = e

requires explanation in that we create 2 distinct entry points for f : fentry and
ext fentry. The internal entry point, fentry , is used when f is invoked internally
(i.e. with a Call Int instruction). The external entry point, ext fentry , is used
when f is invoked externally (i.e. via a call to �(f), the machine on which f

is implemented). In this latter case, we simply execute k PushA instructions to
push f 's arguments onto the stack before jumping to f 's internal entry point,
fentry.

Compiling Function Calls

Suppose function g is in software (g 2 Dom(�)) and calls function f . The code
generated for the call depends on the location of f relative to g. There are three
possibilities:

1. If f and g are both implemented in software on the same machine (f 2

Dom(�) ^ �(f) = �(g)) then we simply push each of f 's arguments to the
stack and branch to f 's internal entry point with a Call Int instruction.
The Call Int instruction pushes the return address and jumps to fentry ;
the compiled code for f is responsible for popping the arguments and link
leaving the return value on the top of the stack.

2. If f is implemented in hardware (f =2 Dom(�)) then we push each of f 's
arguments to the stack and invoke the hardware resource corresponding to
f by means of a Call Extf instruction. The Call Extf instruction pops each
of f 's arguments, invokes resource f and pushes f 's return value to the stack.

3. If f and g are both implemented in software but on di�erent machines (f; g 2
Dom(�) ^ �(f) 6= �(g)) then g needs to invoke �(f) (the machine on which
f is located). We push �(f)'s arguments to the stack: the arguments for f
possibly padded by 0s (see Section 2.2) followed by the program counter PC
initialised to ext f entry and the stack pointer SP initialised to 0. We then
invoke �(f) using a Call Ext�(f) instruction.
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Let �, be an environment mapping variable names to stack o�sets (o�set 0 signi�es

the top of the stack). Let g be the name of the function we are compiling. Then

[[ � ]]g� gives an instruction list corresponding to g. (We omit g for readability in

the following|it is only used to identify whether a called function is located on

the same machine).

We use the notation �fx 7! ng to represent environment � extended with x map-

ping to n. �+n represents an environment constructed by incrementing all stack

o�sets in � by n|i.e. �+n(x) = �(x) + n. ; is the empty environment. The in�x

operator @ appends instruction lists. Repeat(l; n) is l @ : : : @ l (n times); (this is

used to generate instruction sequences to pad argument lists with 0s).

[[c]]�
def
= [PushC(c)]

[[x]]�
def
= [PushV(�(x))]

[[f(e1; : : : ; ek)]]�
def
=

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

[[e1]]� @ [[e2]]�
+1 @ : : : @ [[ek]]�

+(k�1) @ [Call Extf ]

if f =2 Dom(�)

[[e1]]� @ [[e2]]�
+1 @ : : : @ [[ek]]�

+(k�1)

@ [Call Int(fentry)]

if f 2 Dom(�) ^ �(f) = �(g)

[[e1]]� @ [[e2]]�
+1 @ : : : @ [[ek]]�

+(k�1)

@ Repeat([PushC(0)];arity(�(f))� 2� k)

@ [PushC(ext f
entry

);PushC(0);Call Ext�(f)]

if f 2 Dom(�) ^ �(f) 6= �(g)

[[a(e1; e2)]]�
def
= [[e1]]� @ [[e2]]�

+1 @ [Alu2(a)]

[[let x = e1 in e2]]�
def
= [[e1]]� @ [[e2]]�

+1
fx 7! 0g @ [Squeeze(1)]

[[e1 ? e2 : e3]]�
def
= let l and l0 be new labels in

[[e1]]� @ [Jz (l)] @ [[e2]]� @ [Jmp (l0); label: l]

@ [[e3]]� @ [label: l0]

[[fun g(x1; : : : ; xk) = e]]
def
= [label: gentry ] @ [[e]]g;fxk 7! 1; xk�1 7! 2; : : : ; x1 7! kg

@ [Return(k)]

@ [label: ext g
entry

; PushA(1); : : : ; PushA(k);

Call Int(gentry ); Halt]

Fig. 2. Compiling SAFL into Stack Code for Execution on a Stack Machine
Instance
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2.4 The Partitioning Transformation

Having introduced the stack machine (Section 2.1) and the associated compila-
tion function (Section 2.3) the details of the partitioning transformation, �̂, are
as follows:

Let P be the SAFL program we wish to transform using �. Let f be a SAFL
function in P with de�nition df of the form

fun f(x1; : : : ; xk) = e

We construct a partitioned program �̂(P ) from P as follows:

1. For each function de�nition df 2 P to be mapped to hardware (i.e. f =2

Dom(�)) create a variant in �̂(P ) which is as df but for each call, g(e1; : : : ; ek):

If g 2 Dom(�) then replace the call g(~e) with a call:

m(e1; : : : ; ek; 0; : : : ; 0;| {z }
arity(m)�2�k

ext gentry ; 0)

where m = �(g), the stack machine instance on which g is located.

2. For each m 2M:

(a) Compile instruction sequences for functions located on m:

Codem = f[[df ]] j �(f) = mg

(b) Generate machine code for m,MCodem, by resolving symbols in Codem,
assigning opcodes and converting into binary representation.

(c) Generate an instruction memory for m by adding a function de�nition,
IMm, to �̂(P ) of the form:

fun IMm(address) =

case address of 0 => instruction 0

| 1 => instruction 1

... etc.

where each instruction i is taken from MCodem.

(d) Generate a stack machine instance, SMT hCodemi and append it to �̂(P ).

For each m 2 M, �̂(P ) contains a corresponding processor instance and
instruction memory function. When �̂(P ) is compiled to hardware resource-
awareness ensures that each processor de�nition function becomes a single pro-
cessor and each instruction memory function becomes a single instruction mem-
ory. The remaining functions in �̂(P ) are mapped to hardware resources as
required. Function calls are synthesised into optimised communication paths be-
tween the hardware resources (see Figure 1c).
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2.5 Validity of Partitioning Functions

This section concerns some �ne technical details|it can be skipped on �rst
reading.

We clarify the SAFL restriction on recursion5 given in the Introduction as
follows.

In order for a SAFL program to be valid, all recursive calls, including those

calls which form part of mutually-recursive cycle, may only occur in tail-context.

Non-recursive calls may appear freely.

This allows storage for SAFL variables to be allocated statically as tail re-
cursion does not require the dynamic allocation of stack frames.

Unfortunately, in general, a partitioning function, �, may transform a valid
SAFL program, P , into an invalid SAFL program, �̂(P ), which does not satisfy
the recursion restrictions. For example consider the following program, Pbad :

fun f(x) = x+1;

fun g(x) = f(x)+2;

fun h(x) = g(x+3);

Partitioning Pbad with � = f(f; SM); (h; SM)g yields a new program, �̂(Pbad), of
the form:

fun IM(PC) = ...

fun SM(x,PC,SP) = ... let t = <top-of-stack>

in g(t) ...

fun g(x) = SM(x, <ext_f_entry>, 0) + 2;

�̂(Pbad) has invalid recursion between g and SM. The problem is that the call to
SM in the body of g is part of a mutually-recursive cycle and is not in tail-context.

We therefore require a restriction on partitions � to ensure that if P is a valid
SAFL program then �̂(P ) will also be a valid SAFL program. For the purposes
of this paper we give the following suÆcient condition:

� is a valid partition with respect to SAFL program, P , i� all cycles occurring

the call graph of �̂(P ) already exist in the call graph of P , with the exception of

self-cycles generated by direct tail-recursion.

Thus, in particular, new functions in �̂(P )|i.e. stack machines and their in-
structions memories|must not have mutual recursion with any other functions.

2.6 Extensions

Fine Grained Partitioning We have presented a program transformation
to map function de�nitions to hardware or software, but what if we want to
map part of a function de�nition to hardware and the rest to software? This
can be achieved by applying fold/unfold transformations before our partitioning
transformation. For example, consider the function
5 A more formal presentation can be found in [12].
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f(x,y) = if x=0 then y

else f(x-1, x*y - 7 + 5*x)

If we choose to map f to software our design will contain a processor and associ-
ated machine code consisting of a sequence of instructions representing multiply
x and y, subtract 7, add 5 times x. However, consider transforming f with a
single application of the fold-rule [4]:

i(x,y) = x*y-7 + 5*x

f(x,y) = if x=0 then y else f(x-1, i(x,y))

Now mapping f to software and i to hardware leads to a software representation
for f containing fewer instructions and a specialised processor with a x*y-7 +

5*x instruction.

Dealing with Heterogeneous Processors So far we have only considered
executing software on a network of stack machines. Although the stack machine
is a familiar choice for expository purposes, in a real design one would often
prefer to use di�erent architectures. For example, specialised VLIW [8] archi-
tectures are a typical choice for data-dominated embedded systems since many
operations can be performed in parallel without the overhead of dynamic instruc-
tion scheduling. The commercial \Art Designer" tool [1] partitions a C program
into hardware and software by constructing a single specialised VLIW processor
and compiling code for it. In general, however, designs often consist of multiple
communicating processors chosen to re
ect various cost and performance con-
straints. Our framework can be extended to handle a network of heterogeneous
processors as follows:

Let Templates be a set of processor templates (c.f. the stack machine tem-
plate, SMT, in section 2.1).

Let Compilers be a set of compilers from SAFL to machine code for processor
templates.

As part of the transformation process, the user now speci�es two extra func-
tions:

Æ :M! Templates

� :M! Compilers

Æ maps each processor instance, m 2 M, onto a SAFL processor template and
� maps each m 2 M onto an associated compiler. We then modify the trans-
formation procedure described in Section 2.4 to generate a partitioned program,
�̂Æ;� (P ) as follows: for each m 2 M we generate machine code, MCodem, us-
ing compiler � (m); we then use processor template, MT = Æ(m), to generate
processor instance MT hMCodemi and append this to �̂Æ;� (P ).

Extending the SAFL Language Recall that the SAFL language speci�es
that all recursive calls must be in tail-context. Since only tail-recursive calls are
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permitted, our silicon compiler is able to statically allocate all the storage needed
for a SAFL program.

As an example of these restrictions consider the following de�nitions of the
factorial function:

rfact(x) = if x=0 then 1 else x*rfact(x-1)

ifact(x,a) = if x=0 then a else ifact(x-1,x*a)

rfact is not a valid SAFL program since the recursive call is not in a tail-
context. However the equivalent tail-recursive factorial function, ifact which
uses a second argument to accumulate partial results is a valid SAFL program.

Although one can sometimes transform a non-tail recursive program into an
equivalent tail-recursive one, this is not always easy or natural. The transforma-
tion of factorial into its tail-recursive equivalent is only possible because multipli-
cation is an associative operator. Thus, in general we require a way of extending
SAFL to handle general unrestricted recursion. Our partitioning transformation
provides us with one way to do this:

Consider a new language, SAFL+ constructed by removing the recursion
restrictions from SAFL. We can use our partitioning transformation to transform
SAFL+ to SAFL simply by ensuring that each function de�nition containing
recursion other than in a tail-call context is mapped to software. Note that
our compilation function (Figure 2) is already capable of dealing with general
recursion without any modi�cation.

3 Conclusions and Further Work

Source-level program transformation of a high level HDL is a powerful technique
for exploring a wide range of architectural tradeo�s from an initial speci�cation.
The partitioning transformation outlined here is applicable to any hardware de-
scription language (e.g. VHDL or Verilog) given suitable compilation functions
and associated processor templates. However, we believe that equational rea-
soning makes program transformation a particularly powerful technique in the
SAFL domain.

We are in the process of deploying the techniques outlined here as part of
a semi-automated transformation system for SAFL programs. The goal of the
project is to develop a framework in which a SAFL program can be system-
atically transformed to investigate a large number of possible implementations
of a single speci�cation. So far we have developed a library of transformations
which allow us to represent a wide range of concepts in hardware design in-
cluding: resource sharing/duplication, static/dynamic scheduling [13] and now
hardware/software partitioning. In the future we plan to investigate how partial
evaluation techniques [7] can be used to transform a processor de�nition func-
tion and its corresponding instruction memory function into a single unit with
hardwired control.

Although initial results have been promising, the project is still in its early
stages. We are currently investigating ways of extending the SAFL language to
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make it more expressive without loosing too many of its mathematical proper-
ties. Our current ideas centre around adding synchronous communication and a
restricted form of �-calculus [11] style channel passing. We believe that this will
allow us to capture the semantics of I/O whilst maintaining the correspondence
between high-level function de�nitions and hardware-level resources.
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(* +-------------------------------------------------------------+

| SAFL specification of simple stack processor |

| Richard Sharp and Alan Mycroft, July 2000 |

+-------------------------------------------------------------+ *)

(* --------------------------- ALU ------------------------------- *)

fun alu2(op:16, a1:16, a2:16):16 =

case op of 0 => a1+a2

! 1 => a1-a2

! 2 => a1&&a2

! 3 => a1||a2

! 4 => a1^^a2

! 16 => a1<a2

! 17 => a1>a2

! 18 => a1=a2

! 19 => a1>=a2

! 20 => a1<=a2

! 21 => a1<>a2

(* ---------------- Instruction memory here --------------------- *)

(* The following codes: f(x) = if x then x+f(x-1) else 0; *)

(* i.e. it computes triangular numbers *)

fun load_instruction (address:16):24 = case address of

0 => %000010010000000000000001 (* pusha 1 *)

! 1 => %000001010000000000000011 (* call_int f *)

! 2 => %000000000000000000000000 (* halt *)

! 3 => %000000100000000000000001 (* f: pushv 1 *)

! 4 => %000001110000000000001100 (* jz l1 *)

! 5 => %000000100000000000000001 (* pushv 1 *)

! 6 => %000000100000000000000010 (* pushv 2 *)

! 7 => %000000010000000000000001 (* pushc 1 *)

! 8 => %000010000000000000000001 (* alu2 sub *)

! 9 => %000001010000000000000011 (* call_int f *)

! 10=> %000010000000000000000000 (* alu2 add *)

! 11=> %000001100000000000001101 (* jmp l2 *)

! 12=> %000000010000000000000000 (* l1: pushc 0 *)

! 13=> %000001000000000000000001 (* l2: return 1 *)

default => %101010101010101010101010 (* illop *)

external mem_acc (address:16,data:16,write:1):16

inline fun data_read (address:16):16 = mem_acc(address,0,0)

inline fun data_write (address:16,data:16):16 = mem_acc(address,data,1)

Fig. 3. The Stack Machine (Part 1 of 2)
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(* ----------------- Stack Machine Instance -------------------- *)

fun SMachine (a1:16, PC:16, SP:16):16 =

let var new_PC : 16 = PC + 1

var instr : 24 = load_instruction(PC)

var op_code : 8 = instr[23,16]

var op_rand : 16 = instr[15,0]

var inc_SP : 16 = SP + 1

var dec_SP : 16 = SP - 1

in

case op_code of

0 => (* halt, returning TOS *)

data_read(SP)

! 1 => (* push constant operation *)

data_write(dec_SP, op_rand);

SMachine (a1, new_PC, dec_SP)

! 2 => (* push variable operation *)

let var data:16 = data_read(SP+op_rand)

in data_write(dec_SP, data);

SMachine (a1, new_PC, dec_SP) end

! 9 => (* push a-argument operation *)

data_write(dec_SP, a1);

SMachine (a1, new_PC, dec_SP)

! 3 => (* squeeze operation -- op_rand is how many locals to pop *)

let var new_SP:16 = SP + op_rand

var v:16 = data_read(SP)

in data_write(new_SP, v);

SMachine (a1, new_PC, new_SP) end

! 4 => (* return operation -- op_rand is how many actuals to pop *)

let var new_SP:16 = inc_SP + op_rand

var rv:16 = data_read(SP)

in let var rl:16 = data_read(inc_SP)

in data_write(new_SP, rv);

SMachine (a1, rl, new_SP) end end

! 5 => (* call_int operation *)

data_write(dec_SP, new_PC);

SMachine (a1, op_rand, dec_SP)

! 6 => (* jmp (abs) operation *)

SMachine (a1, op_rand, SP)

! 7 => (* jz (abs) operation *)

let var v:16 = data_read(SP)

in SMachine (a1, if v=0 then op_rand else new_PC, inc_SP) end

! 8 => (* alu2: binary alu operation -- specified by immediate field *)

let var v2:16 = data_read(SP)

in let var v1:16 = data_read(inc_SP)

in data_write(inc_SP, alu2(op_rand, v1, v2));

SMachine (a1, new_PC, inc_SP) end end

default =>

(* halt, returning 0xffff -- illegal opcode *)

%1111111111111111

end

Fig. 4. The Stack Machine (Part 2 of 2)
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