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Abstract. The ability to analyze a digital system under conditions of
uncertainty is important in several application domains. The problem is
naturally described in terms of search in the powerset of the automaton
representing the system. However, the associated exponential blow-up
prevents the application of traditional model checking techniques. This
work describes a new approach to searching powerset automata, which
does not require the explicit powerset construction. We present an ef-
ficient representation of the search space based on the combination of
symbolic and explicit-state model checking techniques. We describe sev-
eral search algorithms, based on two different, complementary search
paradigms, and we experimentally evaluate the approach.
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1 Introduction

The ability of analyzing digital systems under conditions of uncertainty is ex-
tremely useful in various application domains. For hardware circuits, it is im-
portant to be able to determine homing, synchronization and distinguishing
sequences, which allow to identify the status of a set of circuit flip-flops. For
instance, synchronization sequences, i.e. sequences that will take a circuit from
an unknown state into a completely defined one [9], are used in test design and
equivalence checking. Similar problems are encountered in automated test gener-
ation, e.g. to determine what sequence of inputs can take the (black-box) system
under test in a known state. In Artificial Intelligence, reasoning with uncertainty
has been recognized as a significant problem since the early days. For instance,
the Blind Robot problem [11] requires to plan the activity for a sensorless agent,
positioned in any location of a given room, so that it will be guaranteed to
achieve a given objective.
Such problems are naturally formulated as search in the powerset of the space

of the analyzed system [9]: a certain condition of uncertainty is represented as
the set of indistinguishable system states. However, search in the powerset space
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yields an exponential blow-up. A straightforward application of symbolic model
checking techniques is hardly viable: the symbolic representation of the powerset
automaton requires exponentially more variables than needed for the analyzed
system. On the other hand, approaches based on explicit-state search methods
tend to suffer from the enumerative nature of the algorithms.
In this work, we propose a new approach to the problem of searching the pow-

erset of a given nondeterministic automaton which does not require the explicit
powerset automaton construction. The approach can be seen as expanding the
relevant portion of the state space of the powerset automaton on demand, and
allows to tackle in practice rather complex problems. The approach combines
techniques from symbolic model checking, based on the use of Binary Decision
Diagrams (bdds) [3], with techniques from explicit-state model checking. We
represent in a fully symbolic way sets of sets of states, and we provide for the ef-
ficient manipulation of such data structures. Using this representation, we tackle
the problem of finding an input sequence which guarantees that only states in a
target set will be reached for all runs, regardless of the uncertainty on the initial
condition and on nondeterministic machine behaviors. We present several algo-
rithms based on two different search paradigms. The fully-symbolic paradigm
allows to perform a breadth-first search by representing the frontier as a single
symbolic structure. In the semi-symbolic paradigm, search is performed in the
style of explicit-state model checking, considering at each step only a (symbol-
ically represented) element of the search space, i.e. a set of states. Both search
paradigms are based on fully symbolic primitives for the expansion of the search
space, thus overcoming the drawbacks of an enumerative approach.
The algorithms return with failure if and only if the problem admits no so-

lution, otherwise a solution is returned. Depending on the style of the search,
the solution can be guaranteed to be of minimal length. We also present an
experimental evaluation of our algorithms, showing that the paradigms are com-
plementary and allow to tackle quite complex problems efficiently.
The paper is structured as follows. In Section 2 we introduce the problem. In

Section 3 we describe the techniques for the implicit representation of the search
space, and in Section 4 we present the semi-symbolic and fully-symbolic search
paradigms. In Section 5 we present an experimental evaluation of our approach.
In Section 6 we discuss some related work and draw the conclusions.

2 Intuitions and Background

We consider nondeterministic finite state machines. S and A are the (finite)
sets of states and inputs of the machine. R ⊆ S × A × S is the transition
relation. We use s and s′ to denote states of S, and α to denote input values.
In the following, we assume that a machine is given in the standard bdd-based
representation used in symbolic model checking [10]. We call xxx and xxx′ the vectors
of current and next state variables, respectively, while ααα is the vector of input
variables. We write ααα = α for the bdd in the ααα variables representing the input
value α. When clear from the context, we confuse the set-theoretic and symbolic
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Fig. 1. The example automaton

representations. For instance, we use equivalently the False bdd and ∅. We
write R(xxx,ααα,xxx′) for the bdd representing the transition relation to stress the
dependency on bdd variables. We say that an input α is acceptable in s iff there
is at least a state s′ such that R(s, α, s′) holds. The acceptability relation is
represented symbolically by Acc(xxx,ααα) =̇ ∃xxx′.R(xxx,ααα,xxx′). An input sequence is
an element of A∗. We use ε for the 0-length input sequence, π and ρ to denote
input sequences, and π; ρ for concatenation.
In this paper we tackle the problem of finding an input sequence that, if

applied to the machine from any initial state in I ⊆ S, guarantees that the
machine will reach a target set of states G ⊆ S, regardless of nondeterminism.
We use for explanatory purposes the simple system depicted in figure 1. A circuit
is composed of two devices, x and y. The circuit is malfunctioning (c = 0), and
the reason is that exactly one of the devices is faulty (i.e. x = 0 or y = 0).
It is possible to fix either device (input Fixx and Fixy), but only if a certain
precondition p is met. Fixing the faulty device has the effect of fixing the circuit
(c = 1), while fixing the other one does not. Fixing either device has the uncertain
effect of spoiling the fixing precondition condition (i.e. p = 0). Pfix has the effect
of restoring the fixing precondition (p = 1). Each state is given a number, and
contains all the propositions holding in that state. For instance, state 1 represents
the state where device x is the reason for the fault, and fixing is possible. Given
that only one device is faulty, x = 0 also stands for y = 1, and vice versa.
The problem is finding an input sequence which fixes the circuit, taking the

machine from any state in I = {1, 2, 3, 4} (where the circuit is faulty, but we
don’t know if the reason is in device x or y, nor if fixing is possible) to the
target set G = {5, 7} (the circuit is fixed, and the fixing condition is restored).
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Fig. 2. A solution to for example problem

A possible solution is the input sequence: Pfix; Fixx ; Pfix ; Fixy; Pfix.
Figure 2 shows why this is the case. The initial uncertainty is in that the system
might be in any of the states in {1, 2, 3, 4}. This set is represented in figure 2
by a dashed line. We call such a set an uncertainty state as in [2]. Intuitively,
an uncertainty state expresses a condition of uncertainty about the system, by
collecting together all the states which are indistinguishable while analyzing the
system. An uncertainty state is an element of Pow(S), i.e. the powerset of the set
of states of the machine. The first input value, Pfix, makes sure that fixing is
possible. This reduces the uncertainty to the uncertainty state {1, 3}. Despite the
remaining uncertainty (i.e. it is still not known which component is responsible
for the circuit fault), the following input value Fixx is now guaranteed to be
acceptable because it is acceptable in both states 1 and 3. Fixx has the effect
of removing the fault if it depends on device x, and can nondeterministically
remove the precondition for further fixing (p = 0). The resulting uncertainty
state is {3, 4, 5, 6}. The following input, Pfix, restores p = 1, reducing the
uncertainty to the uncertainty state {3, 5}, and guarantees the acceptability of
Fixy. After Fixy, the circuit is guaranteed to be fixed, but p might be 0 again
(states 6 and 8 in the uncertainty state {5, 6, 7, 8}). The final Pfix reduces
the uncertainty to the uncertainty state {5, 7}, and guarantees that only target
states are reached.
The following definition captures the intuitive arguments given above.

Definition 1. An input α is acceptable in an uncertainty state ∅ �= Us ⊆ S iff
α is acceptable in every state in Us, i.e. ∃ααα.∀xxx.((Us(xxx) ∧ααα = α)→ Acc(xxx,ααα))
is not ∅.

If α is acceptable in Us, its image Image[α](Us) is the set of all the states
reachable from Us under α, i.e. ∃xxx.(Us(xxx)∧∃ααα.(ααα = α∧R(xxx,ααα,xxx′)))[xxx′/xxx] where
[xxx′/xxx] represents parallel variable substitution.
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The image of an input sequence π in an uncertainty state, written
Image[π](Us), is defined as follows.

Image[ε](Us) =̇ Us
Image[π](∅) =̇ ∅
Image[α;π](Us) =̇ ∅, if α is not acceptable in Us
Image[α;π](Us) =̇ Image[π](Image [α](Us)), otherwise

The input sequence π is a solution to the powerset reachability problem from
∅ �= I ⊆ S to ∅ �= G ⊆ S iff ∅ �= Image[π](I) ⊆ G.

Search in Pow(S) can be performed either forwards (from the initial uncer-
tainty state I towards the target uncertainty state G) or backwards (from G
towards I). Figure 2 depicts a subset of the search space when proceeding for-
wards. The full picture can be obtained by considering the effect of the other
input values to the uncertainty states. For instance, the input values Pfix on
the second uncertainty state {1, 3} would result in a self loop, while Fixy would
lead to {1, 3, 7, 8}. The first and third uncertainty states can not be expanded
further, because the input values Fixx and Fixy are not acceptable. When a
nonempty uncertainty state Usi ⊆ G is built from I, the associated input se-
quence (labeling a path from I to Usi) is a solution to the problem.
Figure 3 depicts the backward search space. The levels are built from the

target states, on the right, towards the initial ones, on the left. At level 0 we have
the pair 〈{5, 7} . ε〉, composed of an uncertainty state and an input sequence.
We call such a pair uncertainty state-input sequence (UsS) pair. The dashed
arrows represent the strong preimage of each Usi under the input value αi,
i.e. the extraction of the maximal uncertainty state where the αi is acceptable,
and guaranteed to result into the uncertainty state being expanded. At level 1,
only the UsS pair 〈{5, 6, 7, 8} . Pfix〉 is built, since the strong preimage of the
uncertainty state 0 for the inputs Fixx and Fixy is empty. At level 2, there
are three UsS pairs, with (overlapping) uncertainty states Us2, Us3 and Us4,
associated, respectively, with the length 2 sequences Fixx;Pfix, Pfix;Pfix
and Fixy;Pfix. (While proceeding backwards, a sequence is associated with an
uncertainty state Usi if it labels a path from Usi to the target set.) Notice that
Us3 is equal to Us1, and therefore deserves no further expansion. The expansion
of uncertainty states 2 and 4 gives the uncertainty states 5 and 6, both obtained
by the strong preimage under Pfix, while the strong preimage under inputs
Fixx and Fixy returns empty uncertainty states. The further expansion of Us5
results in three uncertainty states. The one resulting from the strong preimage
under Pfix is not reported, as equal to Us5. Uncertainty state 7 is also equal to
Us2, and deserves no further expansion. Uncertainty state 8 can be obtained by
expanding both Us5 and Us6. At level 5, the expansion produces Us10, which
contains all the initial states. Therefore, both the corresponding sequences are
solutions to the problem.
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Fig. 3. The Search Space for the Example Problem

3 Efficient Representation of Pow(S)
In this section we describe the symbolic representation of the search space
Pow(S), and the primitives used in the search. Our representation mechanisms
combines elements used in symbolic and explicit-state model checking. The first
ingredient is a standard bdd package, providing for the symbolic representa-
tion mechanism. Each uncertainty state Us is directly represented by the bdd
Us(xxx), whose models are exactly the states contained in Us. In practice, the
uncertainty state is the pointer to the corresponding bdd. The second ingredi-
ent, from explicit-state model checking, is a hash table, which is used to store
and retrieve pointers to the (bdds representing the) uncertainty states which
have been visited during the search. The approach heavily relies on the nor-
mal form of bdd, which allow for comparison in constant time. Figure 4 gives
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overview of the approach on the data structure built while analyzing the ex-
ample. The column on the left shows the variables in the bdd package. Let us
focus first on the lower part that contains the state variables, i.e. x, y, c and
p. (The upper variables, including the input variables, will be clarified later in
this section.) Each uncertainty state in figure 3 is represented by a (suitably
labeled) bdd, shown in the picture as a subgraph. (Solid [dashed, respectively]
arcs in a bdd represent the positive [negative, resp.] assignment to the variable
in the originating node. For the sake of clarity, only the paths leading to True
are shown.) On the right hand side, two configurations of the visited uncertainty
states hash are shown. The picture gives an example of the potential memory
savings which can be obtained thanks to the great ability of the bdd package
to minimize bdd memory occupation. Besides the uniqueness, there is a large
amount of sharing among different bdds: for instance, Us6 and Us10 share their
sub-nodes with the previously constructed Us2, Us3 and Us4. Furthermore, the
set-theoretic operations for the transformation and combination of uncertainty
states (e.g. projection, equivalence, inclusion) can be efficiently performed with
the primitives provided by the bdd package. The advantage over an enumerative
representation of uncertainty states (e.g. the list of the state vectors associated
to each state contained in the Us) is evident.

The exploration of Pow(S) is based on the use of UsS tables, i.e. sets of UsS
pairs, of the form UsST = {〈Us1 . π1〉, . . . , 〈Usn . πn〉} where the πi are input
sequences of the same length, such that πi �= πj for all 1 ≤ j �=i ≤ n. We call Usi

the uncertainty set indexed by πi. When no ambiguity arises, we write UsST(πi)
for Usi. A UsS table allows to represent a level in the search space. For instance,
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when proceeding backward (see figure 3), each UsS pair 〈Usi . πi〉 in the UsS
table is such that Usi is the maximal uncertainty state in which the associated
input sequence is acceptable, and its image is contained in the target states.
When proceeding forward, for each UsS pair, the uncertainty state is the result
of the application of the corresponding input sequence to the initial set.
The key to the efficient search is the symbolic representation of UsS tables,

which allows for compactly storing sets of sets of states (annotated by input
sequences) and their transformations. A UsS table { 〈{s1

1, . . . , s1
n1
} . π1〉, . . . ,

〈{sk
1 , . . . , sk

nk
} . πk〉 } is represented as a relation between input sequences of the

same length and states, by associating directly to each state in the uncertainty
state the indexing input sequence, i.e. { 〈s1

1 . π1〉, . . . ,〈s1
n1

. π1〉, . . . , 〈sk
1 . πk〉,

. . . ,〈sk
nk

. πk〉 }. Given this view, the expansion can be obtained symbolically
as follows. Let us consider first the UsS table {〈Us . ε〉} represented by the bdd
Us(xxx). The backward step of expansion BwdExpandUsSTable constructs the
UsS table containing the strong preimage of Us under each of the input values.
This is the set of all state-input pairs where the input is acceptable in the state
and all the successor states are in Us. Symbolically, we compute

∀xxx′.(R(xxx,ααα,xxx′)→ Us(xxx)[xxx/xxx′]) ∧ Acc(xxx,ααα)

i.e. a bdd in the xxx and ααα variables. This represents a relation between states
and length-one input sequences, i.e. a UsS table where each Usi is annotated by
a length-one input sequence αi.
The dual forward step FwdExpandUsSTable expands {〈Us . ε〉} by com-

puting the images of Us under every acceptable input:

(∃xxx.(Us(xxx) ∧ (∀xxx.(Us(xxx)→ Acc(xxx,ααα)) ∧R(xxx,ααα,xxx′))))[xxx/xxx′]

The resulting bdd represents a UsS table, where each Usi is annotated by a
length-one input sequence αi such that ∅ �= Image[αi](Us) = Usi.
In the general case, a UsS tables can contain longer input sequences, and the

vector ααα of input variables is not enough. Therefore, we use additional variables
to represent the values of the input sequence at the different steps. To repre-
sent input sequences of length i, we need i vectors of new bdd variables, called
sequence variables. The vector of sequence variables representing the i-th value
of the sequence is written πππ[i], with |πππ[i]| = |ααα|. Figure 4 shows the UsS table
representing the third level of backward search space depicted in figure 3. The
upper variables in the order are the input variables i0 and i1 and the sequence
variables. When searching forwards [backwards, respectively] πππ[i] is used to en-
code the i-th [i-th to last, resp.] value in the sequence. The backward expansion
primitive BwdExpandUsSTable can be applied in the general case to a UsS
table UsSTi−1(xxx,πππ[i−1], . . . ,πππ[1]), associating an uncertainty state to plans of
length i − 1:
(∀xxx′.(R(xxx,ααα,xxx′)→ UsSTi−1(xxx,πππ[i−1], . . . ,πππ[1])[xxx/xxx′]) ∧ Acc(xxx,ααα))[ααα/πππ[i]]

As in the length-one case, the next state variables xxx′ in R and in UsSTi−1 (re-
sulting from the substitution) disappear because of the universal quantification.
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The input variables ααα are renamed to the newly introduced plan variables πππ[i],
so that in the next step of the algorithm the construction can be repeated. The
forward step is defined dually. Notice that the fully symbolic expansion of UsS
tables avoids the explicit enumeration of input values. This can lead to signif-
icant advantages when only a few distinct uncertainty states result from the
application of all possible input values.
For either search directions, every time a UsS table is built its uncertainty

states have to be compared with the previously visited uncertainty states. If
not present, they must be inserted in the hash of the visited uncertainty states,
otherwise eliminated. This analysis is performed by a special purpose primitive,
called PruneUsSTable, which operates directly on the bdd representing the
UsS table. The primitive assumes that in the bdd package input and sequence
variables precede state variables (see figure 4). PruneUsSTable recursively
descends the UsS table, and interprets as an uncertainty state every bdd node
having a state variable at its top. It accesses the hash table of the previously
visited uncertainty states with the newly found Us: if it is not present, then it is
stored and returned, otherwise False bdd is returned, and the traversal contin-
ues on different branches of the input and sequence variables. In this way, a new
UsS table is built, where only the Us which had not been previously encountered
are left. The pruning step also takes care of another source of redundancy: UsS
tables often contain a large number of equivalent input sequences, all indexing
exactly the same uncertainty state (in figure 3, two equivalent input sequences
are associated with Us8). The resulting UsS table is such that, for each Us,
only one (partial) assignments to the input and sequence variables is left. This
simplification can sometime lead to dramatic savings.

4 Algorithms for Searching Pow(S)
In this section we present two examples of search algorithms based on the data
structures and primitives described in previous section. Both algorithms take
in input the problem description in form of the bdds I(xxx) and G(xxx), while the
transition relation R is assumed to be globally available.
Figure 5 presents the semi-symbolic forward search algorithm. The algorithm

represents the input sequences associated with the (symbolically represented) un-
certainty states visited during the search as (explicit) lists of input values. The al-
gorithm is based on the expansion of individual uncertainty states. OpenUsPool
contains the (annotated) uncertainty states which have been reached but still
have to be explored, and is initialized to the first uncertainty state of the search,
i.e. I, annotated with the empty input sequence ε. UsMarkVisited inserts I
into the hash table of visited uncertainty states. The algorithm loops (lines 3-11)
until a solution is found or all the search space has been exhausted. First, an
annotated uncertainty state 〈Us . π〉 is extracted from the open pool (line 4) by
ExtractBest. The uncertainty state is expanded by FwdExpandUsSTable,
computing the corresponding UsS table (with length-one sequences). The result-
ing UsS table is traversed as explained in previous section, accessing with each
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procedure SemiSymFwdSearch(I,G)
0 begin
1 OpenUsPool := {〈I . ε〉}; UsMarkVisited(I);
2 Solved := I ⊆ G; Solution := ε;
3 while (OpenUsPool �= ∅ ∧ ¬Solved) do
4 〈Us . π〉 := ExtractBest(OpenUsPool);
5 UsSTable := FwdExpandUsSTable(Us);
6 UsSList := PruneListUsSTable(UsSTable);
7 for 〈Usi . αi〉 in UsSList do
8 if Usi ⊆ G then
9 Solved := True; Solution := π;αi ; break;
10 else Insert(〈Usi . π;αi〉,OpenUsPool) endif;
11 end while
12 if Solved then return Solution;
13 else return Fail;
14 end

Fig. 5. The semi-symbolic, forward search algorithm.

uncertainty state the hash table of the already visited uncertainty states, dis-
carding all the occurrences of present uncertainty states, and marking the new
ones. The primitive PruneListUsSTable is a version of PruneUsSTable
that returns the explicit list of the UsS pairs in the pruned UsS table. Each of
the resulting uncertainty states is compared with the set of target states G. If
Usi ⊆ G, then the associated input sequence π;αi is a solution to the problem,
the loop is exited and the sequence is returned. Otherwise, the annotated uncer-
tainty state 〈Usi . αi;π〉 is inserted in OpenUsPool and the loop is resumed. If the
OpenUsPool becomes empty and a solution has not been found, then a fix point
has been reached, i.e. all the reachable space of uncertainty states has been cov-
ered, and the algorithm terminates with failure. Depending on ExtractBest
and Insert, different search strategies (e.g. depth-first, breadth-first, best-first)
can be implemented.

Figure 6 shows the fully-symbolic, backward search algorithm. The algorithm
relies on sequence variables for a symbolic representation of the input sequences,
and recursively expands the UsS tables, thus implementing a breadth-first sym-
bolic search. The algorithm proceeds from G towards I, exploring a search space
built as in figure 3. The arrayUsSTables is used to store the UsS tables represent-
ing the levels of the search associated with input sequences of increasing length.
The algorithm first checks (line 4) if ε is a solution. If not, the while loop is en-
tered. At each iteration, input sequences of increasing length are explored (lines
5 to 8). The step at line 6 expands the UsS table in UsSTables[i − 1] and stores
the resulting UsS table in UsSTables[i]. UsS pairs which are redundant with
respect to the current search are eliminated from UsSTables[i] (line 7). The pos-
sible solutions contained in UsSTables[i] are extracted and stored in Solutions
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procedure FullySymBwdSearch(I,G)
0 begin
1 i = 0; UsMarkVisited(G);
2 UsSTables[0] := { 〈G . ε〉 };
3 Solutions := BwdExtractSolution(UsSTables[0]);
4 while ((UsSTables[i] �= ∅) ∧ (Solutions = ∅)) do
5 i := i + 1;
6 UsSTables[i] := BwdExpandUsSTable(UsSTables[i-1]);
7 UsSTables[i] := PruneUsSTable(UsSTables[i]);
8 Solutions := BwdExtractSolution(UsSTables[i]);
9 done
10 if (UsSTables[i] = ∅) then
11 return Fail;
12 else return Solutions;
13 end

Fig. 6. The fully-symbolic, backward search algorithm.

(line 8). The loop terminates if either a solution is found (Solutions �= ∅), or the
space of input sequences has been completely explored (UsSTables[i] = ∅).

BwdExtractSolution checks if a UsS table contains a uncertainty state
Usi such that I ⊆ Usi. It takes in input the bdd representation of a UsS
table UsSTi(xxx,πππ[i], . . . ,πππ[1]), and extracts the assignments to sequence vari-
ables such that the corresponding set contains the initial states, by computing
∀xxx.(I(xxx) → UsSTi(xxx,πππ[i], . . . ,πππ[1])). The result is a bdd in the sequence vari-
ables πππ[i], . . . ,πππ[1]. If the bdd is False, then there are no solutions of length i.
Otherwise, each of the satisfying assignments of the resulting bdd represents a
solution sequence.
The algorithms described here are only two witnesses of a family of possible

algorithms. For instance, it is possible to proceed forwards in the fully-symbolic
search, and to proceed backwards in the semi-symbolic search.
The algorithms enjoy the following properties. First, they always terminates.

This follows from the fact that the set of explored uncertainty sets (stored in
the visited hash table) is monotonically increasing: at each step we proceed only
if at least one new uncertainty state is generated. The newly constructed UsS
table are simplified by removing the uncertainty states which do not deserve
further expansion. Since the set of accumulated uncertainty states is contained
in Pow(S), which is finite, a fix point is eventually reached. Second, a failure
is returned if and only if there is no a solution to the given problem, otherwise
a solution sequence is returned. This property follows from the facts that in
the semi-symbolic search uncertainty states sequences constructed are such that
〈Us . π〉 enjoy the property Image[π](I) = Us. Thus, π is a solution to the
problem 〈I . Us〉. In the fully symbolic search uncertainty states sequences
constructed are such that ∅ �= Image[π](Us) ⊆ G. Thus, π is a solution to the
problem 〈Us . G〉. The fully symbolic algorithm is also optimal, i.e. it returns
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plans of minimal length. This property follows from the breadth-first style of the
search.

5 Experimental Evaluation

The data structures and the algorithms (semi- and fully-symbolic forward and
backward search) have been implemented on top of the symbolic model checker
NuSMV [5]. An open hashing mechanism is used to store visited uncertainty
states. We present a preliminary experimental evaluation of our approach. We
report two sets of experiments. The first ones are from artificial intelligence
planning. (The results are labeled with AI in table 1.) FIXi is the generaliza-
tion of the example system of figure 1 to i devices. For lack of space, we refer
to [6] for the description of the other problems. In most cases, the automaton
is fully nondeterministic, and there are acceptability conditions for the inputs.
The problems are specified by providing the initial and target sets.
The second class of tests is based on the ISCAS89 [7] and MCNC [16] circuit

benchmarks, the problem being finding a synchronization sequence, i.e. reaching
a condition of certainty (i.e. a single final state) from a completely unspecified
initial condition. We ran the same test cases as reported in [12,13]. In order to
tackle these problems, we extended the forward1 search algorithms (both semi-
and fully-symbolic) with an ad-hoc routine for checking if a given uncertainty
state is a solution (i.e. if it contains exactly one state).
To the best of our knowledge, no formal verification system able to solve

these kind of problems is available, therefore we could not perform a direct ex-
perimental comparison. In [6], a detailed comparative evaluation shows that FSB
outperforms all the other approaches to conformant planning (based on a deci-
sion procedure forQbf [14], on heuristic search [1], and on planning graphs [15]).
The results of our approach to searching synchronization sequences appears to
be at least as good as the ones in [12,13]. Normalizing the results with respect
to the platform,2 especially for the problems with longer reset sequences (e.g.
planet, sand) we obtain a significant speed up and we are able to return shorter
solutions. Furthermore, our approach tackles a more complex problem. Indeed,
the approach in [12,13] is tailored to synchronization problems, and the system
is assumed to be deterministic, i.e. uncertainty, intended as the number of in-
distinguishable states, is guaranteed to be non-increasing. We deal with fully
nondeterministic systems, where uncertainty can also grow. Finally, our results
were obtained using a monolithic transition relation (although nothing prevents
from the use of partitioning techniques).
To summarize, the experimental results seem to confirm the following intu-

itions. The semi-symbolic approach is often much faster than the fully-symbolic
1 In order to proceed backwards when searching for a synchronization sequence, the
starting point must be the set of all singletons of size |S|. Although possible in theory,
the approach seems to be unfeasible in practice.

2 From the limited information available, we estimate that the results in [12,13] were
obtained on a machine at most 15 times slower than ours.
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AI SSF FSB
Name # FF # I L Time L Time
fix2 3 2 5 0.001 5 0.001
fix10 6 4 21 0.001 21 0.440
fix16 6 5 33 0.010 33 56.190
bmtc102l 7 5 18 0.020 18 1.220
bmtc102m 7 5 19 0.020 19 1.190
bmtc102h 7 5 19 0.020 19 1.190
bmtc106l 11 7 18 0.100 14 62.590
bmtc106m 11 7 18 0.100 17 64.970
bmtc106h 11 7 18 0.100 17 64.970
ring2 5 2 6 0.001 5 0.001
ring10 34 2 76 0.100 29 60.940
uring2 5 2 5 0.001 5 0.001
uring10 34 2 29 0.050 29 1.260
cubec 12 3 64 0.040 60 39.210
cubes 12 3 58 0.030 54 16.140
cubee 12 3 42 0.020 42 1.350
omel50 15 3 X 4.400 X 1.380
omel100 17 3 X 67.190 X 8.130

ISCAS’89 SSFSync FSSSync

Name #FF #I L Time L Time

s1196 18 14 1 3.370 1 0.280
s1238 18 14 1 3.320 1 0.300
s1488 6 8 1 0.010 1 0.000
s1494 6 8 1 0.010 1 0.010
s208.1 8 10 X 0.000 X 0.000
s27 3 4 1 0.010 1 0.000
s298 14 3 2 0.010 2 0.040
s344 15 9 2 0.300 2 6.090
s349 15 9 2 0.300 2 6.100
s382 21 3 1 0.010 1 0.010
s386 6 7 2 0.040 2 0.020
s400 21 3 1 0.010 1 0.000
s420.1 16 18 X 0.120 X 0.000
s444 21 3 1 0.030 1 0.020
s510 6 19 T.O. T.O.
s526 21 3 2 0.090 2 0.120
s641 19 35 1 1.550 1 0.150
s713 19 35 1 0.540 1 0.150
s820 5 18 1 0.150 1 0.050
s832 5 18 1 0.140 1 0.040
s838.1 32 34 X 0.430 X 0.000

MCNC’91 SSFSync FSFSync

Name #FF #I L Time L Time

bbara 4 4 2 0.000 2 0.010
bbsse 4 7 2 0.030 2 0.010
bbtas 3 2 3 0.000 3 0.000
beecount 3 3 1 0.000 1 0.000
cse 4 7 1 0.000 1 0.010
dk14 3 3 2 0.000 2 0.000
dk15 2 3 3 0.000 1 0.000
dk16 5 2 4 0.000 4 0.010
dk17 3 2 3 0.000 3 0.010
dk27 3 1 4 0.000 4 0.000
dk512 4 1 5 0.000 4 0.000
donfile 5 2 3 0.000 3 0.000
ex1 5 9 3 0.000 3 0.160
ex2 5 2 X 0.000 X 0.000
ex3 4 2 X 0.000 X 0.000
ex4 4 6 13 0.010 10 1.150
ex5 4 2 X 0.000 X 0.000
ex6 3 5 1 0.000 1 0.000
ex7 4 2 X 0.000 X 0.000
keyb 5 7 2 0.010 2 0.010
lion9 4 2 X 0.000 X 0.000
mark1 4 5 1 0.000 1 0.000
opus 4 5 1 0.000 1 0.000
planet 6 7 20 0.110 M.O.
s1 5 8 3 0.020 3 0.800
s1a 5 8 3 0.020 3 0.810
s8 3 4 4 0.000 4 0.010
sand 5 11 19 0.190 T.O.
tav 2 4 X 0.020 X 0.000
tbk 5 6 1 0.080 1 0.000
train11 4 2 X 0.000 X 0.000

The experiments were executed on an Intel 300MHz Pentium-II, 512Mb RAM,
running Linux. #FF and #I are the number of boolean state variables and
inputs in the system automaton. SSF and FSB are the semi-symbolic forward
and the fully-symbolic backward algorithms. SSFSync and FSFSync are the
semi-symbolic and fully-symbolic forward search algorithms extended with the
ad-hoc termination test for synchronization sequences. Times are reported in
seconds. T.O. means time out after 1 hour CPU. M.O. means memory limit
of 500Mb exhausted. L is the length of the solution found. X means that the
problem admits no solution.

Table 1. Experimental results
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one, when a solution exists. This appears to be caused by the additional sequence
variables, and by the breadth-first style of the search. However, the fully-symbolic
approach appears to be superior in discovering that the problem admits no so-
lution, and returns sequences of minimal length. Forward search (either fully- or
semi-symbolic) is usually inferior to backward (with some notable exceptions).

6 Related Work and Conclusions

In this paper we have presented a new approach to the problem of searching
powerset automata which tackles the exponential blowup directly related to the
powerset construction. Our approach combines techniques from symbolic and
explicit-state model checking, and allows for different, complementary search
strategies. The work presented in this paper is based on the work in [6], devel-
oped in the field of Artificial Intelligence planning, where fully symbolic search
is described. In this paper we extend [6] with semi-symbolic search techniques,
and we provide a comparative evaluation of the approaches on a larger set of test
cases, including synchronization sequences from the ISCAS and MCNC bench-
mark circuits. Besides [12,13], discussed in previous section, few other works
appear to be related to ours. In SPIN [8], the idea of combining a symbolic rep-
resentation with explicit-state model checking is also present: an automaton-like
structure is used to compactly represent the set of visited states. In [4], an ex-
ternal hash table is combined with a bdd package in order to extract additional
information for guided search. In both cases, however, the integration of such
techniques is directed to standard model checking problems.
The work presented in this paper will be extended as follows. An extensive

experimental evaluation, together with a tighter integration of optimized model
checking techniques, is currently being carried on. Then, different search methods
(e.g. combining forward and backward search, partitioning of UsS tables) will
be investigated. Furthermore, the approach, currently presented for reachability
problems, will be generalized to deal with LTL specifications. Finally, the case of
partial observability (i.e. when a limited amount of information can be acquired
at run time) will be tackled.
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