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Abstract. Multi-valued logics support the explicit modeling of uncertainty and
disagreement by allowing additional truth values in the logic. Such logics can be
used for verification of dynamic properties of systems where complete, agreed
upon models of the system are not available. In this paper, we present an im-
plementation of a symbolic model checker for multi-valued temporal logics. The
model checker works for any multi-valued logic whose truth values form a quasi-
boolean lattice. Our models are generalized Kripke structures, where both atomic
propositions and transitions between states may take any of the truth values of a
given multi-valued logic. Properties to be model checked are expressed in CTL,
generalized with a multi-valued semantics. The design of the model checker is
based on the use of MDDs, a multi-valued extension of Binary Decision Dia-
grams. We describe MDDs and their use in the model checker. We also give its
theoretical time complexity and some preliminary empirical performance data.

1 Introduction

Multi-valued logics provide an interesting alternative to classical boolean logic for mod-
eling and reasoning about systems. By allowing additional truth values in the logic, they
support the explicit modeling of uncertainty and disagreement. For these reasons, they
have been explored for a variety of applications in databases [12], knowledge represen-
tation [13], machine learning [17], and circuit design [15].

A number of specific multi-valued logics have been proposed and studied. For ex-
ample, Łukasiewicz [16] first introduced a three-valued logic to allow for propositions
whose truth values are ‘unknown’, while Belnap [1] proposed a four-valued logic that
also introduces the value ‘both’ (i.e. “true and false”), to handle inconsistent assertions
in database systems. Each of these logics can be generalized to allow for different lev-
els of uncertainty or disagreement. In practice, it is useful to be able to choose different
multi-valued logics for different modeling tasks.

The motivations that led to the development of these logics clearly apply to the
modeling of software behaviour, especially the exploratory modeling used in the early
stage of requirements engineering and architectural design:

– We need to allow for uncertainty – for example, we may not yet know whether
some behaviours should be possible;

– We need to allow for disagreement – for example, different stakeholders may dis-
agree about how the systems should behave;

– We need to represent relative importance – for example, in the case where some
behaviours are essential and others may or may not be implemented.
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For reasoning about dynamic properties of systems, existing modal logics can be ex-
tended to the multi-valued case. Fitting [10] suggests two different approaches for doing
this: the first extends the interpretation of atomic formulae in each world to be multi-
valued; the second also allows multi-valued accessibility relations between worlds. The
latter approach is more general, and can readily be applied to the temporal logics used
in automated verification [6].

Some automated tools for reasoning with multi-valued logics exist. In particular,
the work of Hähnle and others [14,19] has led to the development of several theorem-
provers for first-order multi-valued logics. However, as yet the question of model check-
ing for multi-valued modal logics has not been addressed.

In this paper we describe our implementation of a multi-valued symbolic CTL
model checker, �chek. �chek is generalized for an entire family of multi-valued log-
ics, known as the quasi-boolean logics. It takes as its input a description of a particular
quasi-boolean logic, represented as a lattice of truth values, a state machine model, rep-
resented as a multi-valued Kripke structure, and a temporal logic property expressed in
CTL. It returns the truth value that the property has in the initial state(s).

The paper is structured as follows. Section 2 motivates the work with an example
of a multi-valued state machine model. Section 3 describes the family of quasi-boolean
multi-valued logics, and shows how these are specified as lattices of truth values. Sec-
tion 4 explains our approach, describing our multi-valued extension of Kripke structures
and our multi-valued extension of CTL. Section 5 presents the design of the model
checker and analyses its performance. Section 6 presents our conclusions.

2 Motivation

To motivate the development of our model checker, and to illustrate its application, we
present an example state machine model expressed in a multi-valued logic. The model
captures an early draft of the requirements for a simple coffee dispenser. We distinguish
behaviours that must be true (are required), behaviours that should be true (are desired,
but not required), behaviours that should not be true (are undesirable), and behaviours
that must not be true (are prohibited). We use two types of unknown: Don’t Know for
things that will be controlled by the system, where we do not yet know what behaviours
we want; and Don’t Care for things that are controlled by the environment, where the
value does not matter. We represent these six possibilities in a 6-valued logic, arranged
as a lattice in Figure 1(a), using the partial order ‘more true than’.

Figure 1(b) shows the model. Each variable is assigned a truth value in each state.
Each transition between states is also labeled with a truth value. The coffee dispenser
starts in state OFF. In this state, it is irrelevant whether there is a cup in the machine,
so that variable has the value ‘DC’ (“don’t care”). The specification team have not yet
decided whether they need a power-saving standby mode. They model their uncertainty
by including the state IDLE, but label the transitions into it ‘S’, indicating these may
be desirable. They also use the value ‘DK’ (“Don’t Know”) for the state of the power
in IDLE, and for the transition from OFF to IDLE. However, the transition from OFF to
READY is labeled ‘T’, indicating that when the power is switched on, the machine must
enter the READY state. From there, it must be able to deliver coffee, and it should then
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Fig. 1. (a) A lattice of truth values; (b) The coffee dispenser model that uses it.

be able to deliver foam. The transitions from COFFEE and FOAM to OFF are labeled ‘N’.
These are undesirable, but we cannot prohibit them because the machine has no direct
control over the power supply. Note that by convention we omit all ‘F’ transitions.
Hence there is an ‘F’ self-loop for COFFEE and FOAM, indicating we must not stay in
either state, and an ‘F’ transition from READY to FOAM, indicating this must not occur.

We can now write properties that ought to be true of the model, even though it
contains some uncertainties. For example:
1. The machine must always be able to make coffee.
2. It is desirable that the machine make foam.
3. Coffee cannot be dispensed if there is no cup.
4. Once coffee is dispensed, we cannot get coffee again until the cup is changed.
We formalize these properties in Section 4 and give results of model checking them on
the coffee dispenser model in Table 1 of Section 5.

In this example, the use of a 6-valued logic allows us to distinguish two levels of
priority for requirements, and two different types of unknown. We could choose differ-
ent multi-valued logics if we wanted to distinguish further levels of priority, or different
types of ‘unknown’. We are also interested in modeling disagreement, and have devel-
oped a method for reasoning about whether disagreements between stakeholders’ views
affect various system properties. In [9] we outline a general framework for combining
inconsistent state machine models into a single model using multi-valued logics to cap-
ture levels of (dis)agreement. We eventually plan to use the model checker described
below as a negotiation tool for constructing and reasoning about such models.

3 Specifying the Logics

Our approach to modeling makes use of an entire family of multi-valued logics. Rather
than giving a complete axiomatization for each logic, we simply give a semantics by
defining conjunction, disjunction and negation on the truth values of the logic, and
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restrict ourselves to logics where these operations are well-defined, and satisfy commu-
tativity, associativity etc. Such properties can be easily guaranteed if we require that the
truth values of the logic form a lattice. In this section we describe the types of lattices
used in our logics.

Definition 1. A lattice is a partial order (L,v) for which a unique greatest lower bound
and least upper bound, denoted a u b and a t b, respectively, exist for each pair of
elements (a, b).

au b and at b are referred to as meet and join, respectively. The partial order operation
a v b means “b is at least as true as a”. The following properties hold for all lattices:

a t a = a a u a = a (idempotence)

a t b = b t a a u b = b u a (commutativity)

a t (b t c) = (a t b) t c a u (b u c) = (a u b) u c (associativity)

Definition 2. A lattice is complete if it includes a meet and a join for every subset of
its elements. Every complete lattice has a top (>) and a bottom (?).

? = uL (? characterization) > = tL (> characterization)

For example, in the lattice of Figure 1(a), > is labeled ‘T’ and ? is labeled ‘F’. We
adopt the convention of labeling > and ? in this way in all our lattices. Also, we only
use lattices that have a finite number of elements. Every finite lattice is complete.

Definition 3. A finite lattice (L;v) is quasi-boolean [2] if there exists a unary operator
: defined for it, with the following properties (a; b are elements of L):
:(a u b) = :at :b (De Morgan) ::a = a (: involution)

:(a t b) = :au :b a v b, :a w :b (: antimonotonic)

Thus, :a is a quasi-complement of a.

The family of multi-valued logics we use are exactly those logics whose truth values
form a quasi-boolean lattice. Meet and join in the lattice of truth values define conjunc-
tion and disjunction operators, respectively, and we assume that an appropriate negation
operation is defined with the properties required by Definition 3. The identification of
a suitable negation operator is greatly simplified by the observation that quasi-boolean
lattices are symmetric about their horizontal axes:

Definition 4. A lattice (L, v) is horizontally-symmetric if there exists a bijective func-
tionH : L ! L such that for every pair a; b 2 L,

a v b , H(a) w H(b) (order � embedding) H(H(a)) = a (H involution)

Theorem 1. [6] Horizontal symmetry is a necessary and sufficient condition for a lat-
tice to be quasi-boolean with :a=H(a) for each element of the lattice.

The negation of each element is then defined as its image through horizontal symmetry1.
For example, in Figure 1(a) we have :T=F, :S=N, :DK=DK, :DC=DC, etc. Finally,
we define an operator! as follows:

a! b � :at b (de�nition of !)

1 Note that we still have to choose how to negate any elements that fall on the axis of symmetry.
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4 Multi-valued Model Checking

CTL model checking on two-valued logics was introduced by Clarke and his colleagues
in [8]. CTL is a branching-time temporal logic that allows quantification over individ-
ual paths in a tree of computations exhibited by a model. There are five basic pairs of
operators: AX and EX (“next”), AF and EF (“eventually” or “in the future”), AG
and EG (“globally”), AU and EU (“until”), AR and ER (“release”). Models are rep-
resented as Kripke structures, which are finite-state machines that guarantee that there
is a transition out of every state. See [7] for a detailed account of CTL model checking.

In this section we describe our multi-valued extension of Kripke structures, which
we call �Kripke structures, and we give the semantics of multi-valued CTL [6].

4.1 Defining the Model

A state machine M is a �Kripke structure if M=(S; S0; R; I; A; L), where:
– L is a quasi-boolean logic represented by a lattice (L, v).
– A is a (finite) set of atomic propositions, otherwise referred to as variables (e.g.
power or milk in the example in Figure 1(b)).

– S is a (finite) set of states. States are not explicitly labeled – each state is uniquely
identified by its variable/value mapping. Thus, two states cannot have the same
mapping. However, we sometimes use state labels as a shorthand for the respective
vector of values, as we did in the coffee dispenser example.

– S0 � S is the non-empty set of initial states.
– Each transition (s; t) in M has a logical value in L. Thus, R : S � S ! L is a

total function assigning a truth value from the logic L to each possible transition
between states, including self-loops. Note that a �Kripke structure is a completely
connected graph. We also require that each state has at least one non-false transition
coming out of it.

– I : S � A ! L is a total function that maps a state s and an atomic proposition
(variable) a to a truth value ` of the logic. For simplicity we assume that all our
variables are of the same type, ranging over the values of the logic. For a given
variable a, we will write I as Ia : S ! L. For symbolic model checking, we
compute partitions of the state space w.r.t. a variable a using I�1a : L ! 2S . A
partition has the following properties:

8a 2 A; 8`1; `2 2 L : `1 6= `2 ) (I�1a (`1) \ I
�1
a (`2) = ;) (disjointness)

8a 2 A; 8s 2 S; 9` 2 L : s 2 I�1a (`) (cover)

4.2 Multi-valued CTL

Here we give semantics of CTL operators on a �Kripke structure M over a quasi-
boolean logic L. We will refer to this language as multi-valued CTL, or �CTL. L is
described by a finite, quasi-boolean lattice (L;v), and thus the conjunction u, disjunc-
tiont and negation: operations are available. In extending the CTL operators, we want
to ensure that the expected CTL properties, given in Figure 2, are still preserved. Note
that the AU fixpoint is somewhat unusual because it includes an additional conjunct,
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:AX' = EX(:') (negation of “next”)
A[?U'] = E[?U'] = ' (? “until”)
A['U ] =  _ (' ^AXA['U ] ^EXA['U ]) (AU �xpoint)

E['U ] =  _ (' ^EXE['U ]) (EU �xpoint)

Fig. 2. Properties of CTL operators.

EXA[fUg]. This additional term preserves a “strong until” semantics for states that
have no outgoing T transitions [4].

We first give the semantics of the propositional operators. We extend the domain
of the interpretation function I to any CTL formula '. For a model M , we use PM' (s)

to denote the truth value that formula ' takes in state s. We omit M if it is clear from
context. If s 2 S is a state, a 2 A is a variable, and ' and  are CTL formulae:

Pa(s) � I(s; a) P'^ (s) � P'(s) ^ P (s)
P:'(s) � :P'(s) P'_ (s) � P'(s) _ P (s)

We proceed by defining the EX operator. In standard CTL, EX is defined using
existential quantification over next states. We extend the notion of quantification for
multi-valued reasoning by using conjunction and disjunction for universal and existen-
tial quantification, respectively. This treatment of quantification is standard [1,18]. The
semantics of the EX operator is

PEX'(s) �
W
t2S(R(s; t) ^ P'(t))

The definitions ofAU , EU and AX are given using the properties in Figure 2:

PAX'(s) � :PEX:'(s)
PE['U ](s) � P (s) _ (P'(s) ^ PEXE['U ](s))

PA['U ](s) � P (s) _ (P'(s) ^ PAXA['U ](s) ^ PEXA['U ](s))

The remaining CTL operators,AF ('),EF ('),AG('),EG('),A['R ],E['R ]
are the abbreviations forA[>U'], E[>U'], :EF (:'), :AF (:'), :E[:'U: ],
:A[:'U: ], respectively.

The properties of the coffee dispenser in Figure 1(b), given in Section 2, can be
formalized in �CTL as follows 2:
1. EF (water) The expected answer is T.
2. EF (milk) The expected answer is S.
3. AG(water! cup) The expected answer is T.
4. AG(water! AXA[:waterW (:cup ^ :water)]) The expected answer is T.

5 Symbolic Multi-valued Model Checker

In this section we describe the implementation of our symbolic multi-valued model
checker, �chek. The architecture of �chek is shown in Figure 3. �chek takes as input a
model M with variable and transition values from a latticeL, and a �CTL formula'. It
outputs a total mapping from L to the set S of states, indicating in which states ' takes

2 We use the operator while defined asA[xW y] = :E[:y U (:x ^ :y)]:
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Fig. 3. Architecture of �chek.

each value `. This is simply P�1' , the inverse of the valuation function defined above.
Thus, the task of the model checker is to compute P' given the transition function R.

Since states are assignments of values to the variables, an arbitrary ordering imposed
onA allows us to consider a state as a vector in Ln, where n= jAj. Hence P' andR can
be thought of as functions of type Ln!L and L2n!L respectively. Such functions
are represented within the model checker by multi-valued decision diagrams (MDDs),
a multi-valued extension of the binary decision diagrams (BDDs) [3].

As an example, consider the coffee dispenser shown in Figure 1(b). Using the vari-
able ordering (power; water; milk; cup), the state labeled COFFEE is just the vector
s=(T, T, F, T), the one labeled FOAM is t=(T, F, T, T), and the existence of a T-valued
transition between them is expressed by the fact that R =(T, T, F, T, T, F, T, T)=T or,
more compactly, R(s; t)=T.

�chek uses two supplementary libraries: a library for handling quasi-boolean lat-
tices and an MDD library. The former includes functions to compute unions and inter-
sections of sets of logical values, determine whether given lattices have some desired
properties, e.g., distributivity, and to support various lattice-based calculations. Our li-
brary is based on Freese’s Lisp lattice library [11]. The MDD library is described below.

5.1 Data Structures

There is an extensive literature dealing with MDDs [21], mostly in the field of circuit
design. To our knowledge, the logics used in that literature are given by total orders
(such as the integers modulo n) and not by arbitrary quasi-boolean lattices, but we
concede that this is a minor difference. Also, as far as we know, they have not been
used in formal verification before, so for the purposes of this paper we will describe
them briefly. We will assume a basic knowledge of BDDs [3].

The basic notion in the construction of binary decision diagrams is the Shannon
expansion. A boolean function f of n variables can be expressed relative to a variable
a0, by computing f on n�1 variables with a0 set to >, and the same function with a0
set to ?. These functions are referred to as f> and f?, respectively. We write this ex-
pansion as f(a0; : : : ; an�1) ! f>(a1; : : : ; : : : ; an�1); f?(a1; : : : ; an�1) This notion
is generalized as follows:

Definition 5. [21] Given a finite domain D, the generalized Shannon expansion of a
function f : Dn ! D, with respect to the first variable in the ordering, is:
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f(a0; a1; : : : ; an�1)! f0(a1; : : : ; an�1); : : : ; fjDj�1(a1; : : : ; an�1)

where fi = f [a0=di], the function obtained by substituting the literal di 2 D for a0 in
f . These functions are called cofactors.

Definition 6. Assuming a finite setD, and an ordered set of variablesA, a multi-valued
decision diagram (MDD) is a tuple (V;E; var; child; image; value) where:

– V = Vt [ Vn is a set of nodes, where Vt and Vn indicate a set of terminal and
non-terminal nodes, respectively;

– E � V � V is a set of directed edges;
– var : Vn ! A is a variable labeling function.
– child : Vn ! D ! V is an indexed successor function for nonterminal nodes;
– image : V ! 2D is a total function that maps a node to a set of values reachable

from it;
– value : Vt ! D is a total function that maps each terminal node to a logical value.

We describe constraints on the elements of an MDD below. Although D may be any
finite set, for our purposes we are interested only in lattices; so instead of D we will
refer to elements of the finite lattice (L;v) modeling a logic.

Consider the function f = x1^x2, with `0=F; `1=M; `2=T. The MDD for this
expression is shown in Figure 4b. The diagram is constructed by Shannon expansion,
first with respect to x1, and then (for each cofactor of f) with respect to x2. The dashed
arrows indicate f and its cofactors, and also the cofactors of the cofactors.
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Fig. 4. (a) A three-valued lattice. (b) The MDD for f = x1 ^ x2 in this lattice.

The following properties hold for all MDDs:
8u0 2 Vn : out(u0) = jLj ^ 8u12Vt : out(u1) = 0 (semantics of nodes)

8u0; u1 2 V; 9` 2 L : (u0; u1) 2 E ) child`(u0) = u1 (semantics of edges)

where out(u) stands for the number of non-null children of u. Several further properties
are required for the data structure to be usable:

8u0; u12Vn : (u0; u1)2E ^ var(u0)=ai ^ var(u1)=aj ) i<j (orderedness)

8u0; u12V : fu0 =fu1 ) u0=u1 (reducedness)

8u0; u12Vn; ` 2 L :

(var(u0)=var(u1)) ^ (child`(u0)=child`(u1))) u0=u1 (uniqueness 1)

8u0; u12Vt : (value(u0)=value(u1))) u0=u1 (uniqueness 2)
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In general, the efficiency of decision diagrams, binary or multi-valued, comes from
the properties of reducedness and orderedness (defined above). Orderedness is also re-
quired for termination of many algorithms on the diagrams. Uniqueness implies re-
ducedness [21] – MDDs will be unique by construction, and thus reduced.

Note that in general we do not distinguish between a single node in an MDD and the
subgraph rooted there, referring to both indiscriminately as u. The function computed
by an MDD is denoted fu : Ln ! L, and is defined recursively as follows:

u 2 Vt ) fu(s0; : : : ; sn�1) = value(u) (terminal constants)

u 2 Vn ) fu(s0; : : : ; sn�1) = fchildsi (u)(s0; : : : ; si�1; si+1; : : : ; sn�1);

where ai = var(u) and s 2 Ln (cofactor expansion)

Consider the MDD in Figure 4. To compute f = x1^x2 with x1 = T and x2 = F

using this diagram, we want to find f(s) where s = (T;M). We begin at the root node.
Its var is x1, so we pick out s1, which is T, and descend to the node childT(f), indicated
by the arrow to f2 (which represents the function T^x2). Now we compute f2(M) by
choosing childM(f2), which is a node inVt, so we stop and return M. Thus, we conclude
that f(T;F) = M.

We will be calculating equality, conjunction, disjunction, negation, and existential
quantification on the functions represented by MDDs. MDDs have the same useful
property as BDDs: given a variable ordering, there is precisely one MDD representation
of a function. This allows for constant-time checking of function equality.

Theorem 2. Canonicity [21] For any finite lattice (or finite set) L, any nonnegative
integer n, and any function f : Ln ! L, there is exactly one reduced ordered MDD u

such that fu = f(a0; : : : ; an�1).

In the boolean case, BDDs allow for constant-time existential quantification, since
any node which is not a constant ? is satisfiable. In order to implement multi-valued
quantification efficiently, we introduce the image attribute of MDD nodes, which stores
the possible outputs of functions. The following properties hold for image:

u 2 Vt ) image(u) = fvalue(u)g (image property 1)

u 2 Vn ) image(u) =
S
`2L image(child`(u)) (image property 2)

Definition 7. A function f is `-satisfiable if some input yields ` as an output, or, equiv-
alently, f�1(`) 6= ;:

(fu)�1(`) 6=; , `2 image(u) (correctness of image)

(9s2Ln :fu(s)) = (
W

s2Lnf
u(s)) = (

W
`2image(u)`) (existential quanti�cation)

To demonstrate how existential quantification works, we refer again to the example
in Figure 4, and compute 9x2 : x1^x2. There are two nodes labeled with x2 to be
dealt with. By inspection we see that image(f1)=fF;Mg and image(f2)=fF;M;Tg.
So f1 is replaced with the terminal node F_M = M, and f2 with the terminal node
F_M_T = T.

In general, algorithms for manipulating BDDs are easily extensible to the multi-
valued case, provided they do not use any optimizations that depend on a two-valued
boolean logic (e.g. complemented edges [20]). The differences are discussed below.
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function MakeUnique(name; children)

find (create if not found) a node u s.t.
var(u) = name ^

8`; child`(u) = children(`)

return u

function Quantify(u, i)
// existentially quantifies over all variables aj with j � i.

if var(u) < i

then foreach ` 2 L
children(`) := Quantify(child`(u); i)

return MakeUnique(var(u); children)

else return Lattice:bigOR(image(u))

function Apply(op, u1, u2)
// applies the lattice operation op to the MDDs u1 and u2

globalG = ju1j � ju2j array of int
Apply0

(op; u1; u2)

function Apply0(op, u1, u2)
// helper function for Applywhich actually does the work

if G[u1][u2] non-empty
then return G[u1][u2]

else
if u1 2 L ^ u2 2 L

then u := Lattice:doOp(u1; u2, op)
else if var(u1) = var(u2)

then foreach ` 2 L
children(`) := Apply0

(op; child`(u1); child`(u2))

u := MakeUnique(var(u1); children)

else if var(u1) < var(u2)

then foreach ` 2 L
children(`) := Apply

0
(op; child`(u1); u2)

u := MakeUnique(var(u1); children)

else
foreach ` 2 L

children(`) := Apply
0
(op; u1; child`(u2))

u := MakeUnique(var(u1); children)

G[u1][u2] := u

return u

Fig. 5. The MDD algorithms MakeUnique, Quantify and Apply for binary operators.
Apply for unary operators is defined similarly.

The most-used method in an MDD (or BDD) library is MakeUnique, defined in
Figure 5. This guarantees uniqueness and thus reducedness [21]. MakeUnique is not a
public method, but it is used by most of the public methods.

The public methods required for model checking are: Build, to construct an MDD
based on a function table; Apply, to compute ^;_ and : of MDDs; Quantify, to exis-
tentially quantify over the primed variables; and AllSat to retrieve the computed par-
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function EX(P')

return Quantify(Apply(^;R; Prime(P'));n)

function QUntil(quanti�er; P'; P )

QU0 = P 
repeat

if (quantifier is A)
AXTermi+1 := Apply(:;EX(Apply(:;QUi))) // AX(QUi)
EXTermi+1 := EX(QUi))

else
AXTermi+1 := P'
EXTermi+1 := EX(Apply(:;QUi)))

QUi+1 := Apply(_; P ; (Apply(^;P';Apply(^;EXTermi+1;AXTermi+1))))

until QUi+1 = QUi
return QUn

procedure Check(p;M)

Case
p 2 A: return Build(p)

p = :': return Apply(:, Check(';M))
p = ' ^  : return Apply(^, Check(';M), Check( ;M))
p = ' _  : return Apply(_, Check(';M), Check( ;M))
p = EX': return EX(Check(';M))

p = AX': return Apply(:;EX(Apply(:;Check(';M))))

p = E['U ]: return QUntil(E;Check(';M);Check( ;M))

p = A['U ]: return QUntil(A;Check(';M);Check( ;M))

Fig. 6. The multi-valued symbolic model checking algorithm.

tition P�1' (L). Build ensures orderedness of MDDs while they are being constructed,
and Apply preserves it. Apply and Quantify are shown in Figure 5. Note how each
interfaces with the lattice library: Apply calls the method Lattice:doOp to compute ^
or _ of two terminal nodes, while Quantify requires Lattice:bigOR to compute the
disjunction of an MDD’s image-set.

An additional function, Prime, primes all of the variables in an MDD. In general,
primed and unprimed variables may be mixed in the variable ordering, but for the pur-
poses of this presentation, primed variables are always higher in the ordering. For in-
stance, (a; c; b; a0; c0; b0) is an acceptable variable ordering, but (a; a0; b; b0; c; c0) is
not. Quantify will still work in the more general case, but some preliminary variable
reordering will be needed.

5.2 The Model Checker

Symbolic model checkers for boolean logic [7,4] are naturally extended to the multi-
valued case. The model checker presented here is a symbolic version of the multi-valued
model checker described in [6].

The full model checking algorithm is described in Figure 6. The function EX(P')

computes PEX' symbolically; QUntil carries out the fixed-point computation of both
AU and EU . AX' is computed as :EX:'. EG, AG, EF , AF , ER and AR are not
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Fig. 7. MDD for R, representing the transition relation for the coffee dispenser.

shown in this Figure, but could be added as cases and defined in terms of calls to EX,
QUntil, and Apply.

Proposition 1 The functionEX(P') computesEX'. That is, a state vector s `-satisfies
Quantify(R ^ P'0 ; n) if and only if (

W
t2S R(s; t) ^ P'(t)) = `.

To illustrate the algorithm, we compute the partition given by the �CTL formula
EX(cup) in the coffee dispenser example in Figure 1(b). This computation is equiva-
lent, in symbolic terms, to computing 9v0; s:t: R ^ Pcup0 ; where v

0 is a primed state
vector; the intuition here is the quantification over all possible next states. This is im-
plemented in the model checker by the expression

Quantify(Apply(^; R; Prime(P')); n)

Not every n-ary function over an arbitrary quasi-boolean lattice can be written in the
relatively economical form of a propositional formula, and so we need to show either
an MDD or a function-table representation. We will use MDDs. The MDD for the
transition relation of the model (R) is shown in Figure 7. For clarity and to save space,
we used the following conventions: (a) all state variables are abbreviated to their initial
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Fig. 8. The MDD for Pcup0 .
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Fig. 9. The lowest level of the MDD for R^ Pcup0 . Dotted lines indicate the transitions
which existed in Figure 7 and are now set to F.

letters; e.g., m stands for milk, w for water, etc; (b) the MDD is not reduced; (c) the
transitions to the terminal node F are not shown. Note that there are no transitions to
node DC in this diagram. The MDD for Pcup0 is given in Figure 8.

We start by computing R^Pcup0 . The top part of the MDD is the same as shown in
Figure 7. The bottom row is given in Figure 9. The conjunction of two MDDs with the
same variable in the root node is carried out by pairwise conjunction of their children;
for instance, consider the leftmost node in Figure 7 labeled with cup0, indicated by
the dashed box; its childDC is T, and its other children are F. The MDD for cup0 has
child` = ` for all ` 2 L. Their conjunction, then, has child` = ` for any ` 2 L except
for DC; DC ^ T = DC, so the child is DC, as shown by the dashed box in Figure 9.

To complete the computation, the model checker needs to existentially quantify
over the primed variables. Quantify replaces all primed-variable nodes u which are
immediate children of unprimed-variable nodes, with the constant node

W
image(u).

For instance, we can see by inspection that the leftmost subgraph with power0 at the
root (which corresponds to the successor states of OFF) has DC, N, F in its image-set,
so it is replaced by the terminal node

W
fDC;N;Fg = DC; from this we conclude that

EXcup has the value DC in state OFF, the model’s initial state.
The properties of the coffee dispenser example given in Section 2 and formalized in

Section 4 can be model checked with the results given in Table 1.

Num Property Result Comment
1. EF (water) T as expected
2. EF (milk) S as expected
3. AG(water!cup) T as expected
4. AG(water!AXA[:waterW (:cup^:water)]) S as R(COFFEE;FOAM) = S

Table 1. Results of model checking the coffee dispenser.
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MDD Method Running Time Notes
MakeUnique(var; child) O(1) Hash-table lookup.
Build(f) O(jLjn) O(size of the function table to convert to MDD).
Apply(op; u1; u2) O(ju1jju2j) The worst-case is pairwise conjunction of every node

in u1 with every node in u2 .
Quantify(u; i) O(juj) Depth-first traversal of the graph.
Prime(u) O(juj) Same as above.

Table 2. MDD methods used for model checking, and their running times.

5.3 Analysis

Table 2 shows the running times of MDD operations used by the model checker in terms
of juj, the size of the MDD. In the worst case, this size is O(jLjn) [21].

The running times of MDD methods Build and Apply critically depend on the
sizes of MDD structures. In order to form a rough estimate of these sizes in the average
case, we ran the MDD library on several test sets, with results shown in Figure 10.
Each data point in the graph stands for a set of 200 MDDs, each representing a function
generated by filling in a random value (chosen from a uniform distribution) from L
for each possible input. We generated one such set for 3, 4, and 5 variables for lattices
ranging in size from 3 to 8 (the x-axis of the graph), and took the average size of the
MDDs representing the functions. The figure shows the worst-case size jLjn, and our
experimental results, for n = 4 and n = 5; n = 3 is similar.
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Fig. 10. Worst-case and experimental average-case sizes of MDDs plotted against lat-
tice size. (a) n = 4, (b) n = 5.

The results show the average size of the generated MDDs to be roughly jLjn�1, a
linear improvement over the worst-case O(jLjn). We recognize the weakness of this
methodology: that it does not give a good idea of how the structure of the problem
affects the size of MDDs. We suspect that the structure of the model checking problem
results in a somewhat better improvement, but do not yet have adequate benchmarks
with which to test this hypothesis. In the future, we would like to perform the same test
for an appropriate test suite of multi-valued models, to check whether the structure of
the model checking task has an impact on the size of MDDs.
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The running time of �chek is dominated by the fixpoint computation of QUntil.
The proof of termination of this algorithm is based on each step of QUntil being a
monotonic lattice operator; a detailed proof can be found in [6]. The total number of
steps is bounded above by jLjn�h (h is the height of the latticeL), and the time of each
step is dominated by the time to compute the EXTerm and AXTerm, which isO(jLj2n);
so the worst-case running time for �chek is O(jLj3n� h), where h is the height of the
lattice. The results of Figure 10 suggest that in the average case, each step’s running
time isO(jLj2n�2), for an average termination time of O(jLj3n�2�h�jpj), where jpj
is the size of the �CTL formula.

At first glance, MDDs appear to be performing significantly worse than BDDs
(O(jLjn) versus O(2n) in the worst case). However, our multi-valued logics compactly
represent incompleteness in a model. For example, suppose we have a model with n
states and wish to differentiate between p of those states (p << n) by introducing
an extra variable a. In classical model checking this uncertainty can only be handled
by duplicating each of n � p states (one for each value of a). In fact, most of these
states are likely to be reachable; thus, the size of the state space nearly doubles. In the
multi-valued case, the reachable state-space will increase at most by p states. This com-
putation did not take into an account the presence of “unknown” transitions; these could
also be encoded into the binary representation, but would lead to a further state-space
increase. Thus, we expect that often our model checker would perform as well as the
classical one, and on some problems even better.

Finally, the scope of the applicability of an MDD-based model checker includes
reasoning about inconsistent models.

6 Conclusion and Future Work

Multi-valued logics can be useful for describing models that contain incomplete in-
formation or inconsistency. In this paper we presented an extension of classical CTL
model checking to reasoning about arbitrary quasi-boolean logics. We also described
an implementation of a symbolic multi-valued model checker �chek and illustrated it
using a simple coffee dispenser example.

We plan to extend the work presented here in a number of directions to ensure that
�chek can effectively reason about non-trivial systems. We will start by addressing
some of the limitations of our �Kripke structures. In particular, so far we have assumed
that our variables are of the same type, with elements described by values of the lat-
tice associated with that machine. We need to generalize this approach to variables of
different types. We are also working on generalizing our algorithm to verification of
properties expressed in CTL*.

In this paper we concentrated our attention on a purely symbolic model checker.
The union, intersection, and quantification were computed using MDD operations. Al-
ternatively, one can build a table-driven model checker, where such operations are ta-
ble lookups. This model checker has the same running time as the MDD-based one.
However, lattice-theoretic results can be used to significantly optimize the table-driven
model checker. Our report on this work is forthcoming [5].
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