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Abstract. We propose a new validation algorithm for bounded Petri
Nets. Our method combines state enumeration and structural techniques

in order to compute under-approximations of the reachability set and
graph of a net. The method is based on two heuristics that exploit prop-
erties of T-semi
ows to detect acyclic behaviors. T-semi
ows also give us
an heuristic estimation of the number of levels of the reachability graph
we have to keep in memory during forward exploration. This property
allows us to organize the space used to store the reachable markings as a
circular array, reusing all markings outside a sliding window containing
a �xed number of the last levels of the graph. We apply the method to
examples taken from the literature [ABC+95,CM97,MCC97]. Our algo-
rithm returns exact results in all the experiments. In some examples, the
circular memory allow us to save up to 98% of memory space, and to
scale up to 255 the number of tokens in the speci�cation of the initial
marking.

1 Introduction

Bounded Petri Nets (PNs) are �nite-state concurrent systems in which the max-
imal number of processes (tokens) in any possible state (place) is bounded by
a constant. Though decidable, the veri�cation of safety and liveness properties
of bounded PNs is a very hard problem in practice. Following the literature
in the �eld [STC98,Val98], the techniques used to attack this problem can be
distinguished into the following classes.

State Enumeration Techniques. The reachability graph of a �nite-state system
built using an exhaustive search algorithm [Hol88] is a complete tool for the
veri�cation of safety and liveness properties. This technique su�ers from the
state explosion problem, i.e., the explosion of the size of the reachability graph
compared to the size of the speci�cation [BCB+90,Val98]. Partial search [Hol88]
can be used as heuristics to validate large �nite-state systems. In general, par-
tial search returns under-approximations of the reachability graph. Therefore,
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it cannot be used for veri�cation purposes, but only for simulation and testing.
When incorporated in search algorithms, eÆcient data structures like hash tables
[Hol88], BDDs [BCB+90], and Sharing Trees [GGZ95] represent other important
heuristics to alleviate state explosion.

Structural Techniques. While state enumeration is a general-purpose technique
for validation of �nite-state systems, veri�cation techniques based on structural
properties are a distinguishing feature of PNs [STC98]. These techniques work
without explicitly computing the reachability graph. They rely on linear pro-
gramming (synonymous of eÆciency) usually returning approximated answers.
For instance, the state equation [Rei86] can be used to over-approximate the
reachability set of a PN, and thus to verify safety properties [STC98]. Other
techniques like traps can be used to improve the precision of the state equation
[EM00].

Our Contribution. In contrast with traditional uses of structural theory, in this
paper we investigate the combination of enumerative and structural techniques
for validating and debugging systems modeled as bounded PNs. Speci�cally, we
use structural properties as heuristics to guide the search during state explo-
ration. In order to attack state explosion we incorporate our heuristics within a
partial search algorithm, and we leave open the possibility of using eÆcient data
structures for storing intermediate results.

More precisely, the algorithm we propose explores part of the state-space of a
PN using properties ofminimal T-semi
ows in order to detect acyclic occurrence
sequences without having to search for visited markings. Minimal T-semi
ows
form a system of generators (the fundamental set) for all the positive integer
solutions of the system of equalities

C �x = 0, C being the token 
ow matrix.

To apply our heuristics, we require the fundamental set to be integral, i.e., T-
semi
ows must be non-negative integer combinations of minimal T-semi
ows.
This conditions is satis�ed by several case-studies we have found in the liter-
ature (see Section 5). Integrality is a new property we introduce on the basis
of classical notions of linear programming [Sch94]. Our algorithm returns an
under-approximation of the reachability graph, while automatically measuring
the quality of the approximation. Speci�cally, a 
ag is raised whenever the re-
turned graph is an equivalent representation of the reachability graph. Thus, in
an ideal situation our validation method can also be used as a complete tool
for veri�cation. At any moment during the execution, the algorithm works on a
sliding window that covers the last levels of the partially constructed graph. The
number of levels included in the sliding window is computed statically, using
again minimal T-semi
ows. This property gives us an estimation of the number
of levels of the reachability graph we need to keep in memory during forward
exploration. We exploit these information to build the following garbage collec-
tion procedure: we organize the main memory as a circular array, and we re-use
the memory allocated to all markings outside the window.
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In order to test the applicability of our assumptions and the quality of our
heuristics, we run a prototype implementation of the algorithm (without use of
dedicate data structures to store the markings) on several examples taken from
[ABC+95,CM97,MCC97]. Our aim was to check safety properties and compute
the reachability set. The preliminary results seem very promising. In some of the
examples, we were able to scale up the number of tokens in the initial marking to
255, and to handle the resulting PN using only 25Mbytes of mainmemory (within
the range of the RAM memory of a personal computer, see Section 5). Without
sliding window the same examples would have required approximatively 1,300
Mbytes of memory, i.e., our heuristics can save up to 98% of memory space.
Finally, we obtained an exact representation of the reachability set in all our
experiments, i.e., with our method we were able to verify all safety properties
taken into consideration.

Plan of the paper. In Section 2, we recall the main properties of the Structural
Theory of Petri Nets. In Section 3, we introduce the notions necessary to our
algorithm. In Section 4, we present the heuristics and the validation algorithm.
In Section 5, we discuss our experimental results. Finally, in Section 6 and 7
we discussed related works and future directions of research, respectively. The
extended version of this paper (containing the proofs of all results) is available
as technical report [CDC00].

2 Structural Theory for Petri Nets

Following [STC98], a PN N is a tuple hP; T;Pre;Post;m0i, where P is the
�nite set of places, T is the �nite set of transitions, Pre and Post are the
jP j � jT j sized, incidence matrices, and m0 is the initial marking. The matrix
C = Post�Pre is called token 
ow matrix. A marking m = hm1; : : : ;mni is a
vector of natural numbers of dimension n = jP j. We will use 0 to denote the null
vector h0; : : : ; 0i. Given two vectors m = hm1; : : : ;mni and m0 = hm0

1; : : : ;m
0

n
i,

we de�ne m �m0 if and only if mi � m0

i
for i : 1; : : : ; n. Similarly, we can de�ne

m =m0, whereas m >m0 holds if and only if m �m0 and m 6=m0.

Occurrence sequences, and Parikh vectors. Let N be a PN with token 
ow
matrixC, n places, and m transitions t1; : : : ; tm. A transition t 2 T is enabled at
markingm ifm � Pre[P; t], i.e., there are enough tokens to �re t. The �ring of

the transition t, namelym
t
!m0, yields a new markingm0 = m +C[P; t]. An

occurrence sequence from m is a sequence of transitions � = s1 : : : sk such that
m

s1! : : :
sk!mk. The reachability set is denoted by R(N;m0). The reachability

graph is denoted by G(N;m0). The state equation is de�ned as the system of
equalities

m0 =m0 +C � x;

where m0 and x are vectors of variables that range over positive integers. The
Parikh vector p� associated to a �nite occurrence sequence � is de�ned as follows:

p� = hOcct1(�); : : : ; Occtm(�)i;
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where Occti(�)=number of occurrences of ti in �. In the following we will use
x;y; : : : to denote vectors of natural numbers with dimension = jT j (for clarity,
always referred to as Parikh vectors).

T-semi
ows, and Fundamental Set. An integer vector x of dimensionm is called
a T-
ow if and only if

C �x = 0; where C is the token 
ow matrix:

The following proposition relates T-
ows and cyclic sequences.

Proposition 1 (From [STC98]). Let N be a PN, and let m
�

! m0. Then,
the Parikh vector p� associated to � is a T-
ow if and only if m =m0.

A T-semi
ow is a T-
ow x such that x � 0. A minimal T-semi
ow is a T-
semi
ow x such that: the greatest common divider of all its positive components
is equal to 1, and there are no T-semi
ow y such that the set of non-zero com-
ponents of y are contained in that of x. The fundamental set of T-semi
ows,
say F , of N is the set of minimal T-semi
ows of N . The fundamental set can be
computed using a variation of the Gaussian elimination method. The number of
minimal T-semi
ows of a PN N could be exponential in the size of N [STC98].
T-semi
ows enjoy the following properties.

Theorem 1 (From [STC98]). Let N be a PN with fundamental set F =
fx1; : : : ;xkg. Every T-semi
ow y can be obtained as a non-negative linear com-
bination with rational coeÆcients of the minimal T-semi
ows, i.e., y = c1x1+
: : :+ ckxk, where xi 2 F , ci 2 Q, and ci � 0 for i : 1; : : : ; k.

In the following we will call LinQ+ (F) (LinZ+ (F)) the set of vectors obtained as
non-negative linear combinations with rational (integer) coeÆcients of vectors
in F . From Theorem 1 and Prop. 1, we obtain the following corollary.

Corollary 1 (Cycle ) T-semi
ow [STC98]). Let N be a PN, and let m
�
!

m0. If m =m0, i.e., � is a cycle in G(N;m), then p� 2 LinQ+ (F).

The reverse implication might not hold. A counterexample of a PN in which a
T-semi
ow is not realizable (all paths denoted by the T-semi
ow are not valid
occurrence sequences) is given by Reisig in [Rei86]. Note that for Free-choice
PNs [DE95] minimal T-semi
ows are always realizable. Unfortunately, this class
does not permit to model interesting examples of mutual-exclusion algorithms.

3 Towards the Combination with State Enumeration

Our starting point consists in a reformulation of the standard exhaustive search
algorithm using Parikh vectors. The unique goal of this preliminary step is to
simplify the integration of our structural heuristics in the enumerative approach.
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Algorithm ES(N;P) : Boolean.

N = hP;T;Pre;Post;m0i : PN;
P: the safety property;

Old:=;;
New:=fm0g;
while (New nonempty) do
m = element from New;
if not(P(m)) then return(false);
for every ti 2 T enabled at m do

m
0 =m+C[P;ti];

if (m0 62 Old [New) then
add m0 to New;

endf;
add m to Old;
delete m from New;

endw;
return(true).

Algorithm DES(N;P) : Boolean.

N = hP;T;Pre;Post;m0i : PN;
P: the safety property;
y0 := 0;

Old := ;;
New := fy0g;
while (New nonempty) do
y = element from New;
if not(P(M(y))) then return(false);
for every ti 2 T enabled at M(y) do

y
0 = y[yi := yi + 1];

if (M(y0) 62M(Old [New)) then
add y0 to New;

endf;
add y to Old;
delete y from New;

endw;
return(true).

Fig. 1. Two formulations of the Type 1 Reachability Algorithm for PNs.

3.1 An Encoding Based on Parikh Vectors

Let N be a PN with n places, m transitions, token 
ow matrix C, and initial
markingm0. Following [Hol88], the exhaustive search procedure ES (exhaustive
search) of Fig. 1 builds the complete reachability set (graph) storing the set of
visited markings in the variable Old. The procedure ES can be reformulated
using a representation of a reachable markingm via the Parikh vector p� asso-
ciated to the path � such that m0

�
! m. In fact, from the state equation we

know that
m =m0 +C � p�:

A Parikh vector x can be used as a concise representation for all realizable paths
� starting from m0 such that p� = x. Given a Parikh vector y we de�ne the
marking M (y) associated to y as

M (y) =m0 +C � y:

Note that M (y0) = m0 whenever y0 = 0. Furthermore, given a set of Parikh
vectors S we de�ne

M (S) = fm j m =M (y); y 2 Sg:

Using the mappingM (�), we can reformulate the forward reachability algorithm
representing explicitly the Parikh vectors underlying every marking, as shown in
the dual exhaustive search procedure DES (dual exhaustive search) of Fig. 1. In
the algorithm DES (the skeleton of ES), �ring a transition ti enabled at M (y)
modi�es a vector y = hy1; : : : ; yni as follows

y[yi := yi + 1] = hy1; : : : ; yi�1; yi + 1; yi+1; : : : ; yni:
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Suppose we run the two algorithms of Fig. 1 in parallel, then the following prop-
erties hold at any step: m0 = M (y0), Old = M (Old), and New = M (New).
From now on, we will use the algorithmDES as a platform to include the set of
heuristics based on properties of T-semi
ows described in the following section.

3.2 SuÆcient Conditions for Detecting Acyclic Behaviors

As shown next, the contraposed form of Cor. 1 of Section 2 can be used to devise
suÆcient conditions for detecting acyclic occurrence sequences without having
to search for visited markings.

Corollary 2 (Not-T-semi
ow) Not-Cycle). Let N be a PN, and let m
�

!
m0. If p� 62 LinQ+ (F) then � is a not a cycle in G(N;m).

This property goes well together with our formulation of the forward reachabil-
ity algorithm using Parikh vectors. Before entering in more details, let us �rst
analyze the cost needed to check the condition p� 62 LinQ+ (F) of Cor. 2. To test
this condition, we must solve a linear problem with rational solutions (polyno-
mial in the size of F). Are there more eÆcient suÆcient conditions (e.g. linear
in F) we can use? To answer this question, let us introduce the following new
notion.

De�nition 1 (Integral Fundamental Set). We say that the fundamental
set F is integral whenever x 2 LinQ+ (F) implies that x 2 LinZ+ (F), i.e.
all T-semi
ows can be computed using non-negative combinations with integer
coeÆcients.

Under the assumption that F is integral, the following theorem can be used as
a suÆcient condition for detecting acyclic behaviors.

Theorem 2 (SuÆcient Condition for Not-T-semi
ow). Let N be a PN
with m transitions, and integral fundamental set F = fx1; : : : ;xkg, where xi =

hxi;1; : : : ; xi;mi. Furthermore, let m
�

!m0, and p� = hy1; : : : ; ymi be the Parikh
vector associated to �. If for all i : 1; : : : ; k there exists j 2 fi; : : : ;mg such that
xi;j > yj , then for all non-empty subpath �0 of �, p0

�
62 LinQ+ (F).

The cost of checking the condition of Theorem 2 is linear in the cardinality of
F . The cardinality of F is potentially exponential in the size of N , but it is often
linear in practice (see Section 5). As a remark, note the di�erence between the
hypotheses of Theorem 2, and those of Prop 1, namely C � p� 6= 0. If Theorem
2 holds, then all subpaths contained in the path � from m to m0 are acyclic.
Contrary, if C � p� 6= 0, then we deduce that only the paths from m to m0

are acyclic. However, it is easy to build a Petri Net for which there exist three
markings m;m0 and m00 such that m

�2! m00
�2! m0, C � p�1+�2 6= 0, and

C � p�2 = 0.
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3.3 Checking the Integrality of F

To check the integrality of the fundamental set, we can use the notion of total
unimodularity [Sch94]. A matrixA with integer coeÆcients is totally unimodular
if every subdeterminant of A is 0, 1 or �1. From [Sch94], we know that if A is
totally unimodular, then the extreme points of the set of solutions ofA�x = b are
integer numbers for any vector b. Furthermore, to check the total unimodularity
of F , we can use the following (polynomial-time) criterion on the matrix with
minimal T-semi
ows as rows.

Theorem 3 (From [Sch94]). Let A be matrix with two non-zero coeÆcient
in each column. A is totally unimodular i� its rows can be split into two classes
such that for each column: if the nonzero in the column have the same sign then
they are in di�erent classes, and if they have opposite signs they are both in the
same class.

Thus, if F forms a totally unimodular matrix, then x 2 LinQ+ (F) if and only if
x 2 LinZ+(F). Perhaps surprisingly, several examples taken from the literature
satisfy the integrality requirement on F . We will turn back to this point in
Section 5.

4 Partial Search with Structural Heuristics

We come now to the de�nition of our partial search algorithm. Basically, the
idea is to replace the core of the reachability algorithm DES of Fig. 1 with two
heuristics selected on the basis of a preliminary comparison of Parikh vectors
with minimal T-semi
ows. The �rst heuristics exploits Theorem 2 to add mark-
ings to the set of visited states. The second heuristics applies suÆcient conditions
to localize the search for back-edges in the reachability graph. A Boolean 
ag (we
will call complete) is used to estimate the quality of the approximation com-
puted by the heuristics. The resulting partial search PS algorithm is shown in
Fig. 2. To explain it in detail, in the rest of the section we will use the predicate
SFC de�ned as

SFC(y)
:
= for all x = hx1; : : : ; xmi 2 F exists i 2 fi; : : : ;mg s.t. yi < xi:

to denote the comparison between a Parikh vector y = hy1; : : : ; ymi and the
minimal T-semi
ows of F . Now, let y0 be the new Parikh vector generated
during the execution of forward reachability, and let Old and New denote the
set of visited markings.

The First Structural Heuristics. Suppose SFC(y0) holds. From Theorem 2 and
Cor. 2, we can deduce that the marking M (y0) is not present in all paths �,
p� = y0, going from m0 to M (y0). Under this hypothesis, our heuristics is
de�ned as follows: without further checks on Old we instruct the algorithm
to immediately add y0 to New. The advantage of the heuristics is that we
avoid the cost of searching for (a possible occurrence of) M (y0) in the whole
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graph. The drawback is that it could introduce redundant markings. In fact,
the marking M (y0) may occur in paths unrelated to y0 (not captured by Cor.
2). This fact does not in
uence the termination of the resulting algorithm, as
stated in Theorem 4. We postpone the practical evaluation of the �rst heuristics
to Section 5.

The Second Structural Heuristics. Suppose that SFC(y0) does not hold. Then,
there exists some x 2 F such that y0 � x. In other words, all paths � such that
p� = y0 contain a subpath that is a minimal T-semi
ow. Furthermore, since by
de�nition C �x = 0, if we apply the state equation we obtain that

M (y0) = m0 +C � (y0 � x):

Our idea is to use the normalized Parikh vector y0 � x to guide the search for
a marking m 2 Old such that m = M (y0). Formally, let the rank of a Parikh
vector y be de�ned as

rank(hy1; : : : ; yni) = y1 + : : :+ yn:

Furthermore, given a set of Parikh vectors S, let the k-th level of S be de�ned
as

S[k] = fy j y 2 S; rank(y) = kg:

Then, if SFC(y0) = false, we �rst search for a markingm such thatm = M (y0)
in all levels Old[rank(y0 � x)] with x 2 F and y0 � x. If we �nd the node we
draw a back-edge. The edge will be part of a cycle. If the previous local search
fails, we discharge the vector y0, while setting the Boolean 
ag complete to
false. This way, we inform the user that the algorithm is computing an under-
approximation of the reachability graph. Basically, we substitute the full termi-
nation test y 2 Old of the algorithm DES of Fig. 1 with a suÆcient condition.
If the 
ag complete is true when the algorithm terminates the exploration of
the state space, then the resulting reachability graph is exact. The following
theorem formalizes these properties.

Theorem 4. Let N be a bounded PN with integral fundamental set F , P a
safety property and let C be the value of the 
ag complete when the algorithm
PS of Fig. 2 returns. Then, (1) the computation of PS(N;P) always terminates
(returning true or false); (2) if PS(N;P) = true and C = true, then P holds
for N ; (3) if PS(N;P) = false, then P does not hold for N .

The second heuristics gives us a bound on the number of levels we have to keep
in memory during the exploration of the reachability graph. The bound WS

(window size) is the maximumbetween the ranks of the minimal T-semi
ows in
F , namely

WS = maxf rank(x) j x 2 F g:

Thus, our algorithm works only on a window of dimension WS that covers the
last levels of the current reachability set. We will present a memory management
based on this property in the next section.
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Algorithm PS(N;P): Boolean

N = hP; T;Pre;Post;m0i;
F : integral fundamental set of N ;
P: the safety property;

y0 := 0; complete:=true;
New := fy0g; Old := ;;
while (New nonempty) do
y = element from New;
if not(P(M(y))) then return(false);
for every ti 2 T enabled at M(y) do
y

0 = y[yi := yi + 1];
if for all x 2 F exist i 2 f1; : : : ;mg s.t. y0

i � xi < 0 then
if (M(y0) is not in M(New)) then add y0 to New;

else if (M(y0) is not in M(Old[rank(y0 � x)]) for some x 2 F , y0 � x) then
complete:=false;

else add the back-edge;
endfor;
add y to Old; delete y from New;

endw;
if complete write('Exact RS') else write('Approximated RS');
return(true).

Fig. 2. A Type 2 Reachability Algorithm.

5 Experimental Results

We have implemented a prototype version of the algorithm DFR of Fig. 2,
borrowing the graphical interface and the library for computing structural prop-
erties from GreatSPN [CFGR95], and using the following specialized memory
management.

5.1 Organizing the Memory as a Circular Array

We consider PNs where transitions can be �red at most 255 times. We orga-
nize the available memory (RAM + swap area) as a circular array, where each
slot in the array contains m bytes and stores a Parikh vector (m=number of
transitions). Our representation does not depend on the bound on the number
of tokens in the places. If TM is the size of allocated memory in bytes, the
number of available slots AS is then AS = TM=m. Furthermore, if NS is the
number or reachable vectors, then the virtual memory required to store them is
MS = NS �m bytes. A table maintains the initial and �nal address of the set
of Parikh vectors of each level. Each level is stored as an ordered list. A sliding
window covering the last WS levels of the reachability graph moves around the
circular array (we de�ned WS in the previous section). The global size of the
sliding window is the sum of the number of states in each of its levels. By con-
struction of PS, we can always reuse the states outside the window in successive
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case-study T P SF ET WS I?
Kanban [CM97] 16 16 5 0.01s 8

p

Flexible Manufacturing System (FMS) [CM97] 20 22 4 0.04s 13
p

Multipoll [MCC97] 21 18 8 0.06s 5
p

Central Server Model (CSM)[ABC+95] Fig. 76 pp. 154 13 14 4 0.03s 5
p

Readers-Writers [ABC+95] Fig. 11 pp. 17 7 7 2 0.02s 4
p

2x2 Mesh [ABC+95] Fig. 130 pp. 256 32 32 8 0.07s 5
p

Fig. 3. Pro�le of the case-studies: T=number of transitions; P=number of places;
SF(size of F)=number of minimal T-semi
ows; ET=CPU execution time to
compute F using GSPN on a Pentium 133Mhz; WS=size of the sliding window;
I?=is the fundamental set integral?

iterations. An over
ow exception OF is raised as soon as the algorithm adds a
slot of the last level of the window to its �rst level (i.e. the window covers all
memory).NR will indicates the number of times the last slot of the sliding win-
dow goes beyond the rightmost limit of the array (NR = 0 means MS � TM ).
Finally, the ratio R de�ned as 1� TM=MS give us an estimation of the saving
of memory occupancy we obtain with our heuristics.

5.2 Practical Evaluation

At this stage of our work, the purposes of the experiments were: (1) testing the
applicability of the assumptions under which the algorithm works (the existence
of an integral fundamental set); (2) testing the quality and eÆciency of our
heuristics; (3) testing the scalability of the specialized memory management.

Applicability. To make the tests more interesting, we considered models of con-
current and productions systems taken from [ABC+95,CM97,MCC97]. Further-
more, in order to study the scalability of our approach we restricted ourselves to
consider systems with parametric initial markings, where the parameter is the
number of initial tokens in some given places of the net. For these examples, we
were interested in computing the set of reachable states, so as to prove safety
properties like mutual exclusion. As shown in Fig. 3, most of the examples in
[ABC+95,CM97,MCC97] with the previous characteristics turned out to have
integral fundamental set. We computed F using the structural library of GSPN
within negligible execution times (see again Fig. 3). We remark that only the
Kanban system of [CM97] is a free choice net, all the other examples heavily
rely on the use of semaphores.

Quality and EÆciency. In order to test the quality and eÆciency of our heuris-
tics, we compared the execution times of our prototype with those of GreatSPN
[CFGR95], one of the more eÆcient tools for the generation of the reachability
graph of a PN. We performed all experiments on a Pentium with a clock speed
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CASE-STUDY NT ET-Prot NS-Prot CF ET-GSPN NS-GSPN
Kanban 2 1.530s 4,600 true 0.860s 4600

4 229.070s 454,475 true 158.700s 454,475
5 1464.270s 2,546,432 true

p p

6
p p

FMS 2 1.270s 3,444 true 0.460s 3,444
4 249.170s 438,600 true 117.770s 438,600
5

p p p p

Multipoll 2 5.210s 11,328 true 2.190s 11,328
4 56.280s 106,280 true 27.030s 106,280
9 1164.750s 1,943,160 true

p p

10
p p

Mesh 2 178.870s 200,544 true 46.150s 200,544
3

p p p p

CSM 2 0.020s 76 true 0.010s 76
32 23.180s 95,876 true 27.920s 95,876
75 311.530s 1,170,704 true 538.450s 1,170,704
115 1156.240s 4,162,544 true

p p

116
p p

Reader-Writers 4 0.030s 90 true 0.010s 90
32 7.170s 64,889 true 10.250s 64,889
62 94.350s 762,384 true 175.300s 762,384
114 1069.020s 7,927,295 true

p p

115
p p

NT=Number of Tokens in the initial marking;
ET=CPU Execution Time on a Pentium 133Mhz;
NS=Number of reachable markings;
CF=value of the Complete Flag when PS returns;p
=memory over
ow;

-Prot=executed on our prototype;
-GSPN=executed on GreatSPN [CFGR95].

Fig. 4. First serie of experimental evaluations.

of 133Mhz, RAM memory of 32Mbytes, and swap area of 34Mbytes, allocating
a priori 55Mbytes of memory to store the reachability set. The table in Fig. 4
summarizes the results of a �rst serie of experiments. Surprisingly, the algorithm
returned an exact representation (without redundancies) of the reachability set
in all the examples (and di�erent values for the parameter=number of tokens
in the initial marking). In all the experiments of Fig. 4 we never had to exploit
the circularity of our memory organization: 55Mbytes where enough to store the
reachability set. The cost of our heuristics and of the localized search turned out
to be comparable to that of the eÆcient search of GreatSPN (despite the fact
that GreatSPN makes also use of simpli�cation rules). However, on examples like
Reader-Writers GreatSPN was not able to compute the reachability graph for
nets with more than 62 tokens in the initial marking (as indicated by the over-



446 Rub�en Carvajal-SchiaÆno, Giorgio Delzanno, and Giovanni Chiola

Readers-Writers (No. trans. m= 7) executed on our prototype
NT TM NS MS NR R ET CF OF
255 45 Mb 185,977,536 1,302 Mb 28 96% 27,981s true

255 35 Mb 185,977,536 1,302 Mb 37 97% 27,996s true
255 25 Mb 185,977,536 1,302 Mb 52 98% 27,991s true
255 21 Mb 66,252,650 463 Mb 22 95% 9,719s true

p

128 45 Mb 12,440,544 87.1 Mb 1 48% 1,723s true
128 35 Mb 12,440,544 87.1 Mb 2 60% 1,722s true
128 25 Mb 12,440,544 87.1 Mb 3 71% 1,721s true
128 15 Mb 12,440,544 87.1 Mb 5 82% 1,722s true

128 5 Mb 12,440,544 87.1 Mb 17 94% 1,723s true
128 3 Mb 5,631,404 40 Mb 13 92% 766.6s true

p

64 1 Mb 860,145 6 Mb 6 83% 108.3s true

64 500 Kb 860,145 6 Mb 12 91% 108.5s true
64 250 Kb 169,728 1.2 Mb 4 25% 19.6s true

p

32 300 Kb 64,889 455 Kb 1 34% 7.33s true

32 75 Kb 64,889 455 Kb 6 83% 7.38s true
32 50 Kb 23,099 162 Kb 3 69% 2.38s true

p

NT=number of tokens in the initial marking;
TM=total allocated memory;
NS=number of reachable states;
MS=NS*m;
NR=number of rounds in the circular memory;
R=1-(TM/MS) (saving ratio in pct);
ET=CPU execution time on a Pentium, 133Mhz;
CF=complete 
ag;
OF=over
ow 
ag.

Fig. 5. Second serie of experimental evaluations.


ow 
ag
p
). This fact is due to the overhead of a more sophisticated encoding of

markings and to the organization of visited markings as a tree structure [Chi89]
(trade-o� between eÆcient search operations and memory requirements). Both
our prototype and GreatSPN store the edges of the reachability graph on disk.

Scalability. In order to test the scalability of our method, we performed a second
serie of experiments in which we successively reduced the quantity of memory
allocated for storing the reachability set. The aim was to test the eÆcacy of
the circular implementation of the memory. The results were quite surprising.
For instance, as shown in Fig. 5 we were able to scale up to 255 the number of
tokens in the initial marking of Readers-Writers. In this case the net has approx-
imatively 185 millions of reachable states. It would take approximatively 1300
Mbytes of memory to store the entire reachability set. With our heuristics, we
were able to run the example using only 25 Mbytes of memory, hence saving 98%
of memory space. The memory manager returned an over
ow exception (indi-
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cated again with
p
) when we tried to use 21Mb of memory. Furthermore, for an

initial marking with 128, 64, and 32 tokens we were able to compute the reacha-
bility set saving (approximatively) 94% (TM=5Mbytes), 92% (TM=0.5Mbytes),
and 84% (TM=75Kb) of memory space, respectively. We obtained similar results
for the CSM example. The results on the other examples were less appealing,
though we also managed to scale up FMS to an initial marking with 5 tokens.
However, we believe that more results will be obtained by using eÆcient data
structures to store sets of markings.

6 Related Works

As mentioned in the introduction, structural techniques are traditionally used to
compute over-approximations of the reachability set, see e.g. [STC98]. In [EM00],
traps are used to improve the quality of the approximation. Place invariants can
also be used to over-approximate the reachability set. Place invariants are the
dual notion of T-semi
ows, i.e., the solution of the system y �C = 0: Let P be the
matrix of minimal P-semi
ows. As shown in [STC98], the solution of the equa-
tion P �x = P �m0 over-approximates the set of solutions of the state equation
m = m0 + C � �, i.e., over-approximates the reachability set. Contrary, in our
approach we have used T-semi
ows to �nd under-approximations (useful for de-
bugging) and to derive conditions to establish the quality of the approximation.
Furthermore, di�erently from [EM00,STC98], our approach is incorporated in
state enumeration. We are not aware of other approaches where T-semi
ows are
used for under-approximating the reachability set. In [MC99], Miner and Cia-
rdo use MDDs (Multi-valued Decision Diagrams) to store the reachability set;
whereas, Pastor et al. [PCP99] use P-invariants (semi
ows) to improve a BDD-
based encoding of the reachability set. Other compact data structures (like Shar-
ing Trees) are tested on reachability problems of bounded PNs in [GGZ95,ST99].
As mentioned in the introduction, our heuristics could be incorporated, e.g., in
a BDD-based framework. Our use of heuristics shares some similarities with
depth-�rst search algorithms [Hol88,Val98] for state enumeration, an approach
used to compute an under-approximation of the reachability graph. In fact, our
heuristics gives us conditions to detect acyclic paths of the reachability graph
that go from the initial marking to the current marking. However, note that the
use of Parikh vectors allows us to check the absence of cycles on collections of
paths (all paths and related subpaths represented by the vector). Furthermore,
the use of the second heuristics allows us to obtain more accurate information
w.r.t. a generic depth-�rst search where only the current paths is memoized.
Depth-�rst search algorithms combined with methods for storing visited mark-
ings have been proposed in [JJ91,MK96]. As heuristics for garbage collection, in
[JJ91] Jard and J�eron propose to discharge states selected randomly from the set
of visited markings, whereas Miller and Katz in [MK96] select the states to dis-
charge using their revisiting degree. Di�erently from [JJ91,MK96], our method is
based on a breadth-�rst search, in which we use the rank of minimal T-semi
ows
(i.e., heuristics peculiar of Petri Nets) to guide garbage collection.
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7 Conclusions

We have presented a new algorithm for validating concurrent systems modeled
as bounded Petri Nets. Our method is combines forward state exploration with
two structural heuristics based on the properties of T-semi
ows. One of the main
feature of our heuristics is that they give us an estimation on the number of levels
of the reachability graph we need to keep in memory. Using this measure, we can
organize main memory as a circular array, so as to garbage collect states outside
the current working window. In our prototype, information for computing error
traces are stored on disk. In this preliminary work, we were mainly interested in
evaluating the applicability of the method (are there interesting examples that
ful�ll our assumptions?), and the eÆcacy of the specialized memory manage-
ment (can we save memory?). In this respects, we think that our results are
quite promising (see Section 5). For a better evaluation of the approach (e.g.
to compare its scalability w.r.t. BDD-based approaches like [MC99,PCP99]), we
plan to integrate eÆcient data structures within our preliminary naive imple-
mentation of the algorithm (in which vectors are stored as sequences of slots, as
described in Section 5). Finally, it would be interesting to study the applicability
of similar techniques for the validation of in�nite-state systems, e.g., integrated
in approaches like [DR00].
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