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Abstract. Message sequence charts (MSCs) is a standard notation for

describing the interaction between communicating objects. It is popu-

lar among the designers of communication protocols. MSCs enjoy both

a visual and a textual representation. High level MSCs (HMSCs) allow

specifying in�nite scenarios and di�erent choices. Speci�cally, an HMSC

consists of a graph, where each node is a �nite MSC with matched send

and receive events, and vice versa. In this paper we demonstrate a weak-

ness of HMSCs, which disallows one to model certain interactions. We

will show, by means of an example, that some simple �nite state and sim-

ple communication protocol cannot be represented using HMSCs. We

then propose an extension to the MSC standard, which allows HMSC

nodes to include unmatched messages. The corresponding graph nota-

tion will be called HCMSC, which stands for High level Compositional

Message Sequence Charts. With the extended framework, we provide

an algorithm for automatically constructing an MSC representation for

�nite state asynchronous message passing protocols.

1 Introduction

Visual notations are useful in the design of large and complicated systems. They

allow a more intuitive understanding of the behavior of the system and the re-

lation between its components. They often allow abstracting away parts of the

system that are less relevant for a particular view. Message sequence charts are

among the most frequently used formalism for designing communication proto-

cols. Recently, they have been also used in the development of object oriented

systems, e.g. in UML. In the recent years, we observe the development of a

growing number of tools and algorithms for the manipulation of MSC based

designs [1,2,3,7,11,12].

The standard visual and textual notation [9] by ITU allows representing a

single execution scenario, as well as a collection of scenarios, including choices

and repetition. This is achieved by a notation called HMSC (High Level Message

Sequence Chart), which consists of a graph, where each node contains a single

MSC. The system behavior can follow the paths on that graph, starting from

some initial node. In this paper we show, by means of an example, a limitation
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of HMSCs. This limitation stems from the constraint that each MSC node in an

HMSC must have only matched send and receive events, i.e., each MSC must be

labeled by message arrows. We show examples where one cannot break a possi-

bly in�nite computation of a �nite state system into �nitely many nodes with

matched communication events. (A �nite execution can always be represented

as a single node.) We demonstrate that such undecomposable behaviors are not

merely a theoretical result, but can represent the execution of real protocols.

To circumvent the problem, we suggest an extension to the MSC standard,

titled compositional message sequence charts (CMSC and HCMSC). This exten-

sion allows specifying MSCs with unmatched sends and receives. The semantics

of the new construct prescribes how to combine such MSC nodes together. We

use the extended notation to suggest an algorithm for the automatic generation

of HCMSC representations for �nite state systems. We show that basic prop-

erties of HCMSCs become undecidable, e.g. the question whether a message

will be received in at least one computation. We propose to use a restriction of

HCMSCs, called realizable HCMSCs. We show how to test whether an HCMSC

is realizable in an eÆcient way. The notion of realizable HCMSC is quite natu-

ral, as our algorithm for the HCMSC generation already yields HCMSCs of this

kind.

The de�ciency of the original MSCs was also recognized in [10]. The solution

suggested there is a di�erent extension to HMSCs. According to this extension,

one can use parallel components of MSCs, and allow intercommunication be-

tween them, using a mechanism called `gates'. Our solution di�ers from that

of [10], as we study the e�ect of allowing communication between sequentially

composed CMSCs. That is, a communication that starts in one CMSC and ends

in a subsequent one. Notice that our solution is more canonical, since it does

not make use of special message names for the purpose of binding by name iden-

ti�ers, as in [10]. Further papers considering this issue are [8,13]. These papers

look at the problem of checking whether a �nite state protocol can be translated

into an HMSC. In the �rst of these papers, it is shown that this question is

decidable, whereas the second paper shows that for a natural class of �nite state

protocols one can eÆciently check whether the translation into an equivalent

HMSC is possible.

2 Preliminaries

Each MSC describes a scenario where some processes communicate with each

other. Such a scenario includes a description of the messages sent, messages re-

ceived, the local events, and the ordering between them. In the visual description

of MSCs, each process is represented as a vertical line, while a message is repre-

sented by a horizontal or slanted arrow from the sending process to the receiving

one, as in Figure 1. The corresponding ITU Z120 textual representation of the

MSC appears on the right side part of Figure 1.

De�nition 1. An MSC M is a tuple hV;<;P;N ; L; T;N;mi.
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msc MSC;

inst P1: process Root,

P2: process Root,

P3: process Root;

instance P1;

out M1 to P2;

in M5 from P2;

in M6 from P3;

endinstance;

instance P2;

in M1 from P1;

out M2 to P3;

out M3 to P3;

in M4 from P3;

out M5 to P1;

endinstance;

instance P3;

in M2 from P2;

in M3 from P2;

out M4 to P2;

out M6 to P1;

endinstance;

endmsc;

Fig. 1. Visual and textual representation of an MSC

{ V is a (�nite or in�nite) set of events,

{ < � V � V is an acyclic relation,
{ P is a set of processes,

{ N is a set of message names,

{ L : V ! P is a mapping that associates each event with a process,
{ T : V ! fs; r; lg is a mapping that describes each event as send, receive or

local, respectively.

{ N : V !N maps every event to a name.
{ m � V � V is a partial function called matching that pairs up send and

receive events. Each send is paired up with exactly one receive and vice versa.

Events v1 and v2 can be paired up with each other, only if N (v1) = N (v2).

A message consists of a pair of matched send and receive events. For two events

e and f , we have e < f if and only if one of the following holds:

{ e and f are a matching send and receive events, respectively.
{ e and f belong to the same process P , with e appearing before f on the

process line.

We assume �fo (�rst in �rst out) message passing, i.e.,

(T (e1) = T (e2) = s ^ T (f1) = T (f2) = r ^m(e1; f1) ^m(e2; f2)^
L(e1) = L(e2) ^ L(f1) = L(f2) ^N (e1) = N (e2) ^ e1 < e2)! f1 < f2

An MSC with a �nite (an in�nite, respectively) set of events is called a �nite

(in�nite, respectively) MSC.

Denote by e �! f the fact that e < f and either e and f are a matching

send and receive events, or e and f belong to the same process and there is no
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event between e and f on some process line. That is, e immediately precedes

f . The transitive closure of the relation < is a partial order called the visual

ordering of events and it is obtained from the syntactical representation of the

chart (e.g. represented according to the standard syntax ITU-Z120 [9]). Clearly,

the visual ordering can be de�ned equivalently as the transitive closure of the

relation �!. A linearization of an MSC M = hV;<;P;N ; L; T;N;mi is a total

order on V , which extends the relation (V;<).

Example 1. Let us denote in the example MSC given in Figure 1 by ei the

send event and by fi the receive event of message Mi, 1 � i � 6. Then we

have V = fe1; : : : ; e6; f1; : : : ; f6g, P = fP1; P2; P3g, N = fM1; : : : ;M6g and

N (ei) = N (fi) = Mi for all i. The events located on P1 are fe1; f5; f6g =

L�1(P1), with T (e1) = s, T (f5) = T (f6) = r, and e1 < f5 < f6. This ordering

is the time ordering of events on P1. We also have m(ei; fi) and ei < fi for all i

(message ordering). In particular, e1 < f1 < e2 < f2 and e1 is the minimal event

of the MSC w.r.t. visual ordering.

A type is a triple (i; j; C), including two processes Pi and Pj, and a message

name C 2 N . Each send or receive event has a type, according to the origin and

destination of the message, and the label of the message. Matching events have

the same type.

The partial order between the send and receive events of Figure 1 is shown

in Figure 2. In this �gure, only the `immediately precedes' order �! is shown.

Notice for example that the send events of the two messages, M5 and M6, are

unordered.

De�nition 2. The concatenation of two MSCs M1 = hV1; <1;P; N1; L1; T1;

N1; m1i and M2 = hV2; <2;P; N2; L2; T2; N2; m2i over the same set of pro-

cesses P and disjoint sets of events V1\V2 = ; (we can always rename events so

that the sets become disjoint), denoted M1M2, is hV1 [ V2; <; P; N1 [N2; L1 [
L2; T1 [ T2; N1 [N2; m1 [m2i, where

< = <1 [ <2 [f(p; q) j L1(p) = L2(q) ^ p 2 V1 ^ q 2 V2g :

That is, the events of M1 precede the events of M2 for each process, respec-

tively. If M = M1M2, we say that M1 is a pre�x of M . Notice that there is

no synchronization of the di�erent processes when moving from one node to the

other. Hence, it is possible that one process is still involved in some actions of

one node, while another process has advanced to a di�erent node. The in�nite

concatenation of �nite MSCs is de�ned in a similar way.

De�nition 3. LetM1; M2; : : : ; : : : be an in�nite sequence of �nite MSCs,Mi =

hVi; <; P; Ni; Li; Ti; Ni; mii. Then the in�nite concatenation M1M2 : : : is de-

�ned as the MSC hV;<; P; N ; L; T; N; mi where V = [i�1Vi is the disjoint

union of the Vi, N = [i�1Ni, LjVi = Li, T jVi = Ti, N jVi = Ni, m = [i�1mi

and

< =
[

i�1

<i [ f(p; q) j Li(p) = Lj(q) ^ p 2 Vi ^ q 2 Vj ^ i < jg :
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Fig. 2. The partial order between the events of the MSC in Figure 1.

Since a communication system usually includes many (or even in�nitely

many) such scenarios, a high level description is needed for combining them

together. The standard description consists of a graph called HMSC (high level

MSC), where each node contains one MSC as in Figure 3. Each maximal path

in this graph (i.e., a path that is either in�nite or ends with a node without out-

going edges) that starts from a designated initial state corresponds to a single

execution or scenario. Such an execution can be used to denote the commu-

nication structure of a typical (aka `sunny day') or an exceptional (aka `rainy

day') behavior of a system, or a counterexample found during testing or model

checking.

De�nition 4. An HMSC N is a 4-tuple hS; �; s0; ci where S is a �nite set of

states, each labeled by some �nite MSC over the same set of processes, and with

sets of events disjoint from one another. The mapping c associates the state s

with an MSC c(s). By � � S�S we denote the edge relation and the initial state

is s0 2 S. An execution of N is a (�nite or in�nite) MSC c(s0) c(s1) c(s2) : : :

associated with a maximal path of N that starts with the initial state s0.

Figure 3 shows an example of an HMSC where the node in the upper left

corner is the starting node. The executions of this system are either �nite or

in�nite. Note that according to HMSC semantics, process P2 in Figure 3 may
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send its Report message after process P1 has progressed into the next node and

has sent its Req service message.

ApproveConnect

Req service
Fail

P2

P2 P2

P3

P3P3

P1

Report

P1 P2 P3

P1 P1

Fig. 3. An HMSC graph

3 MSC Decomposition

The HMSC model combines the visual notation of message sequence charts with

the ability to describe repetitions and alternative computations. In this section

we will show that this, seemingly powerful model, cannot describe some basic

�nite state communication protocols. The main problem lies within the require-

ment that the send and receive events in each node must be matched.

We want to exemplify that there are �nite state protocols that do not allow

a �nite HMSC representation. To do that, we show an in�nite execution � of

a �nite state protocols with the following property: There is no way to write �

as an in�nite concatenation of �nite MSCs. Given the above property, it is not

possible to construct an HMSC such that � would correspond to a traversal of

one of the HMSC paths. Thus, we cannot represent such a system using HMSCs.

As an example, consider the in�nite MSC whose pre�x appears in Figure 4.

We assume that P1 repeatedly sends a message m to P2, and P2 repeatedly

sends m0 to P1. We omit the message labels m;m0 below. We can model for

example each of the processes P1 and P2 by a �nite state machine. Here, P1

starts by sending twice message m to P2, then he alternates between receiving

m0 from P2 and sending back m to P2. Process P2 alternates between sending

m0 to P1 and receiving m from P1. We show that this in�nite MSC cannot be
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decomposed into a product of �nite MSCs. We start with the send event e1 and

receive event f1. Obviously, because of the compulsory matching in HMSCs, they

must belong to the same MSC node. We have the send event g1 preceding f1,

on the same process line, while its corresponding receive event h1 succeeds the

send e1. Thus, the events g1 and h1 must be in the same node with e1 and f1.

For the same reason, we have that e2 and f2 must belong to the same node with

g1, and h1, and so forth.

g2

e2

g1

e1

f1

e3

e4

h1

g3

f3

f2

h2

P2P1

Fig. 4. A pre�x of an MSC execution that cannot be decomposed .

While the repeated crossing of message edges seems to be untypical for MSCs,

the above behavior � describes a possible execution of an actual protocol [15],

where messages and acknowledgments are being sent between two processes,

with (bounded) bu�ering.

4 Compositional MSCs

In order to represent communication protocols, whose description could only be

approximated using standard MSCs, we suggest an extension of the MSC stan-

dard. Intuitively, a compositional MSC, or CMSC, may include send events that

are not matched by corresponding receive events and vice versa. An unmatched

send event may be matched in future HCMSC nodes (on some path). Simi-

larly, an unmatched receive event may be matched in previous HCMSC nodes.

The de�nition of a CMSC is hence similar to an MSC, except that unmatched
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send and receive messages are allowed. (For its similarity to De�nition 1, we will

omit repeating the formal de�nition with the corresponding change.)

We denote an unmatched send by a message arrow, where the receive end (the

target of the arrow) appears within an empty circle. Similarly, an unmatched

receive is denoted by an arrow where the send part (the source of the arrow)

appears within a circle. CMSC arrows where both the send and the receive

are unmatched events are forbidden. Moreover, we also disallow an unmatched

receive event to be followed by a matched receive event of the same type in the

same CMSC node. Similarly,we disallow an unmatched send event to be preceded

by a matched send event of the same type in the same CMSC node. In Figure 5,

we can see an HCMSC that represents the execution that is approximated in

Figure 4.

P2P1

P2P1

Fig. 5. A decomposition of the execution in Figure 4.

Before de�ning the concatenation of CMSCs let us denote a CMSC as left-

closed, if it does not contain unmatched receive events.

De�nition 5. The concatenation M1M2 of two CMSCs M1 = hV1; <1; P; N1;

L1; T1; N1; m1i and M2 = hV2; <2; P; N2; L2; T2; N2; m2i over disjoint events
sets, is de�ned when the following conditions hold:

1. M1 is left-closed.
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2. For any type t, the number of unmatched receive events of type t in M2 is at

most equal to the number of unmatched send events of type t in M1.
3. If M2 contains a matched send event of type t then the number of unmatched

~receive events of type t inM1 is equal to the number of unmatched send events

of type t in M1.

De�ne a matching function m that pairs up unmatched send events of M1 with

unmatched receive events of M2 according to their order on their process lines.

That is, the ith unmatched send in M1 is paired up with the ith unmatched

receive event of the same type in M2. Notice that the function m is uniquely

de�ned.

The concatenation M1M2 is then de�ned as hV1 [ V2; <;P; N1 [ N2; L1 [
L2; T1 [ T2; N1 [N2; m1 [m2 [mi, where

< = <1 [ <2 [f(p; q) j L(p) = L(q) ^ p 2 V1 ^ q 2 V2g [ f(p; q) j (p; q) 2 mg:

It is easy to see that a concatenation always results in a left-closed CMSC. More-

over, if M1 and M2 both satisfy the �fo restriction, then M1M2 also does. This

follows from the last requirement in the de�nition. Note that this requirement

is consistent with our �fo de�nition, which applies only to messages with the

same name. Thus, if we require instead that the �fo condition is satis�ed by all

messages from one process to another means that we have to modify the last

requirement of the de�nition of the concatenation accordingly. In�nite concate-

nation and HMSCs are de�ned in an analogous way to De�nitions 3, 4.

5 Undecidability

Extending the MSC standard allows representing the execution of a bigger class

of protocols than what is allowed by the ITU standard. However, unsurprisingly,

with the added expressiveness we loose some of the power of analyzing such

systems.

Unlike simple HMSC, where some simple properties can be checked, see

e.g., [12], in HCMSC one cannot decide even the trivial property of whether

a particular message can be sent or received in at least one computation. The

undecidability proof will be a reduction from Post Correspondence Problem

(PCP). An instance of PCP is a set of pairs of words

C = f(v1; w1); (v2; w2); : : : ; (vm; wm)g

over some mutual alphabet �. We want to �nd out if there is some integer

n > 0 and some sequence of indexes i1; i2; : : : ; in such that vi1vi2 : : : vin =

wi1
wi2

: : :win
. We require in addition that the PCP solution is such that in = 1.

This is not a restriction, since we can use a suitable encoding so that whenever

wi1
wi2

: : :win�1
w1 is a pre�x of vi1vi2 : : : vin�1v1, then these two words are equal.

We need this variant of PCP for technical reasons which will become clear in

the proof below.

We will construct a HCMSC with �ve processes P1 to P5, and with CMSC

nodes E1; E2; : : : ; Em, E
0
1; E

0
2; : : : ; E

0
m
; F; F 0.
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{ Messages from P1 to P2 correspond to the letters of �. Each CMSC Ei

contains a sequence of unmatched send events from P1 to P2, representing

the sequence of messages of vi. Each CMSC Ei

0 contains a sequence of un-

matched receive events from P1 to P2, representing the sequence of messages

of wi.

{ Messages from P3 to P4 correspond to the index of the PCP word being

sent. Each CMSC Ei contains also a single unmatched send from P3 to P4
representing the current index i. Each CMSC Ei

0 contains the corresponding

unmatched receive event.

The HCMSC N has the form F (E1+� � �+Em)
�(E01+� � �+E

0
m
)�E01F

0. That is, N

starts at some initial node F , which contains only one unmatched send from P1
to P5. Then one can repeatedly take nodes of the form Ei, any number of times.

Then one can take any number of nodes of the formE0
i
, followed by the nodes E01,

F 0. The sink node F 0 contains a message from P2 to P5, then a message from

P4 to P5 and �nally an unmatched receive (matching the send from node F )

from P1 to P5. Notice that whenever the message from P1 to P5 is received, the

sequence wi1
� � �win

corresponding to the unmatched send events on the path

in N is a pre�x of vi1 � � �vin , corresponding to the unmatched receive events,

and in = 1. Under our assumption about PCP words this means equality, i.e.,

vi1 : : : vin = wi1
: : :win

, and we obtained a solution. Notice that we might have

unmatched sends on P1 and P3 in the CMSC associated with the path in N . This

explains why we obtain only the pre�x relation and why we need the particular

PCP encoding. Thus, the message from P1 to P5 is received if and only if there

is a nonempty solution to the PCP instance.

6 Realizable HCMSCs

The way we de�ned HCMSCs makes that not all executions correspond to CMSC

scenarios. We de�ne realizable HCMSCs, a subclass where all maximal execu-

tions de�ne left-closed CMSC. Note that we explicitely allow executions with

unmatched send events. For example, the HCMSC of Figure 5 is such that ev-

ery �nite execution is a left-closed CMSC with unmatched sends. However, the

(unique) in�nite execution corresponds to an in�nite MSC.

De�nition 6. An HCMSC is realizable if the execution of every �nite path

starting with the initial state is a left-closed CMSC.

We will show that one can eÆciently test whether an HCMSC is realizable.

Consider the CMSC M = c(s0)c(s1) � � � c(sn) associated with a �nite path � =

s0; s1; : : : ; sn of the HCMSC N with initial state s0. Let t be a type, then the

t-de�cit Dt(�) of � is the di�erence between the number of send events and

the number of receive events of type t in �. A necessary condition for N to be

realizable is that Dt(�) � 0 for every loop � and every type t. More generally,

an HCMSC N = hS; �; s0; ci is realizable if and only if every node s which is

accessible from the initial node satis�es the following conditions. Assume that
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node s contains x unmatched receives of type t. Then Dt(�) � x for all paths

� from s0 to s0 with (s0; s) 2 � . Moreover, if node s also contains a matched

send of type t, then Dt(�) = x for all paths � from s0 to s
0 with (s0; s) 2 � .

We describe below the algorithm for checking that an HCMSCN is realizable.

We de�ne for each state s and each type t the t-de�cit dt(s) of s as the di�erence

between unmatched sends of type t and unmatched receives of type t in s. We

can view N as a weighted directed graph Gt(N ) = hS; �; 
i, with edges weighted
by 
(s0; s) = dt(s

0). That is, each edge is labeled by the t-de�cit of its source

node. Then all we have to do is the following:

1. Check that Gt(N ) has no cycle with negative weight.
2. Check for all states s; s0 such that (s0; s) 2 � : the minimal weight d of a path

from s0 to s0 satis�es d � x, where x is the number of unmatched receives

of type t in s.
3. Check for all states s; s0 such that (s0; s) 2 � and s0 contains a matched

send of type t: the maximal weight d of a path from s0 to s
0 satis�es d � x,

where x is the number of unmatched receives of type t in s.

For the �rst two items above we can apply a dynamic programming algorithm

(Warshall's algorithm) for computing the shortest paths between all pairs of

nodes in time O(jSj3). That is, assuming that S = fs1; : : : ; sng we compute the

minimal weight of paths from state si to state sj by allowing as intermediate

nodes ;, then fs1g, fs1; s2g up to S. Alternatively, we can use the Bellman-Ford

algorithm, [4]. This algorithm computes in timeO(jSjj� j) all shortest paths from
a given source in a graph G with negative weights, provided that G contains no

negative cycle (detecting such a cycle, if one exists). Combining the second and

the third item above we need to check for all states s containing a matched

send of type t and all nodes s0 where (s0; s) 2 �� that all paths from s0 to s
0 have

the same t-de�cit, say D(s0). This means that we �rst compute the t-de�cits

along one path � from s0 to s. Let D(s) = Dt(�). Then we compute backwards,

from states on, the de�cits D(s0) for all nodes s0 belonging to paths from s0
to s. It remains to check for each pair s0; s00 of nodes between s0 and s with

(s0; s00) 2 � that we have D(s0)+dt(s
00) = D(s00). The last step can be done edge

by edge. The overall complexity is in O(j� j). Doing all this for all graphs Gt(N )

yields an O(jPj2jSjj� j) algorithm for checking whether N is realizable.

We conclude this section with a remark on the regularity of the set of exe-

cutions of an HCMSC. Note that a realizable HCMSC N has bounded message

queues if and only if Dt(�) = 0 for every loop � in N and every type t. It is

not diÆcult to see that bounded message queues do not ensure that the set of

linearizations of executions in an HMSC or an HCMSC is regular. In the case

of HMSCs a syntactic restriction which is suÆcient for regularity has been pro-

posed in [3,11]. This condition states that the communication graph of every

loop in the HMSC must be strongly connected. The communication graph of an

MSC M is a directed graph with vertex set consisting of all processes which

occur in M . There is an edge from process P to process Q if P sends a message

to Q in M . The communication graph of a path � in an HMSC is the communi-

cation graph of the MSC associated with �. We show in the following a similar



Compositional Message Sequence Charts 507

syntactic condition for HCMSC which is suÆcient for obtaining a regular set

of linearizations, provided that the message queues are bounded. For this we

de�ne the communication graph of an CMSC M as follows. As before, vertices

are those processes with events occurring in M . We have an edge from P to Q

if there is a (matched or unmatched) send event on P with target process Q. As

for HMSCs we require that the communication graph of any loop in the HCMSC

is strongly connected.

Proposition 1. Let N be an HCMSC with bounded message queues, i.e., the

de�cit of every execution � of N is such that Dt(�) � k, for some constant k

depending on N and for any type t. Assume that the communication graph of any

loop in N is strongly connected. Then the set of linearizations of N is regular.

The proposition above can be shown using the same ideas as for HMSCs (see

[3,11]). We can show that for any linearization of an execution c(s0)c(s1) � � �c(sm)
of N it suÆces to store a polynomial number of pre�xes of CMSCs c(si). We use

the fact that the de�cit Dt(�) of any path � is at most equal to the size of the

HCMSC N .

7 An HCMSC Representation for Finite State Systems

The HCMSC extension suggested in this paper broadens the scope of HMSCs

and allows us to capture many more protocols. We present now an automatic

translation from �nite state systems with asynchronous message passing to (re-

alizable) HCMSC.

We are given a �nite state space G = (S; S0; E;�), with states S, initial

states S0 � S, and edges E � S � � � S, labeled over a set of actions �.

The actions in � are send, receive and local actions. The states in S contain

information about the system, including the contents of the various interprocess

message queues.

We start with a trivial translation, which establishes the theoretic possi-

bility of performing such a translation for a class of �nite state systems with

asynchronous message passing. We later proceed to suggest a more informative

translation. The trivial translation is performed by constructing the dual graph

H = (N;N0; F ) of G as follows:

{ The nodes N of H correspond to the edges of G. That is, N = E. The label

of a node e is the label of e in G.
{ The initial nodes N0 � N of H correspond to the edges of G that exit from

an initial state of S0.
{ The edges F of H correspond to pairs of edges of G such that the target of

the �rst edge is the source of the second.

The above trivial construction does not provide any new insight, since the

HCMSC graph follows closely the state space and each CMSC node includes

a single local or unmatched event. We thus look into a translation that would

construct more reasonable HCMSCs. The translation aims at optimizing the

following goals:
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1. Minimize the number of unmatched events appearing in the individual CMSC

nodes, if possible obtaining an HCMSC without any unmatched events (how-

ever, recall from Section 3 that this is not always achievable).

2. Present relatively long scenarios with the CMSCs, in order to obtain an

intuitive understanding of the interprocess interaction.

3. Minimize the number of individual CMSC blocks, so that the HCMSC would

not become too big.

Notice that the second and third goal may contradict each other in some systems.

The above `trivial' translation gives a rather reasonable solution to the third

goal, while providing unacceptable solution for the second goal. Notice further

that the size of an HCMSC graph can easily get prohibitively large. Thus, in

practice, the HCMSC construction algorithm should be applied only to small

parts of communication protocols, rather than to complete protocols.

It is easy to see that di�erent execution paths in the state space may cor-

respond to a single CMSC. For example, consider an execution path in which

we have a send from P1 to P2, then the matching receive, then another send of

the same type, and �nally another matching receive. Consider now another ex-

ecution path, in which we have �rst the two send transitions, and then the two

receive transitions. These two paths obviously correspond to the same MSC.

The partial order reduction algorithms were constructed for this particular rea-

son. The sleep set method of Godefroid, adapted to our case, is in particular

appropriate.

The Algorithm

De�nition 7. For a letter e 2 � (an event), de�ne the set of events dep(e) that

include exactly events f such that either e and f are from the same process, or

e and f are a matching pair.

Notice that this de�nition is tailored for a message passing communication sys-

tem and need to be adapted when using other kinds of concurrency (e.g., with

shared variables).

Let `�' be a total order over the events in� satisfying that all the receive events

precede the send events. Denote by en(s) the set of transitions that are enabled

at a state s.

1. Make a �rst guess of a set of nodes such that every cycle must pass through

one of these nodes. One possibility is to set Z � S to include every node in

which all the queues are empty. Another possibility is to start with the single

set that includes the initial node. One heuristics is to perform simple DFS

on the state space and include in Z every node in the target of a back edge.

Notice that this is not optimal (�nding a minimal set of such nodes is an

NP-complete problem). The nodes in Z are new cutpoints for the �nite state

space in the sense that every cycle must pass at least one of these points.

Thus, the paths from Z to Z contain no cycles.
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2. Start a minimized DFS from nodes in Z or at an initial state. The search

stops at nodes in Z (after progressing at least one step) or to a terminating

node. The minimization algorithm, related to Godefroid's sleep set algo-

rithm [5], and to the variant of that algorithm presented in [14] is shown in

Figure 6. This version allows removing nodes that have an empty number of

successors under the reduction.1

3. Construct CMSCs for the paths from the nodes in Z according to the paths

generated during the reduced DFS of the previous step. Since the number

of paths can be enormous, one can split the reduced graph further, e.g., at

points that have a relatively large number of incoming or outgoing edges. In

this way,we generate shorter paths, but possibly more of them. The matching

algorithm at the end of the section can be used to match corresponding send

and receive events in the same CMSC.

4. Connect the separate CMSCs in the following way: If one CMSC ends at

some state s 2 Z and another CMSC starts with that state, make an edge

from the former to the latter.

function expand node(s; sleep);

local explored, working set, new sleep, �xed;

explored := ;;
fixed := false;

if en(s) = ; then return true �;

working set := en(s) n sleep ;

while working set 6= ; do

� := biggest action in working set according to `�';
working set :=working setnf�g;
s0 := �(s);

new sleep :=(sleep [ explored ) n dep(�);
explored := explored [ f�g;
if s0 2 Z orelse s0 is terminal orelse exists node(s0; new sleep)

orelse expand node(s0; new sleep) then

fixed := true;

create edge((s; sleep); �; (s0; new sleep)) �;

�

end while;

if �xed then store node in hash(s; sleep);

return fixed;

end expand node.

Fig. 6. A reduced state space generation algorithm

Properties of the Algorithm. De�ne the relation `�!' between strings

over � by � �! � if � = v e f w and � = v f ew, where v; w are sequences of

1 Another change from the original algorithm is that the new nodes are pairs of a

state and a sleep set, and two states that are paired with di�erent sleep sets are

considered di�erent nodes.
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transitions and f , e are individual transitions and f 62 dep(e). Let
�
�! be the

transitive and re
exive closure of �!.

The relation `v' between strings over � is such that v v w when

{ v is smaller than w according to the alphabetical order based on `�'.
{ w

�
�! w0, and v is a pre�x of w0.

Lemma 1. If v v w, then a CMSC with a linearization v is a pre�x of a CMSC

with a linearization w.

Sketch of proof. We can show that the transitions of each process in v are a

pre�x of the transitions of the same process in w.

Lemma 2. If v v w, v is not a pre�x of w, and w is generated during the

reduced DFS, then v is not generated by the algorithm.

Sketch of proof. Take the longest common pre�x u of v and w (u can be

empty). Let b be the �rst letter after u in w, and a the �rst letter after u in

v. Then from the de�nition of the relation `v', we have that a � b, a 62 dep(b),

and b appears in v after u, following some sequence of transitions u0 that are not

included in dep(b). According to the algorithm, during the DFS, u b is reached

before u a. When the search backtracks from u, it has b in its sleep set, since

a 62 dep(b). If the search reaches uu0, then b is still in the sleep set, since b is

independent of all the events in u0. Because of this, uu0 b is not generated.

Lemma 3. If v is not generated during the search, then there is some w such

that v @ w, and w is generated.

Sketch of proof. First, observe that `v' is a re
exive and transitive relation.

The proof is by an induction on the order `v'. Suppose that v is not generated.

This is because v = uu0 aw for some sequences u, u0 and w, and a transition

a, and a was in the sleep set paired with the state obtained after the reduced

DFS has searched u. Furthermore, the transition a was taken after u, and is

independent of the transitions in u0 and is bigger according to `�' than the �rst

letter in u0. Thus, we have that v v u au0w. Then, by the induction hypothesis,

either u au0w is expanded, or a string w0 such that u au0w v w0 is expanded.

But by the transitivity of v, we have the result.

The Matching Algorithm. Consider an CMSC node M constructed by

the above algorithm. By construction, each path from the initial node to M

has the same t-de�cit, for every type t (since the states of the original �nite

state machine refer to the contents of queues). Notice also that every loop in the

HCMSC thus generated has zero t-de�cit, for any type t. Suppose now that the

t-de�cit of paths from the initial MSC M0 to the predecessors of M is equal to

d. Then we match the events in M as follows.

1. Mark the �rst d receive events of type t in M as `unmatched' (there may be

fewer than d such messages).
2. Of the remaining send and receive events of type t, pair the ith send with

the ith receive.
3. If there are send events of type t that are unpaired in the previous step,

mark them `unmatched'.
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8 Conclusion and Implementation

HMSCs are a useful and standard notation for describing executions of com-

munication protocols. We showed that the requirement of pairing up send and

receive events in each MSC node prohibits the representation of a simple �nite

state protocol. We presented an extension of the HMSC notation, which we

call HCMSC. This notation circumvents this problem. With the extension, we

presented an algorithm for automatically generating the HCMSC structure for

�nite state communication protocols. We have implemented this algorithm as an

extension of the Pet system [6]. The implementation is written using 800 lines

of SML/NJ code, and in addition exploits the C code of the MSC/POGA [2]

system for generating the HCMSC visual structure.
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