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Abstract. In this paper we present an algorithm for determining satis�-

ability of general Boolean formulas which are not necessarily on conjunc-

tive normal form. The algorithm extends the well-known Davis-Putnam

algorithm to work on Boolean formulas represented using Boolean Ex-

pression Diagrams (BEDs). The BED data structure allows the algo-

rithm to take advantage of the built-in reduction rules and the sharing

of sub-formulas. Furthermore, it is possible to combine the algorithm

with traditional BDD construction (using Bryant's Apply-procedure).

By adjusting a single parameter to the BedSat algorithm it is possible

to control to what extent the algorithm behaves like theApply-algorithm

or like a SAT-solver. Thus the algorithm can be seen as bridging the gap

between standard SAT-solvers and BDDs. We present promising experi-

mental results for 566 non-clausal formulas obtained from the multi-level

combinational circuits in the ISCAS'85 benchmark suite and from per-

forming model checking of a shift-and-add multiplier.

1 Introduction

In this paper we address the problem of determining satis�ability of non-clausal
Boolean formulas, i.e., formulas which are not necessarily on conjunctive normal
form. One area where such formulas arise is in formal veri�cation. For example,
in equivalence checking of combinational circuits we connect the outputs of the
circuits with exclusive-or gates and construct a Boolean formulas for the com-
bined circuits. The formulas is satis�able if the two circuits are not functionally
equivalent.

Another important area in which non-clausal formulas arise is in model check-
ing [1,4,5,6,24]. In bounded model checking, the reachable state space is ap-
proximated by (syntactically) unfolding the transition relation and obtaining a
propositional formula which is not in clausal form. In order to check whether the
approximated state space R violates a given invariant I, one has to determine
whether the formula :I ^R is satis�able.

Boolean Expression Diagrams (BEDs) [2,3] is an extension of Binary Decision
Diagram (BDD) [9] which allows Boolean operator vertices in the DAG. BEDs
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can represent any Boolean formulas in linear space at the price of being non-
canonical. However, since converting a Boolean formula into a BDD via a BED
can always be done at least as eÆciently as constructing the BDD directly, many
of the desirable properties of BDDs are maintained.

Given a BED for a formula, one way of proving satis�ability is to convert
the BED to a BDD. The formula is satis�able if and only if the resulting BDD
is di�erent from the terminal 0 (a contradiction). BDDs have become highly
popular since they often are able to represent large formulas compactly. How-
ever, by converting the BED into a BDD, more information is obtained than
just a \yes, the formula is satis�able" or a \no, the formula is not satis�able"
answer. The resulting BDD encodes all possible variable assignments satisfying
the formula. In some cases this extra information is not needed since we may
only be interested in some satisfying assignment or simply in whether such an
assignment exists. The canonicity of BDDs also means that some formulas (such
as the formulas for the multiplication function) cannot be eÆciently represented
and thus the approach to convert the BED to a BDD will be ineÆcient.

Instead of converting the BED to a BDD, one can use a dedicated satis�a-
bility solver such as Sato [25] or Grasp [17]. These tools are highly eÆcient in
�nding a satis�able assignment if one exists. On the other hand, they are often
much slower than the BDD construction when the formula is unsatis�able. An-
other problem with these algorithms is that the Boolean formula must be given
in conjunctive normal form (CNF), and converting a general formula (whether
represented as a BED or as a Boolean circuit) to CNF is ineÆcient: either k new
variables are introduced (where k is the number of non-terminal vertices in the
BED) or the size of the CNF may grow exponentially in the size of the formula.

The BedSat algorithm presented in this paper attempts to exploit the ad-
vantages of the two above approaches. The algorithm extends the Davis-Putnam
algorithm to work directly on the BED data structure (thus avoiding the con-
version to CNF). By using the BED representation, the algorithm can take
advantage of the built-in reduction rules and the sharing of isomorphic sub-
formulas. For small sub-BEDs (i.e., for small sub-formulas), it turns out that it
is faster than running Davis-Putnam to simply construct the BDD and checking
whether the result is di�erent from 0. In the BedSat algorithm, this observa-
tion is used by having the user provide an input N to the algorithm. When
a sub-formula contains less than N BED vertices, the algorithm simply builds
the BDD for the sub-formula and checks whether the result is di�erent from
the terminal 0. When using N = 0, the BedSat algorithm reduces to an im-
plementation of Davis-Putnam on the BED data structure (which is interesting
in itself) and when using N = 1, the BedSat algorithm reduces to Bryant's
Apply-algorithm for constructing BDDs bottom-up. Experiments show that the
BedSat algorithm is signi�cantly faster than both pure BDD construction and
the dedicated satis�ability-solvers Grasp and Sato, both on satis�able and
unsatis�able formulas, when choosing a value of N of 400 vertices.
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Related Work

Determining whether a Boolean formula is satis�able is one of the classical NP-
complete problems and algorithms for determining satis�ability have been stud-
ied for a long time. The Davis-Putnam [11,12] SAT-procedure has been known for
about 40 years and it is still considered one of the best procedures for determining
satis�ability. More recently, incomplete algorithms like Greedy SAT (GSAT) [20]
have appeared. These algorithms are faster than the complete methods, but by
their very nature, they are not always able to complete with a de�nitive answer.

Most SAT-solvers expect the input formula to be in CNF. However, Giun-
chiglia and Sebastiani [13,19] have examined GSAT and Davis-Putnam for use
on non-CNF formulas. Although these algorithm avoid the explicit conversion of
the formula to CNF, they often implicitly add the same number of extra variable
which would have been needed if one converted the formula to CNF. St�almarck's
method [21] is another algorithm which does not need the conversion to CNF.

BDDs [9] and variations thereof [10] have until recently been the dominating
data structures in the area of formal veri�cation. However, recently researchers
have started studying the use of SAT-solvers as an alternative. Biere et al. [4,5,6]
introduce bounded model checking where SAT-solvers are used to �nd counterex-
amples of a given depth in the Kripke structures. Abdulla et al. [1] and Williams
et al. [24] study SAT-solvers in �xed-point iterations for model checking. Bjesse
and Claessen [7] apply SAT-solvers to van Eijk's BDD-based method [22] for
veri�cation without state space traversal.

2 Boolean Expression Diagrams

A Boolean Expression Diagram [2,3] is a data structure for representing and ma-
nipulating Boolean formulas. In this section we brie
y review the data structure.

De�nition 1 (Boolean Expression Diagram). A Boolean Expression Dia-
gram (BED) is a directed acyclic graph G = (V;E) with vertex set V and edge
set E. The vertex set V contains three types of vertices: terminal, variable, and
operator vertices.

{ A terminal vertex v has as attribute a value val(v) 2 f0; 1g.
{ A variable vertex v has as attributes a Boolean variable var(v), and two

children low(v); high(v) 2 V .

{ An operator vertex v has as attributes a binary Boolean operator op(v), and
two children low(v), high(v) 2 V .

The edge set E is de�ned by

E =
�
(v; low(v)); (v; high(v))

�
� v 2 V and v is a non-terminal vertex

	
:

The relation between a BED and the Boolean function it represents is straight-
forward. Terminal vertices correspond to the constant functions 0 (false) and 1
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(true). Variable vertices have the same semantics as vertices of BDDs and cor-
respond to the if-then-else operator x ! f1; f0 de�ned as (x ^ f1) _ (:x ^ f0).
Operator vertices correspond to their respective Boolean connectives. This leads
to the following correspondence between BEDs and Boolean functions:

De�nition 2. A vertex v in a BED denotes a Boolean function fv de�ned re-
cursively as:

{ If v is a terminal vertex, then fv = val (v).
{ If v is a variable vertex, then fv = var(v)! fhigh(v); f low(v) :

{ If v is an operator vertex, then fv = f low(v) op(v) fhigh(v) :

A BDD is simply a BED without operators, thus a strategy for convert-
ing BEDs into BDDs is to gradually eliminate the operators, keeping all the
intermediate BEDs functionally equivalent. There are two very di�erent ways
of eliminating operators, called Up All and Up One. The Up All algorithm
constructs the BDD in a bottom-up way similar to the Apply algorithm by
Bryant [9].

The Up One algorithm is unique to BEDs and is based on repeated use of
the following identity (called the up-step):

(x! f1; f0) op (x! f 01; f
0

0) = x! (f1 op f 01); (f0 op f 00) ; (1)

where op is an arbitrary binary Boolean operator, x is a Boolean variable, and
fi and f 0

i
(i = 0; 1) are arbitrary Boolean expressions. This identity is used to

move the variable x above the operator op. In this way, it moves operators closer
to the terminal vertices and if some of the expressions fi are terminal vertices,
the operators are evaluated and the BED simpli�ed. By repeatedly moving vari-
able vertices above operator vertices, all operator vertices are eliminated and
the BED is turned into a BDD. (Equation (1) also holds if the operator ver-
tex op is a variable vertex. In that case, the up-step is identical to the level
exchange operation typically used in BDDs to dynamically change the variable
ordering [18].)

The Up One algorithm gradually converts a BED into a BDD by pulling up
variables one by one. The main advantage of this algorithm is that it can exploit
structural information in the expression. We refer the reader to [2,3,15,23] for a
more detailed description of Up One, Up All and their applications.

3 Satis�ability of Formulas in CNF

A Boolean formula is in conjunctive normal form (on clausal form) if it is repre-
sented as a conjunction (AND) of clauses, each of which is the disjunction (OR)
of one or more literals. A literal is either a variable or the negation of a variable.
The Davis-Putnam algorithm [11,12] (see Algorithm 1) determines whether a
Boolean formula � in CNF is satis�able. Line 1 is the base case where � is the
empty set of clauses which represents \true." Line 3 is the backtracking step
where � contains an empty clause which represents \false." Line 5 handles unit
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Algorithm 1 The basic version of Davis-Putnam. The function assign(l; �)
applies the truth value of literal l to the CNF formula �. The function choose-
literal(�) selects a literal for DP to split on.

Name: DP �

1: if � is the empty set of clauses then

2: return true

3: else if � contains the empty clause then

4: return false

5: else if a unit clause l occurs in � then

6: return DP(assign(l;�))

7: else

8: l  choose-literal(�)

9: return DP(assign(l;�)) _ DP(assign(:l;�))

clauses, i.e., clauses of the form x or :x. In this case, the value of the variable in
the unit clause l is assigned in all remaining clauses of � using the assign(l; �)
procedure. Line 8 and 9 handles the general case where a literal is chosen and
the algorithm splits on whether the literal is true or false. There are a number
of di�erent heuristics for choosing a \good" literal in line 8 and the SAT-solvers
based on Davis-Putnam di�er by how they choose the literals to split on. A
simple heuristic is to choose the literal in such a way that the assignments in
line 9 produce the most unit clauses.

4 Satis�ability of Non-clausal Formulas

Using BEDs, the e�ect of splitting on a literal is obtained by pulling a variable
to the root using Up One. After pulling a variable x up using Up One, there
are two situations:

{ The new root vertex contains the variable x. Both low and high children are
BEDs. The formula is satis�able if either the low child or the high child (or
both) represents a satis�able formula.

{ The new BED does not contain the variable x anywhere. The formula does
not depend on x and we can pick a new variable to pull up.

This suggests a recursive algorithm that pulls variables up one at a time. If the
algorithm at any point reaches the terminal 1, then a satisfying assignment has
been found (the path from the root to the terminal 1 gives the assignment). The
test for the empty set of clauses (line 1 in Algorithm 1) becomes a test for the
terminal 1. The test for whether � contains the empty clause (line 3) becomes a
test for the terminal 0. It's not possible to test for unit clauses in the BED and
thus lines 5 and 6 have no correspondence in the BED algorithm. The only use of
the unit clause detection in the Davis-Putnam algorithm is to reduce the size of
the CNF representation. However, the BED data structure has a large number of
built-in reduction rules such as the distributive laws and the absorption laws [23].
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Algorithm 2 The BedSat algorithm. The argument u is a BED. The function
choose-variable(u) selects a variable to split on.

Name: BedSat u

1: if u = 1 then

2: return true

3: else if u = 0 then

4: return false

5: else

6: x choose-variable(u)

7: u0
 Up One(x;u)

8: if u0 is a variable x vertex then

9: return BedSat low(u0) _ BedSat high(u0)

10: else

11: return BedSat u0

These reduction rules are applied each time a new BED vertex is created and
can potentially reduce the size of the representation considerably. Algorithm 2
shows the pseudo-code for the SAT-procedure BedSat.

The function choose-variable in line 6 of Algorithm 2 selects a variable to
split on. With a clausal representation of the formula, it is natural to pick the
variable in such a way as to obtain the most unit clauses after the split. This
gives the most reductions due to unit propagation. Although we do not have
a clausal representation of the formulas when using BEDs, it is still posible to
choose good candidate variables. In [23], several di�erent heuristics for picking
good variable orderings for Up One are discussed. The �rst variable in such an
ordering is probably a good variable to split on. In the prototype implementation,
a simple strategy has been implemented: the �rst variable encountered during
a depth-�rst search is used in the spilt. Notice that we do not need to split on
the variables in the same order along di�erent branches, i.e., it is not necessary
to choose a single global variable ordering. Thus, the variable ordering can be
adjusted to each sub-BED as the algorithm executes.

In line 9 the algorithm branches out in two: one branch for the low child and
one for the high child. If a satisfying assignment is found in one branch (and
thus BedSat returns true), it is not necessary to consider the other branch. We
have implemented a simple greedy strategy of �rst examining the branch with
the smaller BED size (least number of vertices).

An interesting feature of the BedSat algorithm is that it is possible to
compute the fraction of the state space that has been examined at any point in
the execution. It is known that the algorithm will terminate when 100% of the
state space has been examined (it may of course terminate earlier if a satisfying
assignment is found.) Figure 1 shows graphically how to determine the fraction
of the state space that has been examined by the BedSat algorithm. The circles
correspond to splitting points and the triangles correspond to parts of the BED
which have (gray triangles) or have not (white triangles) been examined. The
numbers next to the triangles indicate the size of the state space represented by
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2n�1

2n�4

2n�3

2n�2

Fig. 1. Illustration of how to determine the percentage of the state space that
has been examined. Each circle represents a split on a variable. The top circle is
the starting point. The triangles represent sub-BEDs; the white ones are as yet
unexamined while the gray ones have already been examined. Assume that there
are n variables in total and that the current position in BedSat corresponds to
the bottom circle. Then the fraction of the state space which has already been

examined is 2n�2+2n�4

2n
.

each triangle assuming that there are n variables in total. The fraction of the
state space examined so far is determined by adding the numbers from the gray
triangles and dividing by 2n which is the size of the complete state space.

Of course, the percentage of the state space that has been examined does
not say much about the time remaining in the computation. However, it does
allow us to detect whether the algorithm is making progress. One could imag-
ine a SAT-solver which jumps back a number of splits if the user felt that the
current choice of split variables did not produce any progress. This could also
be done automatically by tracking how the percentage changes over time. No or
little growth could indicate that the choosen sequence of variables to split on is
ineÆcient and the algorithm should backtrack and pick new split variables. Such
backtracking is called premature and the technique is used in many implementa-
tions of Davis-Putnam. It works the best for satis�able functions since it allows
the search to give up on a particular part of the state space and concentrate on
other, and hopefully easier, parts. If a satisfying assignment is found in the easy
part of the state space, then the diÆcult part never needs to be revisited. For
unsatis�able functions, the entire state space needs to be examined, and giving
up on one part just postpones the problems. The only hope is that by choosing
a di�erent sequence of variables to split on, the BED reduction rules collapse
the diÆcult part of the state space.

The BedSat algorithm can be improved by combining it with traditional
BDD construction. As more and more splits are performed, more and more
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Algorithm 3 The BedSat algorithm with cuto� size N . juj is the number of
vertices in the BED u. Line 6 returns whether the BED u represents a satis�able
function.
Name: BedSat u

1: if u = 1 then

2: return true

3: else if u = 0 then

4: return false

5: else if juj < N then

6: return (Up All(u) 6= 0)

7: else

8: x choose-variable(u)

9: u0
 Up One(x;u)

10: if u0 is a variable x vertex then

11: return BedSat low(u0) _ BedSat high(u0)

12: else

13: return BedSat u0

variables are assigned a value and the remaining BED shrinks. The BedSat
algorithm, as described above, continues this process until either reaching a
terminal 1, or the entire BED is reduced to 0 (i.e., the BED is unsatis�able).
However, at some point it becomes more eÆcient to convert the BED into a
BDD from which it can be decided immediately whether the original formula is
satis�able (the BDD is not 0) or the algorithm has to backtrack and continue
spliting (the BDD is 0).

As discussed in the introduction, there is a trade-o� between building the
BDD and splitting on variables. The BDD construction computes too much
information and is slow for large BEDs. On the other hand, splitting on variables
tend to be slow when the depth is large. To be able to �nd the optimal point
between the BDD construction and splitting on variables, we use a cuto� size
N for the remaining BED; see Algorithm 3. If the size of the BED of a sub-
problem less than the cuto� size, the BED is converted into a BDD, otherwise
we continue splitting. For large values of N , the revised version of BedSat
reduces to pure BDD construction. For N equal to 0, the revised algorithm is
identical to Algorithm 2.

5 Experimental Results

To see how well BedSat works in practice, we compare it to other techniques
for solving satis�ability problems. Unfortunately, the standard benchmarks used
to evaluate SAT-solvers are all in CNF (see for example [14]). To compare the
performance of BedSat with existing algorithm on non-clausal Boolean formu-
las, we obtain Boolean formulas from the circuits in the ISCAS'85 benchmark
siute [8] and from model checking [24].

We compare BedSat to the BDD construction algorithms Up One and
Up All, both using the Fanin variabel ordering heuristic. Furthermore, we
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compare BedSat with the state-of-the-art SAT-solvers Sato and Grasp. Since
both Sato and Grasp require their input to be in CNF form, we convert the
BEDs to CNF although this increases the number of variables and thus also the
state space for Sato and Grasp.

The experiments are performed on a 450 MHz Pentium III PC running Linux.
For the BDD construction in Algorithm 3 we use Up All with the Fanin vari-
able ordering heuristic [23]. All runs are limited to 32 MB of memory and 15
minutes of CPU time.

Table 1 shows the ISCAS'85 results. The ISCAS'85 benchmark consists of
eleven multi-level combinational circuits, nine of which exist both in a redundant
and a non-redundant version. Furthermore, the benchmark contains �ve circuits
that originally were believed to be non-redundant versions but it turned out
that they contained errors and weren't functionally equivalent to the original
circuits [16]. The nine equivalent pairs of circuits corresponds to 475 unsatis�able
Boolean formulas (the circuits have several outputs) when the outputs of the
circuits are pairwise exclusive-or'ed. The �rst nine rows of Table 1 show the
runtimes to prove that the 475 fomulas are unsatis�able using Up One,Up All,
Sato,Grasp, and the BedSat algorithmwith the cuto� size equal to 0, 100, 400
and 1000.Up One andUp All perform quite well on all nine circuits. The SAT-
solvers Sato and Grasp perform well on the smaller circuits (the number in the
circuit names indicate the size), but give up on several of the larger ones. With 0
as cuto� size, BedSat does not perform well at all. The runtimes are an order of
magnitude larger than the runtimes for the other methods. The long runtimes are
due to BedSat's poor performance on some (but not all) unsatis�able formulas.
Increasing the cuto� size to 100 or 400 improves BedSat's performance. In fact,
with cuto� size 400, BedSat yields runtimes comparable to or better than all
other methods except the case of c6288/nr with Up One.

The last �ve rows of Table 1 show the results for the erroneous circuits.
Here there are 340 Boolean formulas in total out of which 267 are unsatis�able
and 73 are satis�able. We indicate this with \S/U" in the second column. The
Up One and Up All methods take slightly longer on the erroneous circuits
since not all BDDs collapse to a terminal. The SAT-solvers (Sato, Grasp and
BedSat) perform considerably better on the erroneous circuits compared to
the correct circuits; sometimes going from impossible to possible as for Sato
and BedSat (with a cuto� size of 0 and 100) on c7552. BedSat is the only
SAT-solver to handle c3540 and it outperforms Sato and Grasp on c5315. On
c7552, BedSat is two orders of magnitude slower with a cuto� of 0, but yields
comparable results when the cuto� size increases.

Consider the case of BedSat on c3540 with a cuto� size of 0. In the correct
version of the circuits, BedSat uses 185 seconds. This number reduces to 35.9
seconds for the erroneous circuits. The c3540 circuit has 22 outputs where �ve
are faulty in the erroneous version. BedSat has no problem detecting the errors
in the �ve faulty outputs. In the correct version, about 149 seconds are spent
on proving those �ve outputs to be unsatis�able. Another example is c1908

where, in the correct case, BedSat spends all the time (242 seconds) on one
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Table 1. Runtimes in seconds for determining satis�ability of problems arising
in veri�cation of the ISCAS'85 benchmarks using di�erent approaches. In the
\Result" column, \U" indicates unsatis�able problems while \S/U" indicates
both satis�able and unsatis�able problems. Both Up One and Up All use the
Fanin variable ordering heuristic. The last three columns show the results for
BedSat. The numbers 0, 100, 400 and 1000 indicate the cuto� sizes in number
of vertices. A dash indicates that the computation could not be done within the
resource limits.

Description Result Up One Up All Sato Grasp BedSat

0 100 400 1000

c432/nr U 2.1 1.7 0.5 0.4 36.4 3.5 1.4 1.4

c499/nr U 4.3 1.8 1.8 1.4 17.8 16.7 1.7 1.7

c1355/nr U 4.3 1.8 1.8 1.5 18.1 16.5 1.7 1.7

c1908/nr U 0.7 0.6 0.4 0.4 242 11.1 0.2 0.2

c2670/nr U 1.2 0.6 1.0 0.9 38.6 1.9 0.3 0.3

c3540/nr U 32.3 39.2 � � 185 133 10.9 16.3

c5315/nr U 16.2 1.9 � 15.0 1.1 1.0 0.9 1.3

c6288/nr U 2.7 � � � � � � �

c7552/nr U 3.6 1.1 � 4.4 � � 0.7 0.7

c1908/nr�err S/U 0.7 0.6 0.4 0.4 0.1 0.1 0.2 0.2

c2670/nr�err S/U 2.9 0.7 0.9 0.8 0.4 0.3 0.3 0.3

c3540/nr�err S/U 42.8 40.2 � � 35.9 15.8 4.6 6.5

c5315/nr�err S/U 32.7 2.4 31.7 10.3 0.7 1.6 1.5 1.8

c7552/nr�err S/U 8.1 1.8 2.5 2.6 176 2.0 1.3 1.3

unsatis�able output. In the erroneous version the diÆcult output has an error
and the corresponding Boolean formula becomes satis�able. BedSat �nds a
satisfying assignment instantaneously (0.1 seconds).

By varying the cuto� size, we can control whether BedSat works mostly as
the standard BDD construction (when using a high cuto� size) or as a Davis-
Putnam SAT-solver (a low cuto� size). From Table 1 it is observed that for the
ISCAS circuits, a cuto� size of 400 seems to be the optimal value. Using this
value for the cuto� size, the BedSat algorithm outperforms both pure BDD
construction (Up All and Up One) and standard SAT-solvers (Sato, Grasp,
and BedSat with 0 cuto�) for all the larger circuits except c6288/nr and for
all the errorneous (and thus satis�able) ISCAS circuits.

The Boolean formulas obtained from the ISCAS'85 circuits have many iden-
tical sub-formulas since they are obtained by comparing two similar circuits.
To test the BedSat algorithm on a more reaslistic example (at least from the
point of view of formal veri�cation), we have extracted Boolean formulas that
arise during the �xed-point iteration when performing model checking of a 16-bit
shift-and-add multiplier [23]. Table 2 shows the results for the model checking
problems. The numbers 10, 20 and 30 indicate the output bit we are considering.
The word \�nal" indicates the satis�ability problem for the check for whether the
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Table 2.Runtimes in seconds for determining satis�ability of problems arising in
model checking using di�erent approaches. In the \Result" column, \U" indicates
unsatis�able problems while \S" indicates satis�able problems. Both Up One

andUp All use the Fanin variable ordering heuristic. The BedSat experiments
have cuto� size 0 (i.e., no cuto�) except for the one marked with y which has
cuto� size 400. A dash indicates that the computation could not be done within
the resource limits.

Description Result Up One Up All Sato Grasp BedSat

mult 10 final U 13.1 43.5 - - 31.9y

mult 10 last fp U 10.3 - 0.1 0.1 0.2

mult 10 second last fp S - - 0.1 0.1 0.1

mult 20 final ? - - - - -

mult 20 last fp U - - 0.1 0.1 0.1

mult 20 second last fp S - - 0.5 40.9 0.5

mult 30 final S - - 0.3 0.6 0.2

mult 30 last fp U - - 0.1 0.2 0.2

mult 30 second last fp S - - 0.6 1.4 0.5

mult bug 10 final S 13.0 - 6.7 0.1 0.1

mult bug 10 last fp U 9.9 - 0.1 0.1 0.2

mult bug 10 second last fp S - - 0.1 0.1 0.1

mult bug 20 final S - - 113 - 0.3

mult bug 20 last fp U - - 0.1 0.1 0.1

mult bug 20 second last fp S - - 0.5 499 0.5

mult bug 30 final S - - 0.3 0.6 0.2

mult bug 30 last fp U - - 0.1 0.2 0.2

mult bug 30 second last fp S - - 0.6 1.5 0.5

implementation satis�es the speci�cation. The word \last fp" indicates the sat-
is�ability problem for the last iteration in the �xed-point computation (where it
is detected that the �xed-point is reached). The word \second last fp" indicates
the satis�ability problem for the previous iteration in the �xed-point iteration.
The result column indicates whether the satis�ability problem is satis�able (S)
or not (U).

For the model checking problems,Up One and Up All perform very poorly.
Up One is only able to handle four out of 18 problems andUp All only handles
a single one. However, both Up One and Up All handle the mult 10 final

problem which is diÆcult for the SAT-solvers. The SAT-solvers perform quite
well { both on the satis�able and the unsatis�able problems. Most of the prob-
lems are solved in less than a second by all three SAT-solvers. While both Sato
andGrasp take a long time on a few of the problems,BedSat is more consistent
in its performance.

6 Conclusion

This paper has presented the BedSat algorithm for solving the satis�ability
problem on BEDs. The algorithm adopts the Davis-Putnam algorithm to the
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BED data structure. Traditional SAT-solvers require the Boolean formula to
be given in CNF, but BedSat works directly on the BED and thus avoids the
conversion of the formula to CNF which either adds extra variables or may result
in an exponentially larger CNF formula. The BedSat algorithm is also able to
take advantage of the BED data structure by using the reduction rules from [23]
during the algorithm and by taking advantage of the sharing of sub-formulas.

We have described how the BedSat algorithm is combined with traditional
BDD construction. By adjusting a single parameter to the BedSat algorithm
it is possible to control to what extent the algorithm behaves like the Apply-
algorithm or like a SAT-solver. Thus the algorithm can be seen as bridging the
gap between standard SAT-solvers and BDDs.

We present promising experimental results for 566 non-clausal formulas ob-
tained from the multi-level combinational circuits in the ISCAS'85 benchmark
suite and from performing bounded model checking of a shift-and-add multiplier.
For these formulas, the BedSat algorithm is more eÆcient than both pure SAT-
solvers (Sato and Grasp) and standard BDD construction. The combination
works especially well on formulas which are unsatis�able and thus diÆcult for
pure SAT-solvers.
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