
A Library for Composite Symbolic

Representations

Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA

ftuba, mtuncer, bultang@cs.ucsb.edu

Abstract. In this paper, we present the design and the implementa-

tion of a composite model checking library. Our tool combines di�erent

symbolic representations, such as BDDs for representing boolean logic

formulas and polyhedral representations for linear arithmetic formulas,

with a single interface. Based on this common interface, these data struc-

tures are combined using what we call a composite representation. We

used an object-oriented design to implement the composite symbolic li-

brary. We imported CUDD (a BDD library) and Omega Library (a linear

arithmetic constraint manipulator that uses polyhedral representations)

to our tool by writing wrappers around them which conform to our sym-

bolic representation interface. Our tool supports polymorphic veri�cation

procedures which dynamically select symbolic representations based on

the input speci�cation. Our symbolic representation library forms an

interface between di�erent symbolic libraries, model checkers, and speci-

�cation languages. We expect our tool to be useful in integrating di�erent

tools and techniques for symbolic model checking, and in comparing their

performance.

1 Introduction

In symbolic model checking sets of states and transitions are represented symbol-

ically (implicitly) to avoid the state-space explosion problem [BCM+90,McM93].

Success of symbolic model checking has been mainly due to eÆciency of the data

structures used to represent the state space. For example, binary decision dia-

grams (BDDs) [Bry86] have been successfully used in veri�cation of �nite-state

systems which could not be veri�ed explicitly due to size of the state space

[BCM+90,McM93]. Linear arithmetic constraint representations have been used

in veri�cation of real-time systems, and in�nite-state systems

[ACH+95,AHH96,BGP99,HRP94] which are not possible to verify using explicit

representations. Any data structure that supports operations such as intersec-

tion, union, complement, equivalence checking and existential quanti�er elim-

ination (used to implement relational image computations) can be used as a

This work is supported in part by NSF grant CCR-9970976 and NSF CAREER

award CCR-9984822.

T. Margaria and W. Yi (Eds.): TACAS 2001, LNCS 2031, pp. 52{66, 2001.
c
 Springer-Verlag Berlin Heidelberg 2001

A Library for Composite Symbolic Representations 53

symbolic representation in model checking. The motivation is to �nd symbolic

representations which can represent the state space compactly to avoid state-

space explosion problem. However, symbolic representations may have their own

de�ciencies. For example BDDs are incapable of representing in�nite sets. On

the other hand linear arithmetic constraint representations, which are capable

of representing in�nite sets, are expensive to manipulate due to increased ex-

pressivity.

Generally, model checking tools have been built using a single symbolic rep-

resentation [McM93,AHH96]. The representation used depends on the target

application domain for the model checker. IneÆciencies of the symbolic repre-

sentation used in a model checker can be addressed using various abstraction

techniques, some ad hoc, such as restricting variables to �nite domains, some

formal, such as predicate-abstraction [Sai00]. These abstraction techniques can

be used independent of the symbolic representation. As model checkers become

more widely used, it is not hard to imagine that a user would like to use a model

checker built for real-time systems on a system with lots of boolean variables and

only a couple of real variables. Similarly another user may want to use a BDD-

based model checker to check a system with few boolean variables but lots of

integer variables. Currently, such users may need to get a new model-checker for

these instances, or use various abstraction techniques to solve a problem which

may not be suitable for the symbolic representation their model checker is using.

More importantly, as symbolic model-checkers are applied to larger problems,

they are bound to encounter speci�cations with di�erent variable types which

may not be eÆciently representable using a single symbolic representation.

In this paper we present a veri�cation tool which combines several symbolic

representations instead of using a single symbolic representation. Di�erent sym-

bolic representations are combined using the composite model checking approach

presented in [BGL98,BGL00b]. Each variable type in the input speci�cation is

assigned to the most eÆcient representation for that variable type. The goal is

to have a platform where strength of each symbolic representation is utilized as

much as possible, and de�ciencies of a representation are compensated by the

existence of other representations.

We use an object oriented design for our tool. First we declare an interface

for symbolic representations. This interface is speci�ed as an abstract class. All

symbolic representations are de�ned as classes derived from this interface. We

integrated CUDD and Omega Library to our tool by writing wrappers around

them which implements this interface. This makes it possible for our veri�er to

interact with these libraries using a single interface. The symbolic representations

based on these tools form the basic representation types of our composite library.

Our composite class is also derived from the abstract symbolic representation

class. A composite representation consists of a disjunction of composite atoms

where each composite atom is a conjunction of basic symbolic representations.

Composite class manipulates this representation to compute operations such as

union, intersection, complement, forward-image, backward-image, equivalence

check, etc.

54 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

There have been other studies which use di�erent symbolic representations

together. In [CABN97], Chan et al. present a technique in which (both linear

and non-linear) constraints are mapped to BDD variables (similar representa-

tions were also used in [AB96,AG93]) and a constraint solver is used during

model checking computations (in conjunction with SMV) to prune infeasible

combinations of these constraints. Although this technique is capable of han-

dling non-linear constraints, it is restricted to systems where transitions are

either data-memoryless (i.e., next state value of a data variable does not depend

on its current state value), or data-invariant (i.e., data variables remain un-

changed). Hence, even a transition which increments a variable (i.e., x0 = x+ 1)

is ruled out. It is reported in [CABN97] that this restriction is partly motivated

by the semantics of RSML, and it allows modeling of a signi�cant portion of

TCAS II system.

In [BS00], a tool for checking inductive invariants on SCR speci�cations is

described. This tool combines automata based representations for linear arith-

metic constraints with BDDs. This approach is similar to our approach but it is

specialized for inductive invariant checking. Another di�erence is our tool uses

polyhedral representations as opposed to automata based representations for lin-

ear arithmetic. However, because of the modular design of our tool it should be

easy to extend it with automata-based linear constraint representations.

Symbolic Analysis Laboratory (SAL) is a recent attempt to develop a frame-

work for combining di�erent tools in verifying properties of concurrent systems

[BGL+00a]. The heart of the tool is a language for specifying concurrent sys-

tems in a compositional manner. Our composite symbolic library is a low-level

approach compared to SAL. We are combining di�erent libraries at the sym-

bolic representation level as opposed to developing a speci�cation language to

integrate di�erent tools.

The rest of the paper is organized as follows. We explain the design of our

composite symbolic library in Section 2. In Section 3, we describe the algorithms

for manipulating composite representations. Section 4 presents the polymorphic

veri�cation procedure. In Section 5 we show the performance of the composite

model checker on a simple example. Finally, in Section 6 we conclude and give

some future directions.

2 Composite Symbolic Library

To combine di�erent symbolic representations we use the composite model check-

ing approach presented in [BGL98,BGL00b]. The basic idea in composite model

checking is to map each variable in the input speci�cation to a symbolic repre-

sentation type. For example, boolean and enumerated variables can be mapped

to BDD representation, and integers can be mapped to an arithmetic constraint

representation. Then, each atomic event in the input speci�cation is conjunc-

tively partitioned where each conjunct speci�es the e�ect of the event on the

variables represented by a single symbolic representation. For example, one con-

junct speci�es the e�ect of the event on variables encoded using BDDs, whereas

A Library for Composite Symbolic Representations 55

another conjunct speci�es the e�ects of the event on variables encoded using lin-

ear arithmetic constraints. We encode the sets of system states as a disjunction

of conjunctively partitioned type speci�c representations (e.g., a disjunct may

consist of a boolean formula stored as a BDD representing the states of boolean

and enumerated variables, and a linear arithmetic constraint representation rep-

resenting the states of integer variables). The forward and backward image com-

putations are computed independently for each symbolic representation by ex-

ploiting the conjunctive partitioning of the atomic events. We also implement

algorithms for intersection, union, complement and equivalence checking compu-

tations for the disjunctive composite representation that use the corresponding

methods for di�erent symbolic representations. The key observation here is the

fact that conjunctive partitioning of the atomic events allows forward and back-

ward image computations to distribute over di�erent symbolic representations.

 Input

Library
 Omega

Library
CUDD

Composite Symbolic Library

 Compiler Verifier
Specification

Fig. 1. Architecture of the composite model checker

Our current implementation of the composite symbolic library uses two sym-

bolic representations: BDDs and polyhedral representation for Presburger arith-

metic formulas. For the BDD representations we use the Colorado University

Decision Diagram Package (CUDD) [CUD]. For the Presburger arithmetic for-

mula manipulation we use the Omega Library [KMP+95,Ome]. Fig. 1 illustrates

a general picture of our composite model checking system. We will focus on the

symbolic library and veri�er parts of the system in this paper.

We implemented our composite symbolic library in C++ and Fig. 2 shows

its class hierarchy as a UML class diagram1. The abstract class Symbolic serves

as an interface to all symbolic representations including the composite represen-

tation. Our current speci�cation language supports enumerated, boolean, and

integer variables. Our system maps enumerated variables to boolean variables.

The classes BoolSym and IntSym are the symbolic representations for boolean

and integer variable types, respectively. Class BoolSym serves as a wrapper for

1 In UML class diagrams, triangle arcs denote generalization, diamond arcs denote

aggregation, dashed arcs denote dependency, and solid lines denote association among

classes.

56 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

Symbolic TransSys

-initialState :
-stateSpace :

Symbolic
Symbolic

+complement()
+union()
+intersect()

BoolSym
-bdd : DdNode

-numVariables

IntSym
-presburgerFormula : Relation
-numVariables : integer
+constructFromSyntaxTree() :
Symbolic
+registerVariables()

+registerVariables()
Symbolic
+constructFromSyntaxTree() :

CtlFormula

-formula: Node

+produceSymbolicExpression() :
Symbolic

: integer

+isSet
+myType : symbolicType

: boolean
Symbolic

OMEGA LibraryCUDD Library

+isSatisfiable(): boolean
+isSubset(): boolean

+widen()
+backwardImage()
+forwardImage()
+isEqual(): boolean

-transRelation :

+verify(formula : CtlFormula)

-atom :

+intersect()
+complement()

compAtom

+isSatisfiable()
+isSubset() : boolean
+isEqual() : boolean
+forwardImage()
+backwardImage()

*Symbolic

 : boolean

-bddManager : DdManager

CompSym
-compositeRepresentation :
* LinkedList<compAtom>

+constructFromSyntaxTree() :
Symbolic

Fig. 2. Class diagram for the composite symbolic library

the BDD library CUDD [CUD]. It is derived from the abstract class Symbolic.

Similarly, IntSym is also derived from abstract class Symbolic and serves as a

wrapper for the Omega Library [Ome].

The class CompSym is the class for composite representations. It is derived

from Symbolic and uses IntSym and BoolSym (through the Symbolic interface)

to manipulate composite representations. Note that this design is an instance of

the composite design pattern given in [GHJV94].

To verify a system with our tool, one has to specify its initial condition, tran-
sition relation, and state space using a set of composite formulas. The syntax of
a composite formula is de�ned as follows:

CF ::= CF ^ CF j CF _ CF j :CF j BF j IF

BF ::= BF ^ BF j BF _ BF j :BF j Termbool

IF ::= IF ^ IF j IF _ IF j : IF j Termint Rop Termint

Termbool ::= idbool j true j false

Termint ::= Termint Aop Termint j �Termint j idint j constant

A Library for Composite Symbolic Representations 57

where CF , BF , IF , Rop, and Aop denote composite formula, boolean formula,

integer formula, relational operator, and arithmetic operator, respectively. Since

symbolic representations in our composite library currently support only boolean

and linear arithmetic formulas, we restrict arithmetic operators to + and � (we

actually allow multiplication with a constant). In the future, by adding new

symbolic representations we can extend this grammar.

A transition relation can be speci�ed using a composite formula by using

unprimed variables to denote current state variables and primed variables to

denote next state variables. A method called registerVariables in BoolSym

and IntSym is used to register current and next state variable names during the

initialization of the representation.

Given a composite formula, the method constructFromSyntaxTree() in

CompSym traverses the syntax tree and calls constructFromSyntaxTree()method

of BoolSym when a boolean formula is encountered and calls

constructFromSyntaxTree()method of IntSym when an integer formula is en-

countered. In CompSym, a composite formula, A, is represented in Disjunctive

Normal Form (DNF) as

A =

n_

i=1

t̂

j=1

aij

where aij denotes the the formula of type j in the ith disjunct, and n and t

denote the number of disjuncts and the number of types, respectively.

Each disjunct ^tj=1aij is implemented as an instance of a class called compAtom

(see Fig. 2). Each compAtom object represents a conjunction of formulas each of

which is either a boolean or an integer formula.

A composite formula stored in a CompSym object is implemented as a list of

compAtom objects, which corresponds to the disjunction in the DNF form above.

Figure 3 shows internal representation of the composite formula

(a > 0 ^ a0 = a + 1 ^ b0) _ (a � 0 ^ a0 = a ^ b0 = b)

in a CompSym object. The �eld atom is an array of pointer to class Symbolic and

the size of the array is the number of basic symbolic representations.

CompSym and compAtom classes use a TypeDescriptor class which records

the variable types used in the input speci�cation. Our library can adapt itself to

any subset of the supported variable types, i.e., if a variable type is not present

in the input speci�cation, the symbolic library for that type will not be called

during the execution. For example, given an input speci�cation with no integer

variables our tool will behave as a BDD-based model checker without making

any calls to Omega Library.

A Simplifier class implements a simpli�er engine that reduces the number

of disjuncts in the composite representations. Given a disjunctive formula A it

searches for pairs of disjuncts ^tj=1aij and ^
t
j=1akj that can be expressed as a

single disjunct ^tj=1bj. Two disjuncts ^tj=1aij and ^
t
j=1akj can be simpli�ed to

a single disjunct ^tj=1bj if one of the following holds:

{ ^
t
j=1aij is subset of ^

t
j=1akj. Then ^

t
j=1bj = ^

t
j=1akj.

58 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

: CompSym

compositeRepresentation : *LinkedList<compAtom>

:

data : compAtom

0

1

b’ 0

1

data : compAtom

b’ = b

next : LinkedListNode<compAtom> next : LinkedListNode<compAtom>

: LinkedListNode<compAtom> : LinkedListNode<compAtom>

 a>0 a’ = a + 1 a<=0 a’ = a

atom : *Symbolic[] atom : *Symbolic[]

Fig. 3. An instance of CompSym class

{ ^
t
j=1aij is superset of ^

t
j=1akj. Then ^

t
j=1bj = ^

t
j=1aij.

{ There exists j such that aij is not equal to akj and for 1 � m � t, m 6= j,

aim is equal to akm. Then for 1 � m � t,m 6= j, bm = aim and bj = aij_akj.

3 Algorithms for Manipulating Composite

Representations

In this section, we present the algorithms used in compAtom and CompSym classes

to implement the methods of Symbolic interface such as intersection, union,

complement, image computations, subset, equality and satis�ability checks. Note

that the algorithms given below are independent of the type and number of basic

symbolic representations used.

Throughout this section, CompSym objects A and B are assumed to be in the

following forms:

A =

nA_

i=1

t̂

j=1

aij and B =

nB_

i=1

t̂

j=1

bij

and nA(nB), t, and T i
Op denote the number of compAtom objects in CompSym

object A(B), the number of basic symbolic representations in the composite

library, and time complexity of ith symbolic representation for operation Op.

Subset Relation Checking:Given two compAtom objects a and b, a.isSubset(b)

is evaluated by checking the corresponding symbolic representations in a and b

for subset relation (step 2 of the algorithmgiven below). Checking subset relation

for CompSym objects is more complicated. Given two CompSym objects, A and B,

A.isSubset(B) is evaluated as shown in the algorithm below. First, both A and

B are simpli�ed, which has a time complexity of O((n3A + n3B)�
Pt

i=1(T
i
equal +

T i
isSubset)). Then for each compAtom object a in A we check if a is a subset of B.

A Library for Composite Symbolic Representations 59

An eÆcient way to check if a compAtom object a is subset of CompSym object B

is to compare a with each compAtom object b in B till a.isSubset(b) evaluates

to true. This is done in steps 7-11 below. However, if no such b can be found,

this does not mean that a is not a subset of B. Next, we create a new CompSym

object C, which consists of a single compAtom object a. We take the intersection

of C and not B to obtain the CompSym object D. Then D is checked for satis�a-

bility. If D is satis�able then it means a is not a subset of B (steps 13-19). Time

complexity of checking subset relation between two CompSym objects, A and B,

is O(nA � nB � t2nB �
Pt

i=1 T
i
isSatisfiable).

boolean compAtom::isSubset(compAtom other)

1 for i=1 to numBasicTypes do

2 if not atom[i].isSubset(other.getAtom(basicTypes[i])) then

3 return false;

4 return true;

boolean CompSym::isSubset(Symbolic other)

1 compAtom thisatom,otheratom; boolean found;

2 LinkedList<compAtom> otherlist = other.getCompAtomList();

3 this.simplify();

4 other.simplify();

5 for compRep.hasMore() do

6 thisatom = compRep.getNext();

found = false;

7 for otherlist.hasMore() do

8 otheratom = otherlist.getNext();

9 if thisatom.isSubset(otheratom) then

10 found = true;

11 break;

12 if not found then

13 CompSym newsym1 = new CompSym(thisatom,isSet);

14 CompSym newsym2 = new CompSym(otherlist,isSet);

15 newsym2.complement();

16 newsym1.intersect(newsym2);

17 if newsym1.isSatisfiable() then

18 return false;

19 else break;

20 return true;

Equivalence Checking: Checking equivalence of two compAtom objects is per-

formed by calling isEqual() method of each symbolic representation similar

to subset checking. Equivalence of two CompSym objects is checked by calling

isSubset()method of CompSym class and time complexity of isEqual()method

is the same as CompSym::isSubset() method.

Satis�ability Checking: Checking satis�ability of a compAtom object is per-

formed by calling isSatisfiable() method of each symbolic representation.

The condition for satis�ability of a compAtom object, a, is that each symbolic

representation in a must be satis�able. Satis�ability of a CompSym object A

60 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

is equivalent to existence of a compAtom object a in A such that a is satis�-

able. Time complexity of checking satis�ability of CompSym object A is O(nA �Pt

i=1 T
i
isSatisfiable).

Backward Image Computation: Backward image computation takes the tran-

sition relation as the input parameter. Backward image of a compAtom object is

computed by calling backwardImage() method of each symbolic representation

and passing the corresponding symbolic representation of the input compAtom

object, as the parameter. While computing backward image for a CompSym ob-

ject A, a new list of compAtoms is created and for each compAtom object in A as

many copies as the number of compAtom objects in the input CompSym object are

created. On each copy backwardImage() method is called with a compAtom ob-

ject in the input CompSym object and the resulting compAtom object is inserted

in the new list. At the end the compAtom list of A is replaced with this new

list. Time complexity of computing backward image of CompSym object A over

CompSym object B is O(nA � nB �
Pt

i=1 T
i
backwardImage).

compAtom::backwardImage(compAtom other)

1 for i=1 to numBasicTypes do

2 atom[i].backwardImage(other[i]);

CompSym::backwardImage(Symbolic other)

1 compAtom thisatom,newatom;

2 LinkedList<compAtom> newlist();

3 LinkedList<compAtom> otherlist = other.getCompAtomList();

4 for compRep.hasMore() do

5 thisatom = compRep.getNext();

6 for otherlist.hasMore() do

7 newatom = thisatom;

8 newatom.backwardImage(otherlist.getNext());

9 newlist.insert(newatom);

10 compRep = newlist;

Intersection :Given two composite formula,A and B, we de�ne A intersection

B as

A ^B =

nA_

i=1

nB_

k=1

t̂

j=1

(aij ^ bkj) (1)

Intersection of two compAtom objects is computed by calling intersect()

method of each symbolic representation and passing the corresponding symbolic

representation in the input compAtom object. To compute intersection of two

CompSym objects, A and B, a new list of compAtoms is created and for each

compAtom a in A and for each compAtom object b in B, intersection of a and b is

computed and the resulting compAtom object is inserted into the new list. At the

end compAtom list of A is replaced with the new list. The number of disjuncts in

the resulting CompSym object after intersection of two CompSym objects, A and

B, is O(nA � nB).

Complement : Given a composite formula A we de�ne A's complement as

A Library for Composite Symbolic Representations 61

:A =
_

1�k�t

nA^

i=1

:aik (2)

Complement of a compAtom object is computed by creating a new Compsym

object for negation of each symbolic representation in the compAtom object. Then

the union of each newly created CompSym object is the result of the complement

as seen in the algorithm below. To compute the complement of a CompSym object

A, a new CompSym object B, which is initialized to True, is created. For each

compAtom object a in A, complement of a is intersected with B (steps 4-6). The

number of disjuncts in the resulting CompSym object after complementation of

CompSym object A is O(tnA).

CompSym compAtom::complement()

1 CompSym result,temp;

2 Symbolic sym;

3 result = null;

4 for i=1 to numBasicTypes do

5 if result != null then

6 sym = atom[i];

7 sym.complement();

8 result.union(new CompSym(sym,isSet));

9 else

10 result = new CompSym(atom[i],isSet);

11 return result;

CompSym::complement()

1 CompSym result(true,isSet);

2 compAtom thisatom;

3 for compRep.hasMore() do

4 thisatom = compRep.getNext();

5 thisatom.complement();

6 result.intersect(thisatom);

7 this = result;

Union : Given two composite formula, A and B, we de�ne A union B as

A _B =

nA+nB_

i=1

t̂

j=1

cij (3)

where for 1 � i � nA cij = aij and for nA + 1 � i � nA + nB cij = bij.

Union of two CompSym objects, A and B, is computed by inserting the compAtom

objects in B to the list of compAtom objects in A. The number of disjuncts in

the union of two CompSym objects, A and B, is O(nA + nB).

62 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

4 A Polymorphic Veri�er

Module TransSys in Fig. 2 is responsible for veri�cation. It contains two main

functions check and verify . Check is a recursive function that traverses the

syntax tree of CTL formula to compute a symbolic representation for its truth

set.

TransSys contains following members : transRelation (transition rela-

tion), stateSpace (de�ned by the domains of the variables in the input speci�-

cation) and initialState (de�ned by the initial condition of the input speci-

�cation). These de�ne the transition system for the input speci�cation.

The verify function determines whether the given CTL formula is satis�ed

by the input speci�cation by calling the check function. It prints the initial

states that violate the formula if the CTL formula is not satis�ed by the input

speci�cation.
Function check is the main part of the module. All computation is done

within this function. There are two types of operations : evaluation of logical
operators (and, or, not), and evaluation of CTL operators (EX, AX, EF, AF).
It assumes that all occurrences of atomic formulas (subformulas with no CTL
operators in them) are already converted into Symbolic representation. Note
that CTL operators that can be expressed in terms of these primitives are �rst
converted into an equivalent representation (e.g. AG(f) � :EF (:f)).

Symbolic TransSys::check(Node n) {

if (n.ofType() == CTLFORMULA)

switch n.getOperator()

case AND: s = check(n.left).intersectWith(check(n.right)); break;

case OR: s = check(n.left).unionWith(check(n.right)); break;

case NOT: s = check(n.left).complement(); break;

case NONE: s = check(n.left);

else if (n.ofType() == CTLOPERATOR)

s = check (n.left);

switch n.getOperator()

case EX:

s.backwardImage(transRelation);

break;

case AX:

s.complement();

s.backwardImage(transRelation);

s.complement();

break;

case EF:

do

snew = s;

sold = s;

snew.backwardImage(transRelation);

s.unionWith(snew);

while not sold.isEquals(s)

break;

A Library for Composite Symbolic Representations 63

ii

& count’=count+1
(count<size) & produced’=produced+1

1

2

N

1

2

N

(count>0) & consumed’=consumed+1
& count’=count-1

PRODUCER CONSUMER

Initial: count=produced=consumed=0 and size >= 1

Fig. 4. A simple bounded-bu�er producer-consumer example

case AF:

do

snew = s;

sold = s;

snew.complement();

snew.backwardImage(transRelation);

snew.complement();

s.backwardImage(transRelation);

s.intersectWith(snew);

s.unionWith(sold);

while not sold.isEquals(s)

break;

else if (n.ofType() == ATOMIC)

s = n;

return s;

}

An important feature of function check is polymorphism. It is independent

of underlying Symbolic type. Since each subclass of Symbolic implements basic

functions (e.g. intersectWith, backwardImage, etc.) used, veri�er does not

need to know which type of representation it is working on. If we introduce a

new symbolic type, we do not need to modify the veri�cation procedure. Also,

using this feature the veri�er can decide which symbolic representation to use

at run-time. For example given an input speci�cation with just boolean and

enumerated variables, our veri�er becomes a BDD-based model checker. Hence,

such speci�cations can be checked eÆciently without introducing the cost of

manipulating composite representations.

5 A Simple Example

In Fig. 4 we show a simple producer-consumer system. Both producer and con-

sumer components have N control states. Producer produces an item only when

64 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
Number of control states

Performance of Composite Model Checker

Composite
OMC-Mapped

OMC-Partitioned

Fig. 5. Performance of composite model checker and Omega Library model

checker (using partitioning or mapping approach) on the bounded-bu�er

producer-consumer example

it is in control state N and there is available space in the bu�er (count < size).

When it produces an item it increases produced and count by 1. Similarly,

consumer consumes an item only when it is in control state N and there is

an item in the bu�er (count > 0). When it consumes an item it increases

consumed by 1 and decreases count by 1. An invariant of this system is count �

size ^ produced� consumed = count.

Initial condition for this system can be represented with the composite for-

mula:

pstate = 1 ^ cstate = 1 ^ count = 0 ^ produced = 0 ^ consumed = 0 ^ size >= 0

where pstate and cstate are variables introduced to model the control states

of producer and consumer. Self-loop on state N for producer can be represented

with the composite formula:

pstate = N ^ pstate0 = N ^ count < size ^ produced0 = produced+ 1 ^ count0 =

count+ 1

The overall transition relation is the disjunction of the formulas that cor-

respond to each arc in Figure 4. (We are assuming that if a variable is not

modi�ed it preserves its value. These constraints have to be added to the com-

posite formula before generating a CompSym object).

We used this example to compare the performance of our composite model

checker with OMC (Omega Library Model Checker) presented in [BGP97,BGP99].

OMC uses polyhedral representations of arithmetic constraints as a symbolic

representation. To represent the control states of the system given in Fig. 4 in

such a tool, there are two options, 1) to partition the state space based on the

control states, creating N partition classes, 2) to map the control states to an

integer variable. Either option is not very eÆcient because of the high complexity

of manipulating arithmetic constraint representations. In our composite library

the control states in the above example are mapped to an enumerated variable

which is encoded using BDDs. Integer variables are still encoded using the poly-

hedral representation, however the unnecessary mapping to integers is prevented.

Fig. 5 shows the execution time of the composite model checker and the OMC

(using both partitioning and integer-mapping) with the increasing number of

control states for the system given in Fig. 4. Although this is a small example,

A Library for Composite Symbolic Representations 65

it demonstrates the ineÆciency of using a model checker which is solely based

on polyhedral representations.

6 Conclusion and Future Work

The composite symbolic library presented in this paper can be used as a platform

to integrate di�erent symbolic representations. Using composite representations

one can improve the eÆciency of veri�cation procedures by mapping each vari-

able type in the input speci�cation to a suitable symbolic representation.

The Symbolic interface provided by our tool can be useful in integrating

di�erent symbolic libraries. Once a wrapper for a symbolic library is written

the internal representations of that library will be hidden. This can also help in

comparing performances of di�erent symbolic representations by isolating them

from the veri�cation procedures.

Using the composite symbolic library we were able to develop polymorphic

veri�cation procedures which are oblivious to the symbolic representation used.

Hence, the decision of which symbolic representation to use can be made at

run-time, based on the input speci�cation. If the input speci�cation has only

boolean and enumerated variables, then our veri�er becomes a BDD-based sym-

bolic model checker. However, if both integer and boolean variables are present

in the input speci�cation, then it is able to use arithmetic constraints and BDDs

together using the composite representation.

References

AB96. J. M. Atlee and M. A. Buckley. A logic-model semantics for SCR soft-

ware requirements. In Proceedings of the 1996 ACM SIGSOFT Interna-

tional Symposium on Software Testing and Analysis, pages 280{292, Jan-

uary 1996.

ACH+95. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, X. Nicollin

P. H. Ho, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analy-

sis of hybrid systems. Theoretical Computer Science, 138(1):3{34, 1995.

AG93. J. M. Atlee and J. Gannon. State-based model checking of event-driven sys-

tem requirements. IEEE Transactions on Software Engineering, 19(1):24{

40, January 1993.

AHH96. R. Alur, T. A. Henzinger, and P. Ho. Automatic symbolic veri�cation of em-

bedded systems. IEEE Transactions on Software Engineering, 22(3):181{

201, March 1996.

BCM+90. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang.

Symbolic model checking: 1020 states and beyond. In Proceedings of the 5th

Annual IEEE Symposium on Logic in Computer Science, pages 428{439,

January 1990.

BGL98. T. Bultan, R. Gerber, and C. League. Verifying systems with integer con-

straints and boolean predicates: A composite approach. In Proceedings of

the 1998 ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 113{123, March 1998.

66 Tuba Yavuz-Kahveci, Murat Tuncer, and Tev�k Bultan

BGL+00a. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueb,

J. Rushby, V. Rusu, H. Saidi, N. Shankar, E. Singerman, and A. Tiwari.

An overview of SAL. In Proceedings of the Fifth Langley Formal Methods

Workshop, June 2000.

BGL00b. T. Bultan, R. Gerber, and C. League. Composite model checking: Veri�-

cation with type-speci�c symbolic representations. ACM Transactions on

Software Engineering and Methodology, 9(1):3{50, January 2000.

BGP97. T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of in�-

nite state systems using Presburger arithmetic. In O. Grumberg, editor,

Proceedings of the 9th International Conference on Computer Aided Veri�-

cation, volume 1254 of Lecture Notes in Computer Science, pages 400{411.

Springer, June 1997.

BGP99. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems

with unbounded integer variables: Symbolic representations, approxima-

tions, and experimental results. ACM Transactions on Programming Lan-

guages and Systems, 21(4):747{789, July 1999.

Bry86. R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677{691, 1986.

BS00. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with bdds

for automatic invariant checking. In S. Graf and M. Schwartzbach, editors,

Proceedings of the 6th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, Lecture Notes in Computer

Science, pages 378{394. Springer, April 2000.

CABN97. W. Chan, R. J. Anderson, P. Beame, and D. Notkin. Combining constraint

solving and symbolic model checking for a class of systems with non-linear

constraints. In O. Grumberg, editor, Proceedings of the 9th International

Conference on Computer Aided Veri�cation, volume 1254 of Lecture Notes

in Computer Science, pages 316{327. Springer, June 1997.

CUD. CUDD: CU decision diagram package,

http://vlsi.colorado.edu/ fabio/cudd/.

GHJV94. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Reading,

Massachusetts, 1994.

HRP94. N. Halbwachs, P. Raymond, and Y. Proy. Veri�cation of linear hybrid

systems by means of convex approximations. In B. LeCharlier, editor,

Proceedings of International Symposium on Static Analysis, volume 864 of

Lecture Notes in Computer Science. Springer-Verlag, September 1994.

KMP+95. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonna-

cott. The Omega library interface guide. Technical Report CS-TR-3445,

Department of Computer Science, University of Maryland, College Park,

March 1995.

McM93. K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers,

Massachusetts, 1993.

Ome. The Omega project, http://www.cs.umd.edu/projects/omega/.

Sai00. H. Saidi. Model checking guided abstraction and analysis. In Proceedings of

Statica Analysis Symposium, Lecture Notes in Computer Science. Springer,

2000.

	Introduction
	Composite Symbolic Library
	Algorithms for Manipulating Composite Representations
	A Polymorphic Verifier
	A Simple Example
	Conclusion and Future Work

