Framework of Distributed Simulation System
for
Multi-agent Environment

NODA, Itsuki'
noda@etl.go. jp

Electrotechnical Laboratory, Tsukuba 305, Japan

Abstract. Simulation systems are important tools for researches on
Multi-agent systems. As a research tool, a simulation system should
have features of: (1) light-weight and small requirement of computa-
tional resources, and (2) scalability to add new functions and features. I
investigate experience of development of Soccer Server, the official soccer
simulator used in RoboCup Simulation League, and propose a new frame-
work for distributed simulation system for general purpose of multi-agent
researches.

In the new framework, a simulation is divided into several modules and
executed in parallel. These executions are combined by a kernel module
via a computer network. Because of the modularity over networks, users
easily maintain the development of simulation system.

I also discuss about the relation to HLLA, another framework for dis-
tributed military simulation system.

1 Introduction

“Simulation” is an important research tool on multi-agent systems [2]. Most of
multi-agent systems, in which each agent behaves intelligently and adaptively,
are complex systems. Generally, it is hard to apply simple mathematical anal-
ysis to such complex systems, so that computer simulation is an indispensable
method to investigate behaviors of multi-agent systems.

I developed Soccer Server[6], a soccer simulation system, as a tool for re-
searches on multi-agent systems. It has been used as an official platform in
RoboCup Simulation League. The reasons why Soccer Server is chosen are open
system, light weight, and widely supported platforms. These features enable
many researchers to use it as a standard tool for their research. And now, we
have a large community of simulation league, in which we discuss new rules,
share ideas and information, and cooperate with each other to develop libraries
and documents. In the same time, 1t becomes clear that Soccer Server has many
design problems. It was originally developed just as a prototype of the simula-
tor, and modified again and again to add new features according to requirements
from various viewpoints of researches. Therefore, the system became complicated
and difficult to maintain.

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 229-238, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

230 Itsuki Noda

Based on these experience, I investigate requirement to a platform for sim-
ulation of multi-agent systems, and propose a new framework for it, which will
provide:

— capability to execute the simulation in distributed way,
— facility to add new functions easily to the simulation.

In the following sections, I investigate features and problems of the current Soccer

Server, and describe the proposed framework.

2 Soccer Server and its Problems

Soccer Server

Client

Message
lw Board

Client
Client

Network Network
(UDP/IP) \—| X window '—/ (UDP/IP)

Fig. 1. Architecture of Current Soccer Server

Simulator

2.1 Soccer Server

Soccer Server [6, 5] enables a soccer match to be played between two teams
of player-programs (possibly implemented in different programming systems).
The match is controlled using a form of client-server communication. The server
(Soccer Server) provides a virtual soccer field and simulates the movements of
players and a ball. A client (player program) can provide the ‘brain’ of a player by
connecting to the server via a computer network and specifying actions for that
player to carry out. In return, the client receives information from the player’s
Sensors.

A client controls only a player. It receives visual and verbal sensor informa-
tion (‘see” and ‘hear’ respectively) from the server and sends control commands
(‘turn’, ‘dash’, ‘kick” and ‘say’) to the server. Sensor information tells only par-
tial situation of the field from the player’s viewpoint, so that the player program
should make decisions using these partial and incomplete information. Limited
verbal communication is also available, by which the player can communicate
with each other to decide team strategy.

Framework of Distributed Simulation System for Multi-agent Environment 231

2.2 Features of Soccer Server

Soccer Server has been used as an official platform for RoboCup Simulation
League. In addition to it, it is used widely for research, education and entertain-
ment. Here, I like list up features of Soccer Server that are reason why it is used
widely.

— Soccer Server is light. It can run entry-level PCs and requires small resources.
This enables researchers to start their research from small environment. And
also, in order to use it for educational purpose, it is necessary to run on PCs
students can use in computer labs in schools.

— Soccer Server runs on various platforms. Finally, it supports SunOS 4, Solaris
2.x, Linux, IRIX, OSF/1, and Windows ® . It also requires quite common
tools and libraries like Gnu or ANSI C++4 compiler, standard C++ libraries,
and X window. They are distributed freely and used widely.

— Soccer Server uses ascii string on UDP/IP for protocol between clients and
the server. It enables researchers/students to use any kind of program lan-
guage. Actually, participants in past RoboCup competitions used C, C++,
Java, Lisp, Prolog and various research oriented Al programming systems
like SOAR [10]. Version control of protocol is also an important feature. Tt
enables us to use old clients to run in newer servers.

— The system has a separated module, soccermonitor, for displaying the field
status on window systems. Simulation kernel, soccerserver, permits to con-
nect additional monitors. While this mechanism was introduced only for
displaying field window on multiple monitors, it leads unexpected activities
in the different research field. Many researchers have made and have been
trying to build 3D monitors to demonstrate scene of matches dynamically
[8]. In addition to it, a couple of groups are building commentary systems
that describe situations of matches in natural language dynamically [11, 1].
Both kinds of systems are connected with the server as secondary monitors,
get information of state of matches, analyze the situations, and generate
appropriate scenes and sentences.

2.3 Open Issues of Soccer Server

During past three yeas, Soccer Server was modified again and again in order to
add new functions and to fix bugs. From these experience, it became to be clear
that Soccer Server have the following open issues.

— huge communication:
Soccer Server communicates with various clients (player clients, monitor

! Windows versions were contributed by Sebastien Doncker and Dominique Duhaut
(compatible to version 2), and now by Mario Pac (compatible to version 4) indepen-
dently. Information about Mario’s versions is available from:

http://users.informatik.fh-hamburg.de/ "pacm/

232 Itsuki Noda

clients, offline-/online-coach clients) directly, so that the server often be-
comes a bottle-neck of network-traffic. Especially, communication with 22
player clients is a big issue. If a term use many communication, it causes
network collisions and slow down of the server, so that another team may be
influenced. This problem will be solved by distributed processing over the
network.

— maintenance problem:
Though Soccer Server was maintained by a small number of developers, the
source code became so complicated that it is difficult to figure out bugs and
to maintain the code. The reason is that structure of classes of C4++ program
became not to reflect a hierarchy of required functions. Therefore, it is the
time to re-design modules of the server according to required functions.

— version control:
In order to keep upper compatibility as much as possible, Soccer Server
uses version control of protocol between clients and the server. Because the
current server is a single module, the server must include all version of pro-
tocols. In order to solve the problem, the server should have a mechanism
that enable to connect with a kind of filter or proxy that convert internal
representation and each version of the protocol.

A hint to overcome these problems is “modular structure over network”. In
Soccer Server, the monitor module is separated from the simulation module. As
mentioned before, this modularity brings the following merits:

— This evolved many activities to develop systems to show plays in 3D, to
describe game status in natural language, and to analyze performance of
teams from various point of view. This is possible because the modules are
connected via networks. Therefore, each developer can develop these systems
independently.

— This makes researchers to develop such monitors on various platforms. This
1s possible because communication between modules use open and standard
protocol (character strings via UDP/IP).

I apply the similar technique to other part of the simulator. In the next section,
I describe the general framework, called FUSS, for distributed simulation based
on the idea, and show the implementation of the soccer simulator as an example.

3 FUSS: An Universal Simulation System for
Multi-Agent System

3.1 Overview

FUSS (Framework for Universal Simulation System) is a collection of programs
and libraries to develop distributed simulation systems. It consists of the follow-
ing items:

— fskernel: A kernel for a simulation system. This provides services of:

Framework of Distributed Simulation System for Multi-agent Environment 233

e module database
e shared memory management
e synchronization control
— FUSS library (libfuss): A library to develop modules of the simulation sys-
tem. The library consists of:
e FsModule library: provides a framework of a simulation module.
e ShrdMem library: provides an interface to access shared memories.
e PhaseRef library: provides a facility to control synchronization of simu-
lation.
— utility library and programs: A collection of utilities.

Generally, a simulation system on FUSS consists of a kernel (fskernel) and a
couple of simulation modules. The modules are combined into a system by the
kernel via the FUSS library. Fig. 2 shows a brief structure of an example of a
simulation system built on FUSS.

simulation simulation simulation
module 1 module 2 module 3

~1""FUSS library
e qinfuss)
- _ ‘I;etwork

’ fskernel

FUSS

Fig. 2. A Simulation System Built on FUSS

In order to guarantee open-ness in communication among modules and the
kernel, FUSS uses CORBA for the communication. This makes users free from
selection of platform and programming languages to develop simulation modules.
While the current implementation of FUSS uses C++4, we can develop libraries
on other languages that have CORBA interface.

In addition to it, FUSS uses POSIX multi-thread facility (pthread) to re-
alize flexible interactions between modules and fskernel. Using this facility,
the user need not care to manage control of execution of simulation and the
communication.

Currently, FUSS is implemented by using C++ and OmniORB2[7]. Tt is
available from the FUSS homepage:

http://ci.etl.go.jp/ noda/soccer/fuss/

234 Itsuki Noda

3.2 Shared Memory Management

A shared memory is defined as a sub-class of ShrdMem class in each module.
The memory is registered to the kernel before the simulation. Then, a module
becomes an owner of the memory, who has an original data, and other module
have its copy. The ownership can be transfered by calling takeOwnership method
explicitly.

Modules need not know who is owner of the shared memory. A module calls
download method before using the shared memory, and calls upload method
after modifying the memory. Then the FUSS library maintain the consistency
of the memory.

Each shared memory must be defined by IDL of CORBA. The definitions are
converted into C++ classes and included by all related modules. Because FUSS
uses CORBA, we can develop modules or utilities by other CORBA-compliant
programming systems.

3.3 Synchronization by Phase Control

In a simulation on FUSS, modules are synchronized by fskernel by phases.

A phase i1s a kind of an event that have joined modules. When a module is
plugged into the simulation system, the module send joinPhase messages to
fskernel to joins a couple of phases in which it executes a part of simulation.
When the phase starts, the kernel notifies the beginning of the phase by sending
an achievePhase message to all joined modules. Then the kernel waits until
all joined modules finish operations of the phase. Each module must inform the
end of the operation of the phase by sending an achievePhase message to the
kernel.

The kernel can handle two types of phases, timer phase and adjunct phase.

A timer phase has its own interval. The kernel tries to start the phase for
every interval. For example, suppose that we develop a soccer simulator, in which
a field simulator module calculate objects” movements every 100ms. In this case,
we will define a timer phase (named as field simulation phase) that has the
field simulator module as a joined module. The interval of the phase is set to
100ms. Then, the field simulator receives an achievePhase message for every
100ms, and executes its operation and sends an achievePhase message back to
the kernel.

An adjunct phase is invoked before or after another phase adjunctively. In
the example of soccer simulation, suppose that referee’s judgments, which is
operated by a referee module, should be performed just after the field simulation.
In this case, a referee phase will be registered as an adjunct phase after a field
simulation phase. Then the kernel starts the referee phase immediately after
the field simulation phase is achieved. For another example, a player phase,
in which player simulators/proxies upload players’ commands, will be registered
as an adjunct phase before a field simulation phase. In this case, the kernel
starts the player phase first, and starts the field simulation phase after it
is achieved.

Framework of Distributed Simulation System for Multi-agent Environment 235

A phase may have two or more adjunct phases before/after it. To arrange
them in an order explicitly, each adjunct phase has its own tightness factor. The
factor is larger, the phase occurs more tightly adjoined to the mother phase. For
example, a field simulation phase may have two adjunct phases, a referee
phase and a publish phase, after it. Tightness factors of the referee and publish
phases will be 100 and 50 respectively. So, the referee phase occurs just after
the field simulation phase, and the broadcast phase occurs last.

Fig. 3 shows phase-control and communication between the kernel and mod-
ules in the soccer simulation example. Note that the implementation of the phase
control mechanism 1s general and flexible, so that there is no limitation on the
number of phase, the duration of the interval of timer phase, or the depth of
nest of adjunct phases.

Player Module
achievePhase

uploadData

awiyy

<III

achievePhase

Field Simulator

achievePhase

downloadData
uploadData

achievePhase

Referee Module

achievePhase

downloadData

Referee Phase

[joined modules:
Rerefee Module

uploadData

achievePhase

achievePhase Player Module
downloadData

Player Mocule(s) % Monitor Prox
: i)
onitor Proxy [Gehievebase

Fig. 3. Phase Control and Communication with Joined Modules

4 Implementation of Soccer Simulator on FUSS

4.1 Overview of the Design

I implemented Soccer Simulator using FUSS. In the implementation, I divided
the functions of Soccer Server into the following modules:

— Field Simulator is a module to simulate the physical events on the field
respectively.

236 Itsuki Noda

Fig.4. Plan of Design of New Soccer Server

— Referee Module is a privileged module to control a match according to
rules. This module may override and modify the result of field simulator.

— Player Simulators/Proxies are modules to simulate events inside of player’s
body, and communicate with player and on-line coach clients.

— Monitor Proxy provides a facility of multiple monitor, commentator, and
saving a log.

Execution of these modules are controlled by phases shown in Fig. 3. Note
that the execution and communication with clients are processed in parallel using
the multi-thread facility.

4.2 Player Simulator/Proxy

As mentioned in Sec. 2, one of major problems of the current Soccer Server
is management of protocol. In the Soccer Server, the protocol is implemented
in various point of the whole system. Therefore, it 1s difficult to maintain and
version-up the protocol.

In the new design, on the other hand, A player simulator/proxy receives whole
information about data from the kernel, and convert it to the suitable protocol.
As a result, maintainers may focus only to this module when we change the
protocol.

This style brings another merit. The current system communicates with
clients directly, so it the server tends to be a bottle neck of network traffic.
On the other hand, this module works as a proxy that connects with multiple
clients. Therefore, when we run two proxies for both teams on two machines
placed in separated sub-networks, we can distribute the traffic. This also equal-
izes the condition for each team even if one team uses huge communication with
the server.

Framework of Distributed Simulation System for Multi-agent Environment 237

4.3 Referee Module

The implementation of the referee module is the key of the simulator. Compared
with other modules, the referee module should have a prerogative, because the
referee module needs to affect to behaviors of other modules directly. For ex-
ample, the referee module restricts movements of players and a ball, which are
controlled by the field simulator module, according to the rule.

We may be able to realize the prerogative by it that the referee module only
controls flags that specify the restrictions, and simulator modules runs according
to the flags. In this implementation, however, it is difficult to maintain the referee
module separately from other modules.

In the implementation using FUSS, the referee module is invoked just before
and after the simulator module and check the data. In other words, the referee
module works as a ‘wrapper’ of other modules. The merit of this implementation
is that it is easy to keep simulator modules independent from referee modules.
Phase control described in Sec. 3.3 enables this style of implementation in a
flexible manner.

5 Related Work and Discussion

Researches on distributed simulation systems are done mainly for military sim-
ulation and training [9, 12]. DIS (Distributed Interactive Simulation) [3] and
HLA (High-Level Architecture) [4] have been developed for this purpose. These
works focuses on connecting stand-alone simulators like fright simulators over
networks. In such simulation, accuracy of simulation of behaviors of each planes
and vehicles is more important than interaction between them. Therefore, DIS
and HLA 1s designed mainly for synchronizing relatively independent simulators.

In simulation of multi-agent systems like Soccer, on the other hand, inter-
actions among agents occur more frequently. Therefore, execution of each sim-
ulation module should be controlled more carefully. Moreover, the simulation
may be regulated by complex rules that related the whole simulated world. For
example, the soccer simulation have to be carried out according to rules of soc-
cer that is related to total condition of the field. In order to implement such
regulation, each simulation module needs to have a function to deal with it in
HLA, in which 1t is difficult to maintain the regulation. Compared with this, 1t
is easy to implement such regulation using FUSS, because FUSS has a strong
ordering mechanism by phase control. In other words, FUSS has an advantage
in implement tightly coupled simulation with supervised modules.

6 Summary

I investigated problems of current Soccer Server, and figured out issues that
should be solved in the new simulator. Two main points are modularity and
possibility of distributed simulation. Base on this investigation, I proposed a

238 Itsuki Noda

framework for general purpose multi-agent simulation called FUSS. FUSS en-
ables for us to develop simulation systems that run in a distributed way over
computer networks.

The proposed framework is general and is not restricted to simulation of
Soccer. So, it is possible to use this design as a prototype of the kernel of other
simulation of complex environment like rescue from huge disasters.

Moreover, FUSS uses CORBA as a base of communication among the kernel
and modules. While the current implementation provides only a library for C4++.
it 1s possible to develop libraries for other languages.

References

1. E. Andre, G. Herzog, and T Rist. Generating multimedia presentations for
RoboCup soccer games. In H. Kitano, editor, RoboCup-97: Robot Soccer World
Cup I, pages 200-215. Lecture Notes in Artificial Intelligence, Springer, 1998.

2. J. L. Casti. Would-be Worlds: how simulation is changing the frontiers of science.
John Wiley and Sons, Inc., 1997a.

3. Thomas L. Clarke, editor. Distributed Interactive Simulation Systems for Simula-
tion and Training in the Aero Space Environment, volume CR58 of Critical Reviews
Series. SPIE Optical Engineering Press, April 1995.

4. Judith S. Dahmann. High level architecture for simulation: An update. In Azze-
dine Bourkerche and Paul Reynolds, editors, Distributed Interactive Simulation and
Real-time Applications, pages 32—-40. IEEE Computer Society Technical Commit-
tee on Pattern Analysis and Machine Intelligence, [EEE Computer Society, July
1998.

5. Ttsuki Noda and lan Frank. Investigating the complex with virtual soccer. In
Jean-Claude Heudin, editor, VW98 Virtual Worlds (Proc. of First International
Conference), pages 241-253. Springer, July 1998.

6. Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server:
A tool for research on multiagent systems. Applied Artificial Intelligence, 12(2—
3):233-250, 1998.

7. omniorb homepage. WWW home page http://www.uk.research.att.com/
omniORB/omniORB.html.

8. A. Shinjoh and S. Yoshida. The intelligent three-dimensional viewer system for
robocup. In Proceedings of the Second International Workshop on RoboCup, pages
37-46, July 1998.

9. Stow 97 - documentation and software. WWW home page http://webl.stricom.
army.mil/STRICOM/DRSTRICOM/T3FG/SOFTWARE_LIBRARY/ST% OW97.html.

10. Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank Koss, John E. Laird,
Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents for interactive simula-
tion environments. Al Magazine, 16(1), Spring 1995.

11. Kumiko TANAKA-Ishii, Itsuki NODA, Tan FRANK, Hideyuki NAKASHIMA,
Koiti HASIDA, and Hitoshi MATSUBARA. MIKE: An automatic commentary
system for soccer. In Yves Demazeau, editor, Proc. of Third International Confer-
ence on Multi-Agent Systems, pages 285-292, July 1998.

12. Warfighters’ simulation (warsim) directorate national simulation center. WWW
home page http://www-leav.army.mil/nsc/warsim/index.htm.

	Introduction
	Soccer Server and its Problems
	Soccer Server
	Features of Soccer Server
	Open Issues of Soccer Server

	FUSS: An Universal Simulation System for Multi-Agent System
	Overview
	Shared Memory Management
	Synchronization by Phase Control

	Implementation of Soccer Simulator on FUSS
	Overview of the Design
	Player Simulator/Proxy
	Referee Module

	Related Work and Discussion
	Summary
	References

