Path Planning of a Mobile Robot as a Discrete
Optimization Problem and Adjustment of Weight
Parameters in the Objective Function by Reinforcement
Learning

Harukazu Igarashi

School of Engineering, Kinki University,
Higashi-Hiroshima, Hiroshima, 739-2116, Japan
igarashi(@info.hiro kindai.ac.jp

Abstract. In a previous paper, we proposed a solution to path planning of a
mobile robot. In our approach, we formulated the problem as a discrete
optimization problem at each time step. To solve the optimization problem, we
used an objective function consisting of a goal term, a smoothness term and a
collision term. This paper presents a theoretical method using reinforcement
learning for adjusting weight parameters in the objective functions. However,
the conventional Q-learning method cannot be applied to a non-Markov
decision process. Thus, we applied Williams’s learning algorithm,
REINFORCE, to derive an updating rule for the weight parameters. This is a
stochastic hill-climbing method to maximize a value function. We verified the
updating rule by experiment.

1 Introduction

There have been many works on the navigation [1] and path planning [2] of mobile
robots. In a previous paper, we proposed a solution to path planning and navigation of
a mobile robot[3]. In our approach, we formulated the following two problems at each
time step as different discrete optimization problems: 1) estimation of position and
direction of a robot, and 2) action decision. For the first problem, we minimized an
objective function that includes a data term, a constraint term and a prediction term.
This approach was an approximation of Markov localization[4].

For the second problem, we minimized another objective function that includes a
goal term, a smoothness term and a collision term. While the results of our simulation
showed the effectiveness of our approach, the values of weights in the objective
functions were not given theoretically. This paper presents a theoretical method using
a reinforcement learning to adjust the weight parameters used in the second problem.

In our reinforcement learning, the value function is defined by the expectation of a
reward given to a robot’s path. The path is generated stochastically because we used a
probabilistic policy with a Boltzmann distribution function for determining the
actions of the robot. This optimizes the local objective function stochastically to
search for the globally optimal path. However, the stochastic process is not a Markov
decision process because the objective function includes an action at the preceding

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 315-320, 2001.
© Springer-Verlag Berlin Heidelberg 2001

316 Harukazu Igarashi

time in the smoothness term. The usual Q-learning method cannot be applied to such
a non-Markov decision process. Thus, we applied Williams’s learning algorithm,
REINFORCE][5], to derive an updating rule for the weight parameters. This is a
stochastic hill-climbing method to maximize the value function. The updating rule
was verified by our experiments.

2 Objective Function for Path Planning

We assume that a series of actions decided at each time step would derive a desirable
path or trajectory of a robot. We define the following objective function E, of a
velocity v; at time t,

E (v n,v) UbE

120> Vil gual “ goal

LbF Jdem (1)

The minimal solution of Eq. (1) gives an estimate for the robot’s action at time t.
The first term represents an attractive force to the goal ry.,. It is defined as

smth

Egoal(vl;rz)rgoal) U Sgn[G(VT)] :(;(VI)2’ (2)

where sgn(x) denotes the sign of x and G(wv,) is defined by
G V D H goal H D goal D’;H (3)

In Eq.(3), '+ 1s defined by rlﬂ—rﬁrvl. The second term in Eq. (1), Eyyq, is defined by
Esmlh(e 1 u H‘ v, 1H “4)

to minimize changes in a robot’s velocity vector. The last term in Eq. (1), Ey,
represents a repulsion force for avoiding collisions with obstacles and walls. We
define the term as

D, if Dist(r[]) 10
E,(viir) Dy ODist(r)” i OC Dist(rig) 0L (5)
ar if Dist(r}) L

where Dist(r) means the shortest distance from the robot’s position r to obstacles and
walls. The constant Dy, represents a degree of penalty given when the robot collides
with obstacles or walls. The size L means a range within which the repulsion force
starts to work on a robot. In our simulation, we set D, =100000 and L=15.

Thrun et al. had proposed another optimization approach for motion planning [6].
In their approach, a non-Markov term, such as Eg,y, was not taken into account. We
restricted and discretized a search space when mimimizing the function E(v;). We
only took into account velocity vectors whose lengths were smaller than a constant[3].

3 Learning Weights of Terms
3.1 Value Function and Probabilistic Policy

Trajectories given by minimizing E.(v,) depend on weights of terms, {b;}(j=1.2,3)[3].
In order to control the weights properly, we applied a reinforcement learning,
REINFORCE[5], which was proposed by Williams, 1992, to our path planning.

We define a value function V([]), which is an expectation of a reward R(/;) given
to a trajectory /;, as

V(o) 0 E[R(1)] 0 L P(L)R() - (6)

Path Planning of a Mobil Robot 317

where P(/) is a probability that trajectory / is produced by a policy [. A trajectory /; is
a series of robot’s positions at times t(t=0,1,...,N)).
We define the policy [using a Boltzmann distribution function as
F]: ()T

virr b)0 —)/ , 7)
Vt
where E(vy) is the ojective function shown in Eq. (1) and T is a parameter to control
the randomness in choosing an action v at each time.

3.2 Steepest Gradient Method

We use a steepest gradient method for maximizing the value funciton in Eq. (6). We
have to caluculate the right-hand side of the following equation:

7V U —P(L)R(L)- (8)

S OD{ ko)

The probability distribution P(/;) is expressed by a product of P (1,,1;,1)’s as
P(l) P (o:’l)P (rb”z)"'P (rN,’larN,-))

where P (r,1,) is a probability that a robot moves to position r;; when it stands at r;
and takes a policy [. By differentiating Eq. (9) with by, we obtained

[N[N 5
_P(ZI)HD D P (n’ nl) _P (rl”l l) : (]0)
k 100 | n0,n0t Lbk
By the follovying equation,
P (r.r0) DL P(r) 119, (11)
we obtained that l
O O
3" (r.7:1) VD P (n.n, J{Ebkﬁ(vl;m la{bk})}

jgp(), %[ln vanaia (b))
7DPV’(t7t)()e(t), (12)

where e, (1) is called the characleristic eligibility of by[5]. Substituting Eq. (12) into
the right-hand side of Eq. (10), we obtained from Eq. (8) that

el)HF{R()m‘jj:ek(t)} (13)

This is the same result that Williams derived as his episodic REINFORCE algorithm
[5]. He used a neural network model for a probabilistic policy [.

However, we obtained a different updating rule from the REINFORCE algorithm
because we used Eq. (7) instead of a neural network model for action decision. Using
Egs. (1) and (7), the characteristic eligibility of by is expressed as

318 Harukazu Igarashi

e (r)0 E[lns‘;“‘(vt;i;,}; ,,{bk})] 0 U1[[EV u<[Ev> } ’ (14)
e r{n}

T|ih, \ib,
where operation <...> refers to the expectation weighted with a Boltzmann factor, i.¢e.,

DVAX}L(W;V,J, (BT
<X>T.{bk} a :

D e—ﬁv("rlrprr b h)T
By substituting Eq. (14) into e (t) in Eq. (13) and using the steepest gradient method,
we can derive the following learning rule of weights {b.}(k=1,2,3) :

b, :::@::EE R(zl)qul{DEv <DE> } : (16)
7{b}

(15)

t

b, 1 o | LBy b,

The constant [Jis a learning rate factor to be set at a positive small number.

Moreover, we can prove that b,'s converge without the averaging operator E[...] in
Eq. (16) by analogy with a back propagation rule used in multi-layer perceptrons. We
used the learning rule without operator EJ...] in the experiment in the next section.

4 Simulation

We consider a sample problem where a single robot moves to a goal from a starting
position while avoiding static obstacles. Figure 1 shows the locations of obstacles,
walls, the start point, and the goal point.

4.1 Reward Function

The objective of this sample problem is to find the path that minimizes the robot’s
moving time from the start point to the goal point and keeps a safe distance from
obstacles and walls. We consider the following reward function R(/) reflecting these
two requirements : R(/}=c Ry, (/) +c,Ry(/), where Ry, (/) represents the degree of a
user’s satisfaction to the moving time from the start to the goal in a trajectory /. The
function Ry, (/) represents the degree of a user’s satisfaction to the shortest distance
from the robot to obstacles and walls if a robot moves along a path /. We call these
functions achievement functions. We used the trapezoid-like functions shown in Fig. 2
as achievement functions. They take a value between 0 and 10 and are characterized
by the parameters, [, [, [Jand]

In our experiment, we set [==0,[F20,(=50 for R,(/) and =0, =15,
[==2000 for Ry(/). This means that trajectories whose moving times are shorter
than 20 and trajectories that force a robot to keep a distance longer than 15 are most
desirable. The weights ¢, and c, are set at 0.5 to find a path that is balanced between
moving time and safety.

4.2 Experimental Conditions

We set initial values of b,’s as b;=b,=b;=1.0 and set (7 in Eq. (16) at 0.00001.
Parameter T is fixed to 5.0 and we did not carry out any annealing procedure. Under
these experimental conditions, we repeated the learning cycle one million times. It

Path Planning of a Mobil Robot 319

goa]
S "
\‘\ \
\“ r‘ . |l
| start
0 a B y 6
Fig. 2 General shape of
Fig. 1 Robot’s world in our simulation achievement function

took about 17 hours to complete one experiment using a work station, SUN Ultra
Sparc 30 (CPU: Ultra Sparc-11, 248 MHz).

4.3 Experimental Results

Figure 3 shows changes in R, Ry, and Ry, The values are averaged over each period
of 10000 updating steps. Changes in parameters {b,}(k=1,2,3) are shown in Fig. 4.

In Fig. 3, the expectation of the reward function R increases as the learning
proceeds. It increased from 4.35 to 8.17 at the end of learning. This value is about two
times larger than that obtained before the learning. This increase comes from the
improvement in the second term Ry The function Ry forces a robot to keep a
certain distance from obstacles and walls for safety. Figure 4 shows that the weight b;
of the collision term E g, increased gradually. This improved the safety of the path.

Figures 5 and 6 show the robot’s trajectories obtained using unlearned values and
learned values of {b,}(k=1,2,3), respectively. The parameter T was set to a very small
positive value when we obtained these two trajectories. Because we considered that
the trajectory obtained at T=0 is a center point in the solution space for searching an
optimal path and can be used to check whether values of weights {b}(k=1,2,3) in
E(v,) are optimized in producing desirable trajectories.

o
J

©
1

o
1

-
1

N
1

°

Rewards Averaged over 10000 steps

20 60 80 100] 200 400 600 800 1000x10
Learing Step *10* Learning Step

Fig.3 R, Ry, and Ry averaged over Fig.4 Learning of weights by, b, and
10000 learning steps bs

320 Harukazu Igarashi

221

Fig. 5 A path planned deterministically Fig. 6 A path planned deterministically
with weights that had not been learned with weights that had been learned

B3 O
0 51413121110

171glg14 131211 E]

In Fig. 5, one can see that the value of the unlearned weight b; is so small that the
robot ran into an obstacle at time 15. Figure 6 shows that the problem in safety at time
15 was solved by learning without delaying a robot’s arrival time. Moreover, the
trajectory was not improved locally. A global change in trajectory was achieved
because the policy [Tin Eq. (7) does not depend on the robot’s position. Thus, if we
would like to change trajectories locally to search for an optimal trajectory, we had
better consider term weights {b(x,y)}(k=1,2,3), which depend on a robot’s position
(x,y). Our updating rule can be applied to bi(x,y)’s in the same way as applied to by.

5 Future Work

We plan to apply our method to path planning problems of multi-robot systems.
We can express interactions between robots in the objective function E,. If a user
wants to move two robots while keeping them close to or avoiding each other, it is
sufficient to introduce an attractive or repulsion force between the robots into E,. This
shows the flexibility that our method can be applied to many scheduling problems in
the wide-range field of engineering.

References

1. Kortenkamp, D., Bonasso, R.P., and Murphy, R. (eds.), Artificial Intelligence and
Mobile Robots. AAAI Press/The MIT Press (1998).

2. Hwang, Y.K. and Ahuja, N.(1992), Gross Motion Planning—A Survey. ACM
Computing Surveys 24(3): 219-291

3. Igarashi, H. and Ioi, K., Path Planning and Navigation of a Mobile Robot as
Discrete Optimization Problems. In Sugisaka, M. and Tanaka, H., editors,
Proceedings of the Fifth International Symposium on Artificial Life and Robotics,
ISBN4-9900462-0-X, Oita, Japan, 2000: 297-300.

4. Burgard, W., Fox, D. and Thrun, S. (1997), Active Mobile Robot Localization. In:
Proceedings of 15th Joint Conference on Artificial Intelligence (1JCAI97),
Nagoya, Japan, August 23-29, 1997, Vol.2, pp. 1346- 1352

5. Williams, R.J. (1992), Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8: 229-256.

6. Thrun, S. et al., Map Learning and High-Speed Navigation in RHINO, in [1], pp.
21-52.

