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Abstract. The principle of behavioral programming [1] suggests to de-
rive low-level controllers from symbolic high-level task descriptions in
a predictable way. This paper presents an extension of the principle of
behavioral programming — by identifying a feedback link between emer-
gent behaviour and a scalable Deep Behaviour Projection (DBP) agent
architecture. In addition, we introduce a new variant of the RoboCup
Synthetic Soccer, called Circular Soccer. This variant simulates matches
among multiple teams on a circular field, and extends the RoboCup Sim-
ulation towards strategic game-theoretic issues. Importantly, the Circular
Soccer world provides a basis for an architecture scale-ability evaluation,
and brings us closer to the idea of meta-game simulation.

1 Introduction

Behavioural approaches to artificial intelligence often feature situatedness of
agents reacting to changes in environment and exhibiting emergent behaviour,
instead of reliance on abstract representation and inferential reasoning [2, 5]. Tac-
tical and strategic reasoning, however, would seem to require domain knowledge
and a degree of multi-agent cooperation beyond the reach of situated behaviour-
based agents. Over the last few years, it has become apparent that a unify-
ing architecture, combining coguitive (top-down) and reactive (bottom-up) ap-
proaches, cannot be achieved by simply connecting higher and lower layers. It
has been suggested in recent literature that a “middle-out” architecture [1] is re-
quired. The approach adopted in [1] follows the behavioural programming prin-
ciple: “taking symbolic descriptions of tasks and predictably translating them
into dynamic descriptions that can be composed out of lower-level controllers”.
The idea that reactive behaviours can be derived from (and importantly, can be
proved to be correct with respect to) a higher-level theory follows an earlier ap-
proach — the situated automata framework [5] — in relating declarative agent
representations and their provably correct situated behaviours.

While research and development work has progressed in both top-down and
bottom-up directions, a systematic methodology for provably correct hierarchical
architectures remains an important and open challenge. The view taken in this
paper is that, rather than defining situated or tactical reasoning ad hoc, it is
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desirable to categorise agents according to their functionality and reactions to the
environment, and identify corresponding classes of agent architectures. In other
words, the principal target is a systematic description of increasing levels of agent
reasoning abilities, where a given behaviour can “grow” into an expanded level,
while every new level can be projected onto a deeper (more basic) behaviour.
More precisely, our framework (referred to as Deep Behaviour Projection —
DBP) supports two parallel and interdependent streams:

— a hierarchical behaviour-based agent architecture, and

— acorresponding hierarchy of logic-based action theories, each of which declar-
atively describes an agent type and provides a basis to prove certain agent
properties.

These components complement each other in the following way:

— given a formal translation procedure, agent behaviours can be automatically
derived from an action theory, and proven correct with respect to it;

— an observed emergent behaviour can be formally captured and retained by an
action theory of a higher level, with subsequent translation into an embedded
behaviour.

The derivability /provability link from an action theory to agent behaviours
fully complies with the principle of behavioral programming. On the other hand,
the feedback connection from emergent behaviour to a (meta-)action theory, and
then to a (provably correct) derived behaviour on a higher level, extends this
principle. Thus, a successful agent behaviour can be present in the architecture
in two forms: implicit (emergent) and explicit (embedded). We believe that this
duplication (or depth) provides necessary functional interchangeability, and al-
lows the agent to “mediate” among related behaviours. The results reported
in [11, 12, 13] formalise the DBP approach at the situated and basic tactical
levels. This paper does not introduce new systematic models and formal correct-
ness results, but rather presents the DBP approach, highlighting its biological
motivation.

2 “Deep Behaviour Projection” Agent Architecture

While designing architectures for artificially intelligent agents, it is quite normal
to draw parallels with the natural world — after all, human (and animal) intel-
ligence is so far the only available example. For instance, a canonical problem
of finding resources in unknown environment and collecting them at a specified
location can be simulated as the foraging problem in ants’ colonies [3] — where
ants look for food and carry it towards their nest, laying down pheromones
to indicate good paths to food locations. In this instance, the motivating bi-
ological example provided good intuition for experimental framework relating
behavioural and genetic programming.

Motivated by biology, we intend to study increasing levels of complexity in
agent behaviours and correlate these with enhanced architecture and reasoning
abilities, sometimes in teamwork context. We begin at the reactive level — ob-
serving that certain sub-types of reactive behaviour are quite often neglected
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in the Al literature and clumped indiscriminately under that generic label. The
previous work [11, 12] has formally identified and analysed the types of reac-
tive behaviours that we believe correspond to very basic animal behaviors. In
particular, Clockwork, Tropistic and Hysteretic agent classes were studied as
examples of situated agents. Another series of agent classes has been grouped
according to tactical abilities: Task-Oriented and Process-Oriented types. The
developed hierarchy can be briefly summarised as follows:

(C,S,E, sense:C — S, response : B — C,
timer : C' — S, command : S — E,
tropistic_behaviour : S — E,

1, hysteretic_behaviour : I x S — E, update : [ x S — I,
T, decision : I X S xT — T, combination : T — 27
P, engage: I X S xT x P — P, tactics : P — 27 ),

where C' is a communication channel type, S is a set of agent sensory states,
E is a set of agent effectors, I is a set of internal agent states, 1" is a set of
agent task states, P is a set of agent process states, and H denotes the set of
hysteretic_behaviour instantiations {(i, s, e) : e = hysteretic_behaviour(i, s)}.
The resulting architecture draws its expressive power from the situated au-
tomata and subsumption-style architectures, while retaining the rigour and clar-
ity of logic-based representation. The Deep Behaviour Projection framework un-
derlies this hierarchy and ensures that more advanced levels capture relevant
behaviour more concisely than their deeper projections. Moreover, the depth
in behaviour representation provides functional interchangeability among levels,
and enables architecture scale-ability across domains. Our primary application
domain is RoboCup Simulation League — an artificial multi-agent world [6],
where the DBP framework provided a systematic support for design and full
implementation of Cyberoos [11, 13]. Previous generations of Cyberoos devel-
oped under the DBP approach, captured certain types of situated behaviour
(Cyberoos’98) and some basic classes of tactical behaviour (Cyberoos’99). Cy-
beroos2000 is the third “generation” designed in line with this framework. In
particular, Cyberoos2000 focuses on exploring emergent tactical teamwork.

2.1 Situated Agents

A simplest perception-action feedback is implemented by the Clockwork agent,
which is able to distinguish only between sensory states that have different time
values, having no other sensors apart from a timer. Moreover, the Clockwork
agent behaviour is predefined and is totally driven by time values. Like a clock-
work mechanism, the Clockwork agent executes its fixed behaviour as a sequence
of commands sent to the simulator at regular time points. Despite its almost
mechanical simplicity, this agent type can be associated with very basic forms
of cellular life driven by periodic biological cycles. In context of RoboCup, we
found a pure Clockwork agent useful only in testing scenaria, where a player
is expected to execute a given sequence of commands without synchronisation
clashes (more than 1 command per simulation cycle) or stalls (no commands
per simulation cycle). The activity in the T'ropistic agent is characterised by a
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broader perception-action feedback represented by the tropistic_behaviour func-
tion. This agent reacts to its sensory inputs in a purely reflexive fashion. This
kind of behaviour can be easily identified with plants, but sometimes even hu-
mauns follow tropistic reflexes (eg., a hand reflexively retracts from a hot surface).

After many experiments with Cyberoos goalkeepers, we observed that a
tropistic catch was the most effective behaviour in dangerous situations. How-
ever, the T'ropistic agent may have only a partial capacity to distinguish degrees
of risk (a sensory state may, for example, omit information on play mode at a
given cycle — own “free kick” or “play_on”). Therefore, a tropistic goalkeeper
will try to catch a close ball all the time — unless this behaviour is subsumed
by higher levels. Other important examples of tropistic behaviour exhibited by
a Cyberoos agent are obstacle avoidance and ball chasing. It is worth pointing
out that regardless of how instantiations of tropistic behaviour (tropistic rules)
are developed — by elaborate programming and fine-tuning, genetic evolution,
or reinforcement learning — their semantics remains simple and is captured by
direct mapping from sensors to effectors.

However, such a direct mapping becomes conceptually and computationally
cumbersome if the number of tropistic rules grows significantly — it becomes
increasingly difficult to represent and encode each behaviour instantiation, and
it takes a long time to match partial sensory states in a strictly sequential com-
putational environment.

A Hysteretic agent is defined as a reactive agent maintaining internal state
I and using it as well as sensory states S in activating effectors E, i.e. its activity
is characterised by hysteretic_behaviour. An update function maps an internal
state and an observation into the next internal state. Some animals seem to be
proficient almost exclusively at this situated level, and yet may exhibit interest-
ing behaviours. For example, the flocking behaviour of birds can be simulated
totally at the hysteretic level with three simple rules: (i) maintain a minimum
distance from other birds or other objects; (ii) match the velocity of birds in the
neighbourhood; (iii) move towards the perceived centre of mass of the nearby
birds [7]. Importantly, in order to behave hysteretically, an agent must maintain
an internal state (containing, in the flocking example, variables for minimum dis-
tance, average velocity, distance to neighbourhood centre of mass, etc.). Faced
with an obstacle, the simulated flock splits around and reunites past it. This is
a classic example of emergent, rather than hard-coded, behaviour?.

A Cyberoos2000 agent exhibits quite a few interesting examples of emergent
hysteretic behaviour, eg., dribbling around opponents toward a target; inter-
cepting a fast moving ball; resultant-vector passing; shooting at goal along a
non-blocked path; etc. The hysteretic_behaviour is implemented as a (temporal)
production system (TPS). Whenever the TPS fires a hysteretic rule, an atomic
commands sequence is inserted into a queue for timely execution, inherited from
the Clockwork level. In addition, the TPS monitors currently progressing ac-
tions, thus providing an explicit account of temporal continuity for actions with

% In fact, such flocking behaviour has been proven successful to some degree in the
RoboCup Simulation domain — by YowAlI team from Japan in 1999.
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duration [14, 13], and allowing us to embed actions ramifications and interac-
tions [12, 13]. For example, a dribbling action is suppressed while shooting or
passing.

It is worth noting that this architecture allows us to easily express desired
subsumption dependencies [2] between the Hysteretic and Tropistic levels, by
an inhibition of the lower level behaviour if necessary. For instance, tropistic
chase is suppressed if a teammate has possession of the ball.

2.2 Tactical Agents

The behaviour functions of these situated agents are not constrained. Sometimes
however, it is desirable to disable all but a subset of behaviour instantiations
(rules) — for example, when a tactical task requires concentration on a specific
activity. The T'ask-Oriented agent type is intended to capture this feature —
it incorporates a set of task states, and uses the decision function in selecting a
subset of behaviour instantiations (a task) most appropriate at a particular inter-
nal state, given sensory inputs. A task activates only a subset of all possible rules
by invoking the combination function. Furthermore, a Process_Oriented agent
maintains a process state and is able to select an ordered subset of related tasks
— tactics. Implementation of task-orientation requires some adjustments to the
TPS. The TPS traces action rules whose actions may be in progress, and checks,
in addition, whether a rule is valid with respect to a current task. The rules
producing hysteretic behaviour mentioned in the previous section (dribbling, in-
tercepting, etc.) are combined in corresponding tasks and can be selected by
a Cyberoos2000 agent in real-time. For example, zone playing is implemented
as a task, enabling relevant (hysteretic) rules for offside trap, making defensive
blocks, cover zone, etc.

Task-orientation appears to be not only useful conceptually, but is also a
practical functional element. Although it is clear that an elaborate hysteretic
behaviour can achieve the same results as any given task-orientation, the latter
captures patterns of emergent behaviour more concisely. We believe that appro-
priate task-orientation evolved in animals as well — to support and strengthen
specialisation. One impressive example, directly related to tactical teamwork, is
hunting behaviour of lions. It was found [9] that the Serengeti (Tanzania) lions
most often work together when tackling difficult prey such as buffalo and zebra,
but hunt alone in taking down easy prey. In Etosha (Namibia), however, lions
specialise in catching the springbok — one of the fastest antelopes of all — in
flat and open terrain. The research [9] has shown that “a single lion could never
capture a springbok, and so the Etosha lions are persistently cooperative”. In-
terestingly, an analogy was drawn between Etosha lions hunting behaviour and
a rugby team’s tactics, in which wings and centers move in at once to circle the
ball, or prey. This “highly developed teamwork stands in sharp contrast to the
disorganized hunting style of the Serengeti lions” [9].

First important lesson that can be drawn from this analogy is that stable
patterns of emergent behaviour are worth retaining — in this instance,
via suitable task-orientation. Secondly, the observed tendency in emergence of
more complex tactical behaviours (eg., bird flocking to prey intercepting to prey
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circling) can be correlated with appearance of new elements in agent archi-
tecture. Put simply, when emergent behaviour struggles to fit into the existing
scheme, extension of the framework is warranted! This was obvious in the in-
troduction of internal state that allowed the hysteretic agent to situate itself
better than tropistic one in relation to other agents and environment objects.
The following observation exemplifies this tendency on a tactical teamwork level.

The easily recognised pattern of “kiddie soccer”, where everyone on the team
would chase the ball, could emerge as sub-optimal tactics on tropistic level —
and could genetically evolve in the RoboCup Simulation domain as well [8].
We observed that Hysteretic Cyberoos agents exhibited another sub-optimal
behaviour — solo dribbling towards the enemy goal. This kind of behaviour
could emerge if there are no visible teammates and internal agent state does
not keep track of them. Solo dribbling can be observed in “teenage soccer”, and
arguably is more efficient than the “kiddie” one, while being more demanding
and challenging in terms of the individual skills required. It may also lead to a
devastating consumption of the player stamina.

A simple tactic complementing the “solo dribbling” is the so-called “backing
up” — the following closely on the teammate with the ball “to assist him, if
required, or to take on the ball in case of him being attacked, or otherwise pre-
vented from continuing his onward course” [4]. It is not surprising that this sim-
ple behaviour was considered a tactical triumph in the 1870s, when the football
sport was often called “the dribbling game” and forward passes were disallowed.
This behaviour can be programmed on the hysteretic level as well, if desired
— by appropriately inhibiting tropistic chase and elaborating (disqualifying)
other competing hysteretic rules like cover zone. However, with teamwork tac-
tics progressing, it becomes inconvenient and computationally expensive to keep
elaborating hysteretic rules. The lessons of emergent behaviour suggest again
that a new concept is required (provided in this case by the agent task state).

One particular instance of tactical behaviour, emerging at the hysteretic level,
is making “defensive blocks” against an opponent dribbling towards the team
goal — one defender chases the ball and tries to kick it away, while another runs
towards some point on the line between the opponent and the goal. Arguably,
making defensive blocks is similar to basic hunting tactics of the Serengeti li-
ons. This tactical behaviour emerges at the hysteretic level when the second
defender (lion) recognises that there is no need to directly attack the opponent
(prey) — more precisely, when agent’s internal state (containing the fact that a
teammate presses the opponent with the ball) resolves to subsume the tropistic
chase. Again, a more efficient implementation of this tactics can be achieved
with appropriate task-orientation, enabling only certain hysteretic rules.

In short, task-orientation makes tactical teamwork more explicit — when
agents’ task states are complimentary, collaboration becomes more coherent.
Importantly, a task does not fix agent behaviour, but rather constrains it within
a set of relevant behaviour instantiations (rules). The task-orientation of the
Serengeti lions would make them less successful hunters of the springbok: al-
though their running and catching skills are probably as good as Etosha lions’
ones, the latter kind packaged the skills tactically differently.
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2.3 Towards Emergence of Domain Models

The Task-Oriented agent is capable of performing certain tactical elements in
real-time by activating only a subset of its behaviour instantiations, and thus
concentrating only on a specified task, possibly with some assistance from other
agent(s). Upon making a new decision, the agent switches to another task. In
general, there is no dependency or continuity between consecutive tasks. This is
quite suitable in dynamic situations requiring a swift reaction. However, in some
cases it is desirable to exhibit a coherent behaviour during longer intervals.

We are currently pursuing several complementary directions potentially lead-
ing to emergence of such a deliberative behaviour (when an agent is engaged in
an activity requiring several tasks).

One direction centers on the notion of process — a set of possible tasks with-
out a precise sequential or tree-like ordering. In other words, process-orientation
is not restricted to be a result of pure deliberation. An appropriate tactical
scheme comprising a few tactical elements may simply suggest for an agent a
possible subset of decisions, leaving some of them optional. For example, a pen-
etration through centre of an opponent penalty area may require from agent(s)
to employ a certain tactics — a certain set of elementary tactical tasks (dummy-
run, wall-pass, short-range dribbling) — and disregard for a while another set
of tasks. It is worth noting that whereas a team’s tactical formation is typically a
static view of responsibilities and relationships, process-orientation is a dynamic
view of how this formation delivers tactical solutions. A Process_Oriented agent
maintains a process state and is able to select an ordered subset of tasks —
tactics — given a particular internal state, sensory inputs, current task and
engaged process. Ideally, a Process-Oriented agent should be capable of con-
solidating related tasks into coherent processes.

Another promising direction towards deliberation introduces a domain model
into the architecture. The idea of having a “world model” directly represented
in the architecture is intuitively very appealing. However, we believe that “world
model” should grow incrementally instead of being inserted and glued to other
elements. In other words, our preference is to observe and analyse examples
of emergent behaviours which potentially make use of the domain model. At
the moment, Cyberoos2000 agents do not use world models and inter-agent
communication, relying entirely on deep reactive behaviour and emergent tactics.

3 Evaluating Architecture Scale-ability

In order to comprehensively evaluate an intelligent agent architecture, it is desir-
able to compare produced behaviours under different circumstances, and in var-
ious domains. While RoboCup Simulation creates quite a challenging synthetic
soccer world, current research may still be subject to a potential methodological
bias. It is conceivable that designers introduce results of their own understanding
of the domain directly into the agent architecture. Consequently, it may become
rather unclear how a given architecture would scale to a reasonably different
domain.
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To alleviate this situation, we introduce here an extension of the RoboCup
Synthetic Soccer, called a Clircular Soccer. This variant is very similar in terms
of rules to the one currently in use in the RoboCup Simulation League, with some
exceptions: the number of teams competing in a single match may be greater than
2, and the stadium field is circular rather than rectangular (Figure 1 depicts the
case of three teams). Other differences include a modified implementation of the
off-side rules, and corner kicks. Another sub-variant, a Closed Clircular Soccer,
simulates the field boundary as a solid circular wall, based on elastic wall-ball
collisions.

In our view, the Circular Soccer may provide a domain, where scale-ability
of agent behaviours and tactical teamwork can be verified. Ideally, a team of
intelligent agents should be capable of adapting to the Circular Soccer world,
with minimal design modifications. We would argue that allowed alterations
on situated level may include, for example, visual information parsing routines
and triangulation algorithm(s). Tactical scale-ability can be really tested by
an amount of changes required to make a team operational, and ultimately
successful. Arguably, if no tactical behaviour emerges after the deployment in
the new world, the architecture fails to deliver the required flexibility. Of course,
we do not intend to restrict any modifications. However, the main question
translates into how easy it is to re-combine tactical behaviour instantiations in
order to achieve coherent tactics.

)
= soccernonitor =5

|Tean_L: 0 before_kick_off Tiwe

Fig. 1. Circular Soccer: a three teams case

Moreover, the Circular Soccer world provides a very interesting platform for
testing strategic behaviour with a game-theoretic flavour. Even three competing
teams, for example, bring cooperation and competition to a higher level. Let us
assume the following simple zero-sum score assignment mechanism for the teams
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A, B and C. If the team A scores against B, then the score of A is incremented
by 1 and the score of B is decremented by 1, while the score of C' is unchanged.
At the end, teams are ranked by a single-number score, and the winner is the
team with the most positive score (a team-to-team score is important only as
a tie-breaker). For example, after a game where A scored once against B and
once against C, and C scored four times against B, the overall score would be
A: 42, B:—-5and C: +3. The team C is the winner, despite losing to A in a
team-to-team contest.

Strategic behaviour becomes evident when players of one team, let us say
team A, reason about cooperating with other team against the third. For ex-
ample, in the beginning of the example match it made no difference if team A
cooperated in attack with team C against B. However, at the end, team A should
have cooperated in defense with team B, trying to prevent C' from scoring the
winning fourth goal.

In short, the Circular Soccer world extends the RoboCup Simulation to-
wards strategic game-theoretic issues, and provides a basis for an architecture
scale-ability evaluation. Moreover, it brings us closer to the idea of meta-game
simulation in RoboCup domain. Meta-game programming is, in general, a task
of writing a program that plays a game of a certain domain class, provided only
with the rules of a game [10]. Rather than designing programs to play an existing
game known in advance, the meta-game approach suggests to design programs
to play new games, from a well-defined class, taking as input only the rules of
the games. As only the class of games is known in advance, a degree of design-
ers bias is eliminated, and meta-game playing programs are required to perform
game-specific optimisations without designers assistance [10].

The concept of meta-game simulation sounds very appealing to us, as it
makes the architecture scale-ability evaluation almost explicit. Put simply, a
single-game behaviour will perform more strongly if it is well-tuned to the game,
while a meta-game behaviour will be stronger if it is based on a more scalable
architecture.

4 Conclusions

In this paper we attempted to illustrate emergence of new behavioural patterns
as a good indication for inclusion of new elements in our agent architecture.
This tendency has been observed while moving from Clockwork to Tropistic to
Hysteretic to T'ask-Oriented to Process-Oriented agents.

We maintain that a complexity of an agent architecture is relative: for any
elaborate agent type, it is possible to define more concisely another agent type
with the same external behaviour. Hence, an agent has an embedded choice as
to which one of related hierarchical levels should assume control to better suit
external environment. If successful, such interchangeability among levels offers
useful (and potentially vital) duplication and deep functional flexibility. In sum-
mary, the “middle-out” layer is required between any two levels of an intelligent
agent architecture — and animals (including humans) seem to maintain an ex-
pertise and abilities providing just that. Given a formal framework (such as
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DBP), we can attempt to logically prove that two agent types produce identi-
cal emergent behaviour — i.e., the interchangeability can be proven correct in
terms of external dynamics. Therefore, rather than searching for a mysterious
hub connecting “reactive behaviour” and “cognitive skills”, we should identify
and study dialectic relations between emergent behaviour and elements of agent
architectures. This might allow us to link architecture design and behavioural
programming in a more systematic, concise and predictable way.
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