PaSo-Team 2000

Carlo Ferrari, Francesco Garelli, Enrico Pagello

Dept. of Electronics and Informatics, The University of Padua, Italy

1 Introduction

Following the experience done in previous competitions, it has been developed
the 2000 version of PaSo-Team (The University of PAdua Simulated Robot SOc-
cer Team), a reviewed release of Paso-Team99. During the RoboCup 99 com-
petition in Stockholm some teams suffered syncronization problems with the
soccer server: these problems greatly influenced their performances and pre-
vented them from playing successfully. While developing PaSo-Team 2000 the
main efforts were dedicated to better understanding timing and syncronization
techniques for real-time multi-agent systems. Following the interesting experi-
ence done by Kostiadis in developing the Essex Wizzard team [1] we redesigned
the syncronization procedures using the multi-threading paradigm. Solving syn-
cronization in a multi-threading environment gives important theoretical hints
to approch the coordination for those multi-agent systems made by thousand of
very simple concurrent interacting modules. During the Stockholm competition
PaSo-Team99 suffered another major problem regarding the actions a player
must take when the game is stopped (i.e. when the ball is outside or when a
team is offside). For example if a player has to throw-in the ball, he must go
outside the field, turn toward the field and eventually kick the ball, performing
different actions even if the state of the game doesn’t change. As in a reactive ar-
chitecture the current behaviour can change only when the game state changes,
PaSo-Team99 introduced virtual states to ensure a change of behaviour. Instead
in PaSo-Team 2000 we simplify the design of these actions introducing multi-step
behaviours.

2 Team Development

Team Leader: Enrico Pagello *# (Associate Professor of Computer Science)
Team Members:

— Carlo Ferrari * (assistant professor of Computer Science)
— Francesco Garelli * (graduate student)

— Stefano Carpin * (graduate student)

— Andrea Sivieri * (undergraduate student)

Web page http://www.dei.unipd.it/ "robocup

* Dept. of Electronics and Informatics, The University of Padua, via Gradenigo
6a, 35131 Padua, Italy

Ladseb-Cnr, C.so Stati Uniti 4, 35100 Padua, Italy.

E mail: {epv, carlo, garelli, shamano, tigre, gremlin, avatar, keter } @dei.unipd.it

P. Stone, T. Balch, and G. Kraetzschmar (Eds.): RoboCup 2000, LNAI 2019, pp. 429-432, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

430 Carlo Ferrari et al.

3 Software architectures

PaSo-Team 2000 was developed using the Linux Operating System with the
GNU C++ compiler. The used library was the standard GNU libc with Posix
PThread Extensions; we didn’t use other libraries like libsclient.

Listener Thinker Talker

J@

Baction

Sensebody

Fig. 1. Threads coordination in PaSo-Team 2000

PaSo-Team 2000 is based on three different concurrent threads:

— Listener: it gets the information from the soccer server and it manages the
client timing and syncronization.

— Thinker: it updates the player’s internal memory and it executes the suitable
behaviour for the current simulation step.

— Talker: it manages the queue of the messages to be sent to the server .

The coordination between the threads follows the rules represented in Figure 1.
The listener can be activacted either by the sensebody signal received from the
server or by a timeout signal. The timeout signal assures a correct activation
even if the sensebody signal was lost for an excessive load of the server (or
the net); of course the timeout is dinamically computed considering the average
delay between the last received sensebodies. Althought it is not represented
in the figure, the listener module either can delay its activation to wait for a
seeinfo message or it can be activated by a message which is not a sensebody.
When the listener is activated it empties the socket queue and it re-arranges
the possible messages received from the server. Finally it sends a activation
signal to the thinker. When the thinker received the activation signal from the
listener it updates the player’s memory, i.e. the internal representation of the
environment, and it sends messages for the server to the talker thread. The
talker thread forwards the messages to the soccer server assuring a minimum
time gap between them.

PaSo-Team 2000 431
4 The world model

Like PaSo-Team99, PaSo-Team 2000 uses Synthetic Visual Maps (SVMs) for
motion control [5] . SVM are a concise representation of the free space around
the player. The SVM maps each movement direction of the player with a boolean
value that says whether that direction is free or prohibited. The SVM can be
seen as a polar representation of the free space in a proper disk centered in the
player. This representation can be easily updated at each sensing cycle, in order
to consider new game elements that become important, either because they are
moving towards the player or because the player itself is moving towards them.

5 Communication

During the 1999 competition it was clear that our team had reduced sensors
information. The soccer server sends to the robocup clients only a partial knowl-
edge about the environment around: in particular the server supplies information
about the objects inside a 90° view only. The robocup simulation league is an
environment where clients can’t arbitrate their behaviours in a deterministic
fashion: they can’t choice the optimal behaviour in every situation because their
representation of the current state of the server is not complete. Anyway the
players can improve their knowlegde of the environment and therefore their ar-
bitration function sharing their partial information. Infact the soccer server pro-
vides the command say by which a singular player can broadcast a message to
their mates every simulation step. In Paso-Team 2000 we introduced a communi-
cation layer between the agents just to insure a better world model construction;
we did not use the say command to coordinate the clients although. We con-
firmed the idea of not realizing any coordination via explicit communication at
behaviour level: the communication layer involves only the representation of the
environment and it doesn’t affect the selection of current bevaviours. The com-
munication layer uses a token-based protocol because the soccer server doesn’t
allow many players to send messages concurrently. At every simulation step only
one player, the owner of the token, can broadcast messages to their mates; we
called this player observer. The observer should be the player who owns the best
information about the environment for the current game situation. Hence the
observer should have good information about the objects around the ball (where
the game is) but he should not be involved in the current action because he has
not to be the ball owner. Moreover during the match the observer changes be-
cause the relative position of the players change; at every step the choice of the
next observer should be done by the player with the best knowledge of the server
state, i.e. the current observer. According to these requirements we developed
a protocol to distribute the knowledge between the clients: at every step the
observer send to the mates his representation of the environment and the next
observer id-number. When every client receives the message he integrates his rep-
resentation with the observer’s one and if required he becomes the new observer.
Unluckly this protocol is not robust enough in the Robocup environment where

432 Carlo Ferrari et al.

the delivery of the packets is not assured. Infact because of network problems
the observer’s token can be lost. To overcoming this problem we introduced in
the communication layer a monitor module. Every player checks periodically if
an active observer is present in the team; if the check fails he starts a procedure
to elect a new observer.

6 Skills

In PaSo-Team 2000 we introduced multi-step behaviours. Multi-step behaviours
are complex actions which can be completed in many simulation steps: they
proved to be very effective in stopped game situations (throw-in, catch...). A
multi-step behaviour can be aborted when a critical event (like either the lost of
the ball or an offside) happens by throwing a C++ exceptions.

7 Conclusions

In the PaSo-Team’99 project we experimentally investigate how much the reac-
tion schema for intelligent agents team must be integrated with some kind of high
level reasoning. In PaSo-Team 2000 the major emphasis was on syncronization
issues that were solved introducing multi-threading. The overall software archi-
tecture was redesigned and some kind of explicit communication was introduced
to enhance the accuracy of the world representation procedures.

Acknowledgements

This research work could not be done without the enthusiastic participation of
the students of Electronics and Computer Engineering Undergraduate Division
of Padua University Engineering School. Financial support has been provided
by both CNR, under the Special Research Project on ”Real-Time Computing
for Real-World” and MURST, under the 60% and 40% Grants.

References

[1] Kostiadis K. and Hu H., “A Multi-threaded Approach to Simulated Soccer Agents
for the RoboCup Competition” In Veloso M., Pagello E. and Kitano H.; editors,
RoboCup-99: Robot Soccer World Cup III. Springer Verlag. Berlin, 2000.

[2] H-D. Burkhard, M. Hannebauer, J.Wendler, ” Belief-Desire-Intention Deliberation
in Artificial Soccer”, AI Magazine, Fall 1998.

[3] E. Pagello, A. D’Angelo, F. Montesello, F. Garelli, C. Ferrari, ” Cooperative be-
haviors in multi-robot systems through implicit communication”. Robotics and Au-
tonomous Systems, 29 (1999), 65-77

[4] P.Stone,”Layered Learning in Multi-Agent Systems”, Ph.D. Thesis, School of Com-
puter Science, Carnegie Mellon University, December 1998.

[6] C. Ferrari, F. Garelli, E. Pagello, ”PaSo-Team99” In Veloso M., Pagello E. and
Kitano H., editors, RoboCup-99: Robot Soccer World Cup III. Springer Verlag.
Berlin, 2000.

	Introduction
	Team Development
	Software architectures
	The world model
	Communication
	Skills
	Conclusions
	References

