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Abstract. We describe a method that applies Self-Organizing Maps for
direct clustering of spatio-temporal data. We use the method to evalu-
ate the behavior of RoboCup players. By training the Self-Organizing
Map with player data we have the possibility to identify various clusters
representing typical agent behavior patterns. Thus we can draw certain
conclusions about their tactical behavior, using purely motion data, i.e.
log�le information. In addition, we examine the player-ball interaction
that give information about the players' technical capabilities.

1 Introduction

The goal of our work is to present a method to detect characteristic features
of trajectories. The method is illustrated by analyzing the actions of Robocup
players on a purely behavioral level. Only log�le information and no knowledge
about implementation or inner states of the players is used.

In our analysis we useKohonen's Self-Organizing Map1 (Kohonen, 1989). The
SOM is a data analysis method inspired by the structure of certain cortex types
in the brain. It is able to identify di�erent clusters in high-dimensional data and
to project (\map") the data of the di�erent clusters to a two-dimensional grid
respecting the topology, i.e. the neighborhood structure of the data. By this a
visualization of the data can be easily obtained. The mapping and the visualiza-
tion capability is an advantage of the SOM as compared to standard statistical
methods; in particular, the SOM does not just separate di�erent clusters, but it
also resolves the inner structure of the clusters. Mathematically it is related to
the principal surface models for data distributions known from statistics (Ritter
et al., 1992), though, unlike the SOM, the latter are not designed to handle data
sets decomposing into di�erent clusters.

For a trained SOM, each data point from the high-dimensional space is pro-
jected onto an element of the two-dimensional SOM grid, a SOM unit. Nearby
data points are projected to the same unit or a unit close by in the grid. In turn,
every SOM unit represents a vector in the high-dimensional data space, such
that the SOM can be regarded as an embedding of the two-dimensional SOM
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Fig. 1. SOM of 30 � 30 units trained with SFR-vectors in sector representation (see
Secs. 2 and 2.2 for the de�nition of SFR-vectors and Sec. 3.1 for a description of the
sector representation)

grid into the high-dimensional data space. Fig. 1 gives a general impression of
the form of such an embedding for RoboCup player trajectories.

In this paper, each SOM unit will either represent a trajectory slice (i.e.
a short section of a trajectory) of a single player or a trajectory slice of the
combined motion of player and ball. Before the SOM can do that, it �rst has to
be trained in order to learn to represent a set of given motion slices in an optimal
way. This way we obtain a two-dimensional map of units, each unit encoding
a trajectory slice. The trained map can be employed to classify the individual
trajectory slices or to examine the behavior of a single player in general. One
property of the trained SOM is especially valuable: neighboring units describe
similar paths of motion. With the help of a graphical display it is then possible
to get an overview over the behavior patterns of a single player. The paper will
give an introduction into the SOM algorithm, introduce the representation for
player trajectories and present its application to the analysis of player behavior
in a game from the RoboCup 1999 competition at Stockholm.

2 Self-Organizing Maps and Trajectory Clustering

The problem of storing trajectories with the help of SOMs can be solved in
di�erent ways. One method is to examine the trace of the winning units like the
trace of a elementary particle in a cloud chamber. One would then compare the
order of activated units with some reference order. This method has been used
successfully for example in (Carpinteiro, 1999) to recognize instances of a theme
in a piece of music of J.S. Bach. It also can be used in speech recognition to trace
the order of phonemes (Mehler, 1994; Kangas, 1994). Another way has been used
by Chappell and Taylor (Chappell and Taylor, 1993) who used Leaky Integrator
Units. These units can store the units' activations for a while and therefore are
able to represent temporal information. The method presented in our paper,
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however, directly stores a complete trajectory slice itself in each SOM unit. Here
we use the spatially focused representation (SFR), where we consider a trajectory
as a simple sequence of spatial data: The time intervals are �xed and discrete
and the spatial data are continuous. With the so-called enhanced spatially focused
representation (ESFR) we were able to combine two simultaneous trajectories
(of one player and the ball) and thus examine the player-ball interactions. The
data representation is similar to SFR. We use these methods to examine the
short-term (micro-)behavior of individual RoboCup players.

2.1 The Basic SOM Model

A Self-Organizing Map with m inputs is a set N of units, where every unit i is
assigned a weight vector wi 2 Rm (Kohonen, 1989; Polani and Uthmann, 1992;
Ritter et al., 1992). Furthermore on N there exists a metric dN which de�nes a
distance dN (i; j) for each two units in N . An input (training) signal is a vector
x 2 Rm . The similarity between an input signal x and a unit's weight vector wi

is given by their Euclidean distance k : k. An input signal x is said to activate a
(typically unique) unit i�, for which

k wi� � x k � k wi � x k; 8 i 2 N

holds, i.e. that unit whose weight vector has the smallest Euclidean distance to
the input signal. The training of the map involves three steps:

1. Initialization: the values of the weights wil, l = 1; : : : ;m of every unit i can be
randomly chosen.

2. Stimulus and Response: choose an input vector out of a training set according
to some probability distribution and detect the activated (winning) unit i�.

3. Adaption: modify the weights wi of all the units in a certain N -neighborhood of
the winning unit i� towards the winning unit i�. The degree of the N -neighborhood
is determined by the distance function (metric) dN .

Steps 2 and 3 are repeated arbitrarily often. Formally, the learning rule for the
adaption of the weights of a unit i at iteration t is given by:

�wi(t) := �(t) � ht(i
�; j)

�
x(t) �wi(t)

�
(1)

x(t) the training input at iteration t

i� = i�(x(t)) the winning unit at iteration t

�(t) the learning rate at iteration t. The learning rate is a
monotonously decreasing function with 0 < �(t) < 1.

ht the activation pro�le at iteration t. Unit weights close to
the winning unit i� are more attracted to the the winning
unit i�. An example for h is found in Eq. (2) (Sec. 3.1).

The weights of units are then changed according to wi(t + 1) := wi(t) +
�wi(t). If the units in N are now arranged as a two-dimensional lattice, above
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Fig. 2. Weight vector in sector representation
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Fig. 3. SOM activations for SFR-vectors

algorithm generates a projection of the high-dimensional input space to the two-
dimensional lattice. As neighboring units of a trained SOM represent similar
weights, it is possible to identify clusters representing similar data. In Fig. 1 the
similarity has been made visible by a direct plot of the units' weights2. It can be
seen that units with similar weights form certain areas (Kohonen, 1989). If the
trained SOM is then fed with data, the frequency of the units' activations can
help to draw conclusions about the examined data set.

In Figs. 3(a) and 3(b) a dot is plotted for every activation of a unit. Since
the same unit may be activated multiple times, the dot positions are slightly
perturbed for each activation event to obtain a visualization of the activation
frequencies (\importance") of a certain region in the unit lattice.

2.2 Spatially Focused Representation (SFR)

The training input (a trajectory) is given as a sequence of � di�erence ("velo-
city") vectors u. Every di�erence vector is calculated from two successive position

2 Sector representation is used as shown in Fig. 2 and described in detail in Sec. 3.1.
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vectors p of a RoboCup player:

p = (pt)t=t0�t0;t0=�;::: ;0; p 2 R
2

u = (ut)t=t0�t0;t0=��1;::: ;0

ut = pt � pt�1

In our experiments we use the sequence length � = 5. A training input x(t) at
simulation time step t = t0 is then given by

x(t = t0) = (ut0�4;ut0�3;ut0�2;ut0�1;ut0�0)
T

=

(pt0�4 � pt0�5;

pt0�3 � pt0�4;

pt0�2 � pt0�3;

pt0�1 � pt0�2;

pt0�0 � pt0�1)
T

We call such a vector a SFR-vector . This method has already been introduced
in (Boll, 1999; W�unstel et al., 1999).

2.3 Enhanced Spatially Focused Representation (ESFR)

Whereas in the SFR a training input vector is built exclusively by the di�erence
vectors u of a RoboCup player, here ball-ball and player-ball di�erence vectors
are used. Thus the trajectory slices of the player and the ball are completely
described save a possible translation about the origin. The starting point of a
trajectory is the player-ball di�erence vector at time step t followed by pairs of
ball-ball and player-ball di�erence vectors of the next time steps:

pball = (pballt )t=t0�t0;t0=��1;::: ;0; pball 2 R
2

pplayer = (pplayert)t=t0�t0;t0=��1;::: ;0; pplayer 2 R
2

uball = (uballt )t=t0�t0;t0=��2;::: ;0

uballt = pballt � pballt�1

uplayer = (uplayert)t=t0�t0;t0=��1;::: ;0

uplayert = pplayert � pballt

The training input x(t) at time step t = t0 is given by3

x(t = t0) =

0
BBBBBBBBBBBB@

uplayert0��+1

uballt0��+2

uplayert0��+2

...
uballt0�1

uplayert0�1

uballt0
uplayert0

1
CCCCCCCCCCCCA

=

0
BBBBBBBBBBBB@

pplayert0��+1
� pballt0��+1

pballt0��+2
� pballt0��+1

pplayert0��+2
� pballt0��+2

...
pballt0�1

� pballt0�2

pplayert0�1
� pballt0�1

pballt0 � pballt0�1

pplayert0
� pballt0

1
CCCCCCCCCCCCA

3 Note that there is always one more player-ball entry than ball-ball entry.
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We call such a vector an ESFR-vector.

Example 1. With T = 49, � = 4 we have:

pplayer46 = (18; 5)T pball46 = (22; 7)T

pplayer47 = (25; 7)T pball47 = (34; 11)T

pplayer48 = (37; 7)T pball48 = (41; 12)T

pplayer49 = (40; 7)T pball49 = (46; 11)T

uplayer46 = (�4;�2)T

uplayer47 = (�9;�4)T uball47 = (12; 4)T

uplayer48 = (�4;�5)T uball48 = (7; 1)T

uplayer49 = (�6;�4)T uball49 = (5;�1)T

x(t = 49) = (�4;�2; 12; 4;�9;�4; 7; 1;�4;�5; 5;�1;�6;�4)T

3 Experiments and Results

In our experiments we test the SFR method with the isolated data of two op-
posing RoboCup players. We choose two o�ensive players with approximately
equivalent roles from the game Carnegie Mellon United (CMU) versus Mainz
Rolling Brains (MRB) at the RoboCup WorldCup 1999 in Stockholm (simu-
lation league): CMU left wing forward player 11 and MRB left wing forward
player 7. For the experiment with the ESFR method we use ESFR-vectors of
all players of the same game. Only those ESFR-vectors were used whose player-
ball distance vector value at the beginning of the trajectory is smaller than 30
simulator units, since we are only interested in player behavior related to the
ball.

In this procedure, the SOM solves the task of organizing the data in a way
suitable to projection to 2-dimensional space. This representation has then to
be \interpreted", that is, to be translated into a human-readable notion. The
units belonging to the di�erent clusters have to be identi�ed; this step can be
done in a semi-automated fashion based on distances of unit weight vectors
(Boll, 1999), which can not be described here due to space limitations. The
di�erent clusters were then tagged by human inspection. This processing step
was not automated since that would have require a linguistic concept for the of
treatment of geometric notions outside the scope of our work.

Here it is important to emphasize the following point: in principle all possible
movement classes could have been enumerated and the vectors falling into those
classes according to some suitable criterion could have been counted instead of
using the SOM. However, the SOM is able to detect clusters that do not belong to
a clear-cut linguistic category, and, in addition, it does not introduce unnecessary
classes. Above that, for every class, the SOM maps the data variability to areas
on the grid instead of just breaking down the data to a number of events of a
certain class.

113Behavior Classification with Self-Organizing Maps      



Fig. 4. Player trajectories reconstructed from a weight vector

3.1 Spatially Focused Representation

The SOM consists of a lattice of 30�30 units. The distance between two units
i; j is given by their Euclidean distance, i.e.

dN (i; j) =k i� j k2 ,

where i; j are the position vectors of unit i and j in the lattice4.
The activation pro�le ht (see Eq. (1)) is a cone function, i.e.

ht(i; j) =

(
1�

ki�jk
2

rh(t)
if k i� j k2< rh(t)

0 else
: (2)

The activation radius rh is given by: rh(t) = 40 (1�0:0006)t, with the constraint
that rh(t) � 1:7.
The learning rate �(t) is given by �(t) = 0:65 (1 � 0:001)t, with the constraint
that �(t) � 0:15. After the SOM is trained with the SFR-vectors of both players,
the weight vector of every unit represents one SFR-vector which describes a
trajectory slice. We use the sequence length � = 5. Shorter sequences do not
provide enough structure to distinguish interesting separate behaviors, and in
longer sequences several micro-behaviors tend to be combined into sequences
that lead to unnecessary multiplication of classes.

In Fig. 1 the weight vectors of the units after the training are plotted as
groups of sectors. Every weight vector is represented by 10 sectors (see Fig. 2),
one sector for every component of the unit's weight vector. The radius of each
sector represents the value of that component, negative values are marked by a
black component, showing the self-organization of the SOM clusters.

4 Note that the metric here is taken on the two-dimensional grid space which is distinct
from that of the vectors w from Sec. 2.1.
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In Fig. 4 the trajectory slices for two di�erent example weight vectors are
shown. The beginning of a trajectory is placed in the origin. A trajectory is hence
the translation of a part of the corresponding movement of a RoboCup player to
the origin. The dots represent the player position at successive simulator time
steps.

In the next step the di�erent behavior of the players will be examined. There-
fore the SOM gets activated with all the SFR-vectors of one of the players. Every
activation of a unit is plotted as a dot. It is slightly perturbed for easier iden-
ti�cation of multiple unit activations. This procedure is repeated for the other
player. The Figs. 3(a) and 3(b) show the resulting SOM activations. After the
SOM clusters and maps the input data, the tagging of the clusters (as translation
into human-understandable notions) has to be done by a human.

If one compares the activation zones with trajectories like in Fig. 4 one can
draw some player speci�c conclusions: a large part of the forward movements
(zones II, V, VI) of the CMU player are of intermediate speed (zone II). His
sideways movements (zones I & III) are also carried out mainly at intermediate
speed. The back movements hardly took place. This can be explained with the
superiority of CMU.

The forward movements of MRB player are carried out slowly (zone V) or
rapidly (zone VI). Sideways movements are rare (only few activations in the
zones I & III). A large part of the right sideways movements are fast (zone VII).
Back movements here are frequently happening (zone IV). This can either be
explained again with the superiority of CMU or with a reduced action radius (as
the MRB team plays with 5 o�ensive players in a row) which let him go back to
a waiting position. While the SOM extracted all above information from purely
behavioral (i.e. log�le) data, inspection of the agent code con�rms that many of
the found behavior patterns are indeed implemented in the agent. Our trajectory
analysis therefore provides a possibility to reconstruct behavior patterns without
knowing implementation details. In addition, it provides a possibility to detect
behavior patterns not explicitly implemented but emerging from the collective
agent dynamics.

3.2 Enhanced Spatially Focused Representation

The SOM again consists of a lattice of 30�30 units. The distance between two
units i; j is given by their Euclidean distance in the lattice. The activation pro�le
is a cone function (Eq. (2)) where the activation radius rh is given by rh(t) =
40 (1�0:00005)t, with the constraint that rh(t) � 1:7. The learning rate is given
by �(t) = 0:35 (1� 0:00005)t, with the constraint that �(t) � 0:07. The SOM is
trained for 100; 000 iterations with the ESFR-vectors from the same RoboCup
match as before. In Fig. 5 the weight vectors of the units after the training
are plotted again as groups of sectors. Every weight vector is represented by 14
sectors, one sector for every component of the unit's weight vector. The radius of
each sector again represents the value of that component. In Fig. 6 two example
trajectories of two weight vectors are presented. The sequence length is � = 4.
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Fig. 5. SOM of 30� 30 Units trained with ESFR-vectors

(a) Ball is dribbled (b) Ball is passed

Fig. 6. Player-ball trajectories reconstructed from a SOM weight vector. Note that the
ball and not the player is initially placed in the origin. The player is denoted by dark
grey, the ball by light grey dots. Player and ball positions corresponding to the same
simulator time step are connected by a line.

To examine the technical capabilities of the teams, the trained SOM is ac-
tivated with the activation vectors of the teams. Every activation of a unit is
again plotted as a dot. Figs. 7(a) and 7(b) show the activation distributions.
Inspection of Fig. 5 and of player-ball trajectories like in Fig. 6 allows again to
to draw some conclusions about the players' capabilities:

The trajectory analysis shows very explicitly that the CMU team has much
more ball contacts than the MRB team. We distinguish between the techniques
dribbling, passes and \near-ball" game. Dribbling trajectories can be identi�ed
whenever player and ball are in phase and the distance between ball and player is
only few units. In pass trajectories the player only slightly changes his position
and the ball leaves the player rapidly. Near-ball game consists of trajectories
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Fig. 7. SOM activations for ESFR-vectors

where the player changes his position for only few units and the ball remains
close to the player.

If we examine the dribbling zones (zone VI, VII & VIII) we recognize that
CMU controls dribbling in a extraordinary way (zone VI). In contrast to that
MRB dribbling occurs seldom and is of lower quality (zones VII and VIII). The
activation frequency for the two players di�ers in zones representing passes (pass
right: zone I, pass forward: zone II, pass back: zone III & pass back: zone IV) are
examined. The near-ball game (zone V) of CMU is more evenly distributed, at
MRB it is more focused on certain patterns.

4 Conclusion and Outlook

The paper introduced and examined the use of SOMs for the examination of the
micro-behavior and motion of individual RoboCup players. As opposed to other
SOM trajectory analysis methods, in our method each SOM unit encodes not
just single states of a trajectory slice, but a complete trajectory slice instead.

Requiring only behavioral (i.e. log�le) data, the method proved very useful
to identify short-term behavior patterns explicitly implemented in the agents or
emerging during the game. The method shown is easily generalizable to tasks
outside of RoboCup or collective agent systems. Its potential covers a wide se-
lection of applications, whereever time-dependent patterns have to be analyzed.
In the future, we plan to extend the approach to the analysis of more complex
RoboCup scenarios and to other collective agent systems. Further we wish to
investigate the potential of the method to uncover causal dependencies between
behavior patterns.
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