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Abstract. We propose a method to determine the critical noise level for
decoding Gallager type low density parity check error correcting codes.
The method is based on the magnetization enumerator (M), rather than
on the weight enumerator (W) presented recently in the information
theory literature. The interpretation of our method is appealingly simple,
and the relation between the different decoding schemes such as typical
pairs decoding, MAP, and finite temperature decoding (MPM) becomes
clear. Our results are more optimistic than those derived via the methods
of information theory and are in excellent agreement with recent results
from another statistical physics approach.

1 Introduction

Triggered by active investigations on error correcting codes in both of informa-
tion theory (IT) [1,2,3] and statistical physics (SP) [4,5] communities, there is a
growing interest in the relationship between IT and SP. As the two communities
investigate similar problems, one may expect that standard techniques known
in one framework would bring about new developments in the other, and vice
versa. Here we present a direct SP method to determine the critical noise level
for Gallager type low density parity check codes which allows us to focus on the
differences between the various decoding criteria and their approach for defin-
ing the critical noise level for which decoding, using Low Density Parity Check
(LDPC) codes, is theoretically feasible.

2 Gallager code

In a general scenario, the N dimensional Boolean message so ∈ {0, 1}N is en-
coded to the M(> N) dimensional Boolean vector to, and transmitted via a
noisy channel, which is taken here to be a Binary Symmetric Channel (BSC)
characterized by an independent flip probability p per bit; other transmission
channels may also be examined within a similar framework. At the other end of
the channel, the corrupted codeword is decoded utilizing the structured code-
word redundancy.
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The error correcting code that we focus on here is Gallager’s linear code [6].
Gallager’s code is a low density parity check code defined by the a binary (M−
N)×M matrix A = [C1|C2], concatenating two very sparse matrices known to
both sender and receiver, with the (M−N)×(M−N) matrix C2 being invertible.
The matrix A has K non-zero elements per row and C per column, and the
code rate is given by R=1−C/K=1−N/M . Encoding refers to multiplying the
original message so with the (M×N) matrix GT (where G=[ N |C−1

2 ]), yielding
the transmitted vector to. Note that all operations are carried out in (mod 2)
arithmetic. Upon sending to through the binary symmetric channel (BSC) with
noise level p, the vector r = to+no is received, where no is the true noise.

Decoding is carried out by multiplying r by A to produce the syndrome
vector z =Ar (= Ano, since AGT = 0). In order to reconstruct the original
message so, one has to obtain an estimate n for the true noise no. First we select
all n that satisfy the parity checks An = Ano:

Ipc(A,no) ≡ {n | An = z}, and Ir
pc(A,no) ≡ {n ∈ Ipc(A,no)|n 6= no}, (1)

the (restricted) parity check set. Any general decoding scheme then consists
of selecting a vector n∗ from Ipc(A,no) on the basis of some noise statistics
criterion. Upon successful decoding n0 will be selected, while a decoding error
is declared when a vector n∗ ∈ Ir

pc(A,no) is selected. An measure for the error
probability is usually defined in the information theory literature [7] as

Pe(p) =
〈

∆
(

∃ n ∈ Ir
pc(A,no) : w(n) ≤ w(no) | no

) 〉

A,no , (2)

where ∆(·) is an indicator function returning 1 if there exists a vector n ∈
Ir
pc(A,no) with lower weight than that of the given noise vector no. The weight

of a vector is the average sum of its components w(n) ≡ 1
M

∑M
j=1 nj. To obtain

the error probability, one averages the indicator function over all no vectors
drawn from some distribution and the code ensemble A as denoted by 〈.〉

A,no .
Carrying out averages over the indicator function is difficult, and the error

probability (2) is therefore upper-bounded by averaging over the number of vec-
tors n obeying the weight condition w(n) ≥ w(no). Alternatively, one can find
the average number of vectors with a given weight value w from which one can
construct a complete weight distribution of noise vectors n in Ir

pc(A,no). From
this distribution one can, in principle, calculate a bound for Pe and derive critical
noise values above which successful decoding cannot be carried out.

A natural and direct measure for the average number of states is the entropy
of a system under the restrictions described above, that can be calculated via
the methods of statistical physics.

It was previously shown (see e.g. [4] for technical details) that this prob-
lem can be cast into a statistical mechanics formulation, by replacing the field
({0, 1},+mod(2)) by ({1,−1},×), and by adapting the parity checks correspond-
ingly. The statistics of a noise vector n is now described by its magnetization
m(n) ≡ 1

M

∑M
j=1 nj , (m(n) ∈ [1,−1]), which is inversely linked to the vector

weight in the [0, 1] representation. With this in mind, we introduce the con-
ditioned magnetization enumerator, for a given code and noise, measuring the



noise vector magnetization distribution in Ir
pc(A,no)

MA,no(m) ≡
1

M
ln

[

Tr
n∈Ir

pc(A,no)
δ(m(n)−m)

]

. (3)

To obtain the magnetization enumerator M(m)

M(m) =
〈

MA,no(m)
〉

A,no
, (4)

which is the entropy of the noise vectors in Ir
pc(A,n0) with a givenm, one carries

out uniform explicit averages over all codes A with given parameters K,C, and
weighted average over all possible noise vectors generated by the BSC, i.e.,

P (no) =
M
∏

j=1

(

(1−p) δ(no
j−1) + p δ(no

j+1)
)

. (5)

It is important to note that, in calculating the entropy, the average quantity
of interest is the magnetization enumerator rather than the actual number of
states. For physicists, this is the natural way to carry out the averages due to
three main reasons: a) The entropy obtained in this way is believed to be self-

averaging, i.e., its average value (over the disorder) coincides with its typical

value. b) This quantity is extensive and grows linearly with the system size. c)
This averaging distinguishes between annealed variables that are averaged or
summed for a given set of quenched variables, that are averaged over later on.
In this particular case, summation over all n vectors is carried for a fixed choice
of code A and noise vector no; averages over these variables are carried out at
the next level.

One should point out that in somewhat similar calculations, we showed that
this method of carrying out the averages provides more accurate results in com-
parison to averaging over both sets of variables simultaneously [8].

A positive magnetization enumerator, M(m)> 0 indicates that there is an
exponential number of solutions (in M) with magnetization m, for typically
chosen A and no, while M(m) → 0 indicates that this number vanishes as
M→∞ (note that negative entropy is unphysical in discrete systems).

Another important indicator for successful decoding is the overlap ω be-
tween the selected estimate n∗, and the true noise no: ω(n,no) ≡ 1

M

∑M
j=1 njn

o
j ,

(ω(n,no) ∈ [−1, 1]), with ω = 1 for successful (perfect) decoding. However, this
quantity cannot be used for decoding as no is unknown to the receiver. The
(code and noise dependent) overlap enumerator is now defined as:

WA,no(ω) ≡
1

M
ln

[

Tr
n∈Ir

pc(A,no)
δ(ω(n,no)−ω)

]

, (6)

and the average quantity being

W(ω) =
〈

WA,no(ω)
〉

A,no
. (7)



This measure is directly linked to the weight enumerator [3]), although according
to our notation, averages are carried out distinguishing between annealed and
quenched variables unlike the common definition in the IT literature. However,
as we will show below, the two types of averages provide identical results in this

particular case.

3 The statistical physics approach

Quantities of the type Q(c) = 〈Qy(c)〉y, with Qy(c) =
1
M ln [Zy(c)] and Zy(c) ≡

Trx δ(c(x, y)−Mc), are very common in the SP of disordered systems; the macro-
scopic order parameter c(x, y) is fixed to a specific value and may depend both on
the disorder y and on the microscopic variables x. Although we will not prove this
here, such a quantity is generally believed to be self-averaging in the large system
limit, i.e., obeying a probability distribution P (Qy(c)) = δ(Qy(c)−Q(c))). The
direct calculation ofQ(c) is known as a quenched average over the disorder, but is
typically hard to carry out and requires using the replica method [9]. The replica
method makes use of the identity 〈lnZ〉 = 〈 limn→0[Z

n−1]/n 〉, by calculating
averages over a product of partition function replicas. Employing assumptions
about replica symmetries and analytically continuing the variable n to zero, one
obtains solutions which enable one to determine the state of the system.

To simplify the calculation, one often employs the so-called annealed approxi-
mation, which consists of performing an average over Qy(c) first, followed by the
logarithm operation. This avoids the replica method and provides (through the
convexity of the logarithm function) an upper bound to the quenched quantity:

Qa(c) ≡
1

M
ln[〈Zy(c)〉y] ≥ Qq(c) ≡

1

M
〈ln[Zy(c)]〉y = lim

n→0

〈

Zn
y (c)

〉

y
−1

nM
. (8)

The full technical details of the calculation will be presented elsewhere, and
those of a very similar calculation can be found in e.g. [4]. It turns out that it
is useful to perform the gauge transformation nj→njn

o
j , such that the averages

over the code A and noise no can be separated, WA,no becomes independent of
no, leading to an equality between the quenched and annealed results, W(m) =
Ma(m)|p=0 = Mq(m)|p=0. For any finite noise value p one should multiply
exp[W(ω)] by the probability that a state obeys all parity checks exp[−K(ω, p)]
given an overlap ω and a noise level p [3]. In calculating W(ω) and Ma/q(m),
the δ-functions fixing m and ω, are enforced by introducing Lagrange multipliers
m̂ and ω̂.

Carrying out the averages explicitly one then employs the saddle point method
to extremize the averaged quantity with respect to the parameters introduced
while carrying out the calculation. These lead, in both quenched and annealed
calculations, to a set of saddle point equations that are solved either analytically
or numerically to obtain the final expression for the averaged quantity (entropy).



The final expressions for the annealed entropy, under both overlap (ω) and
magnetization (m) constraints, are of the form:

Qa = −
C

K

(

ln(2)+(K−1) ln(1+qK1 )
)

+ln

〈

Tr
n=±1

e(nω̂+m̂no)(1+nqK−1
1 )C

〉

no

−ω̂ω − m̂m , (9)

where q1 has to be obtained from the saddle point equation ∂Qa

∂q1
= 0. Similarly,

the final expression in the quenched calculation, employing the simplest replica
symmetry assumption [9], is of the form:

Qq= −C

∫

dxdx̂ π(x)π̂(x̂) ln[1+xx̂]+
C

K

∫

{

K
∏

k=1

dxkπ(xk)

}

ln

[

1

2

(

1+

K
∏

k=1

xk

)]

+

∫

{

C
∏

c=1

dx̂cπ̂(x̂c)

}〈

ln

[

Tr
n=±1

exp(n(ω̂+m̂no))

C
∏

c=1

(1+nx̂c)

]〉

no

−ω̂ω − m̂m . (10)

The probability distributions π(x) and π̂(x̂) emerge from the calculation; the
former represents a probability distribution with respect to the noise vector local
magnetization [10], while the latter relates to a field of conjugate variables which
emerge from the introduction of δ-functions while carrying out the averages (for
details see [4]). Their explicit forms are obtained from the functional saddle

point equations
δQq

δπ(x) ,
δQq

δπ̂(x̂) = 0, and all integrals are from−1 to 1. Enforcing

a δ-function corresponds to taking ω̂, m̂ such that
∂Qa/q

∂ω̂ ,
∂Qa/q

∂m̂ = 0, while not

enforcing it corresponds to putting ω̂, m̂ to 0. Since ω, m follow from
∂Qa/q

∂ω̂ =0,
∂Qa/q

∂m̂ =0, all the relevant quantities can be recovered with appropriate choices
of ω̂, m̂.

4 Qualitative picture

We now discuss the qualitative behaviour of M(m), and the interpretation of
the various decoding schemes. To obtain separate results for M(m) and W(m)
we calculate the results of Eqs.(9) and (10), corresponding to the annealed and
quenched cases respectively, setting ω̂ = 0 for obtaining M(m) and m̂ = 0
for obtaining W(ω) (that becomes W(m) after gauging). In Fig. 1, we have
qualitatively plotted the resulting function M(m) for relevant values of p. M(m)
(solid line) only takes positive values in the interval [m−(p),m+(p)]; for even K,
M(m) is an even function of m and m−(p) =−m+(p). The maximum value of
M(m) is always (1−R) ln(2). The true noise no has (with probability 1) the
typical magnetization of the BSC: m(no)=m0(p)=1−2p (dashed-dotted line).

The various decoding schemes can be summarized as follows:

– Maximum likelihood (MAP) decoding - minimizes the block error

probability [11] and consists of selecting the n from Ipc(A,n0) with the



highest magnetization. Since the probability of error below m+(p) vanishes,
P (∃n ∈ Ir

pc : m(n) > m+(p)) = 0, and since P (m(no) = m0(p)) = 1, the
critical noise level pc is determined by the condition m+(pc) =m0(pc). The
selection process is explained in Fig.1(a)-(c).

– Typical pairs decoding - is based on randomly selecting a n from Ipc
with m(n) = m0(p) [3]; an error is declared when n0 is not the only element
of Ipc. For the same reason as above, the critical noise level pc is determined
by the condition m+(pc)=m0(pc).

– Finite temperature (MPM) decoding - An energy −Fm(n) (with F =
1
2 ln(

1−p
p )) according to Nishimori’s condition1 is attributed to each n ∈ Ipc,

and a solution is chosen from those with the magnetization that minimizes
the free energy [4]. This procedure is known to minimize the bit error proba-
bility [11]. Using the thermodynamic relation F = U− 1

βS, β being the inverse

temperature (Nishimori’s condition corresponds to setting β = 1), the free
energy of the sub-optimal solutions is given by F(m)=−Fm− 1

βM(m) (for

M(m)≥ 0), while that of the correct solution is given by −Fm0(p) (its en-
tropy being 0). The selection process is explained graphically in Fig.1(a)-(c).
The free energy differences between sub-optimal solutions relative to that of
the correct solution in the current plots, are given by the orthogonal distance
between M(m) and the line with slope −βF through the point (m0(p), 0).
Solutions with a magnetization m for which M(m) lies above this line, have
a lower free energy, while those for which M(m) lies below, have a higher
free energy. Since negative entropy values are unphysical in discrete sys-
tems, only sub-optimal solutions with M(m)≥0 are considered. The lowest
p value for which there are sub-optimal solutions with a free energy equal
to −Fm0(p) is the critical noise level pc for MPM decoding. In fact, using
the convexity of M(m) and Nishimori’s condition, one can show that the
slope ∂M(m)/∂m>−βF for any value m<mo(p) and any p, and equals
−βF only at m=mo(p); therefore, the critical noise level for MPM decoding
p=pc is identical to that of MAP, in agreement with results obtained in the
information theory community [12].

The statistical physics interpretation of finite temperature decoding corre-
sponds to making the specific choice for the Lagrange multiplier m̂=βF and
considering the free energy instead of the entropy. In earlier work on MPM
decoding in the SP framework [4], negative entropy values were treated by
adopting different replica symmetry assumptions, which effectively result
in changing the inverse temperature, i.e., the Lagrange multiplier m̂. This
effectively sets m = m+(p), i.e. to the highest value with non-negative en-
tropy. The sub-optimal states with the lowest free energy are then those
with m=m+(p).

The central point in all decoding schemes, is to select the correct solution only
on the basis of its magnetization. As long as there are no sub-optimal solutions

1 This condition corresponds to the selection of an accurate prior within the Bayesian
framework.



with the same magnetization, this is in principle possible. As shown here, all
three decoding schemes discussed above, manage to do so. To find whether at a
given p there exists a gap between the magnetization of the correct solution and
that of the nearest sub-optimal solution, just requires plotting M(m)(>0) and
m0(p), thus allowing a graphical determination of pc. Since MPM decoding is
done at Nishimori’s temperature, the simplest replica symmetry assumption is
sufficient to describe the thermodynamically dominant state [9]. At pc the states
with m+(pc)=m0(pC) are thermodynamically dominant, and the pc values that
we obtain under this assumption are exact.

5 Critical noise level - results

Some general comments can be made about the critical MAP (or typical set)
values obtained via the annealed and quenched calculations. Since Mq(m) ≤
Ma(m) (for given values of K, C and p), we can derive the general inequality
pc,q ≥ pc,a. For all K, C values that we have numerically analyzed, for both
annealed and quenched cases, m+(p) is a non increasing function of p, and pc
is unique. The estimates of the critical noise levels pc,a/q, based on Ma/q, are
obtained by numerically calculating mc,a/q(p), and by determining their inter-
section with m0(p). This is explained graphically in Fig.2(a). As the results for
MPM decoding have already been presented elsewhere [13], we will now concen-
trate on the critical results pc obtained for typical set and MAP decoding; these
are presented in Fig.2(b), showing the values of pc,a/q for various choices of K
and C are compared with those reported in the literature.

From the table it is clear that the annealed approximation gives a much more
pessimistic estimate for pc. This is due to the fact that it overestimates M in
the following way. Ma(m) describes the combined entropy of n and no as if no

were thermal variables as well. Therefore, exponentially rare events for no (i.e.
m(no) 6=m0(p)) still may carry positive entropy due to the addition of a positive
entropy term from n. In a separate study [14] these effects have been taken care
of by the introduction of an extra exponent; this is not necessary in the current
formalism as the quenched calculation automatically suppresses such contribu-
tions. The similarity between the results reported here and those obtained in [8]
is not surprising as the equations obtained in quenched calculations are similar
to those obtained by averaging the upper-bound to the reliability exponent using
a methods presented originally by Gallager [6]. Numerical differences between
the two sets of results are probably due to the higher numerical precision here.

6 Conclusions

To summarize, we have shown that the magnetization enumerator M(m) plays a
central role in determining the achievable critical noise level for various decoding
schemes. The formalism based on the magnetization enumerator M offers a
intuitively simple alternative to the weight enumerator formalism as used in
typical pairs decoding [3,14], but requires invoking the replica method given



the very low critical values obtained by the annealed approximation calculation.
Although we have concentrated here on the critical noise level for the BSC, both
other channels and other quantities can also be treated in our formalism. The
predictions for the critical noise level are more optimistic than those reported
in the IT literature, and are up to numerical precision in agreement with those
reported in [14]. Finally, we have shown that the critical noise levels for typical
pairs, MAP and MPM decoding must coincide, and we have provided an intuitive
explanation to the difference between MAP and MPM decoding.
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a) p<pc

M(m)

m m+(p)−1 1

b) p=pc

M(m)

m m+(p)−1 1

c) p>pc

M(m)

m m+(p)−1 1

m0(p) m0(p)

m0(p)

Fig. 1. The qualitative picture of M(m)≥0 (solid lines) for different values of p.
For MAP, MPM and typical set decoding, only the relative values of m+(p) and
m0(p) determine the critical noise level. Dashed lines correspond to the energy
contribution of −βF at Nishimori’s condition (β = 1). The states with the
lowest free energy are indicated with •. a) Sub-critical noise levels p<pc, where
m+(p)<m0(p), there are no solutions with higher magnetization than m0(p), and
the correct solution has the lowest free energy. b) Critical noise level p=pc, where
m+(p)=m0(p). The minimum of the free energy of the sub-optimal solutions is
equal to that of the correct solution at Nishimori’s condition. c) Over-critical
noise levels p> pc where many solutions have a higher magnetization than the
true typical one. The minimum of the free energy of the sub-optimal solutions
is lower than that of the correct solution.



a)

1
m

0 ppc,a pc,q

m0(p)

m+,a(p)

m+,q(p)

0.5

b)
(K,C) (6, 3) (5, 3) (6, 4) (4, 3)

Code rate 1/2 2/5 1/3 1/4

IT (Wa) 0.0915 0.129 0.170 0.205

SP 0.0990 0.136 0.173 0.209

pc,a (Ma) 0.031 0.066 0.162 0.195

pc,q (Mq) 0.0998 0.1365 0.1725 0.2095

Shannon 0.109 0.145 0.174 0.214

Fig. 2. a) Determining the critical noise levels pc,a/q based on the function
Ma/q, a qualitative picture. b) Comparison of different critical noise level (pc)
estimates. Typical set decoding estimates have been obtained via the methods
of IT [3], based on having a unique solution to W(m) = K(m, pc), as well as
using the methods of SP [14]. The numerical precision is up to the last digit for
the current method. Shannon’s limit denotes the highest theoretically achievable
critical noise level pc for any code [15].


