
Heterogeneity and On-Board Control in the

Small Robots League

Andreas Birk and Holger Kenn

Vrije Universiteit Brussel, Arti�cial Intelligence Laboratory, Belgium
c/o birk@ieee.org, http://arti.vub.ac.be/�cyrano

Abstract. Versatile physical and behavioral features as well as their
exploitation through computation-power onboard the robot-players are
feasible and necessary goals for the RoboCup small robots league. We
substantiate this claim in this paper by classifying di�erent approaches
and by discussing their potentials and limitations for research on AI
and robotics. Furthermore, we present the most recent results of our
approach to these goals in form of the so-called CubeSystem, a kind of
construction-kit for robots and other autonomous systems. It is based
on a very compact embedded computer, the so-called RoboCube, a set
of sensor- and motor-modules, and software support in form of a special
operating system and highlevel languages.

1 Introduction

The Small Robots League of RoboCup [KAK+97, KTS+97] allows global sensing,
especially bird's view vision from an overhead camera, and restricts the size of
the physical players to a rather extreme minimum. These two, most signi�cant
features of the small robots league bear an immense potential, but as well some
major pitfalls for future research within the RoboCup framework.

First of all, it is tempting to exploit the set-up with an overhead camera
for the mere sake of trying to win, reducing the robot-players to RF-controlled
toy-cars within a minimal, but very fast vision-based closed-loop. The severe
size limitations of the players in addition encourage the use of such \string-
puppets" with o�-board sensing and control instead of real robots. The Mirosot
competition gives an example for this type of approach [Mir]. This framework
would lead to dedicated solutions, which are very e�cient and competitive, but
only of very limited scienti�c interest from both a basic research as well as
from an application-oriented viewpoint. If the teams in the small robots league
would follow that road, this league could degenerate to a completely competition-
oriented race of scienti�cally meaningless, specialized engineering e�orts.

Though the two major properties of the small robots league, global sensing
and severe size restrictions, discourage the important investigation of on-board
control, they also have positive e�ects. First of all, the global sensing eases
quite some perception problems, allowing to focus on other important scienti�c
issues, especially team behavior. An indication for this hypothesis is the apparent
di�erence in team-skills between the small robots league and the midsize league,
where global sensing is banned.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 196−209, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000

The size restrictions as a second point also have a bene�cial aspect for the
investigation of team-behavior. The play-�eld of a ping-pong-table can easily be
allocated in a standard academic environment, facilitating games throughout the
year. It is in contrast di�cult to embed a regular �eld of the midsize league into
an academic environment, thus the possibilities for continuous research on the
complete team are here limited. The severe size restriction of the small robots
league has another advantage. These robots can be much cheaper as costs of
electro-mechanical parts signi�cantly increase with size. Therefore, it is more
feasible to build even two teams and to play real games throughout the year,
plus to include the team(s) in educational activities.

The rest of this article is structured as follows. In section two, di�erent team-
approaches are classi�ed and possible implications are discussed. Section three
presents the hardware aspects of the CubeSystem, i.e., the RoboCube V2.0 and
the mechanical components used in our approach to the RoboCup small robots
league. In the fourth section, the software aspects of the CubeSystem are dis-
cussed. First, its operating system CubeOS and highlevel language support are
shortly presented. Then, it is shown with the example of path-planning that the
RoboCube is indeed capable of quite powerful computations within realtime con-
straints. Last but not least the implications for team-coordination when using
very heterogeneous systems are discussed. Section �ve concludes the paper.

2 Classi�cation of Team-Approaches

For a more detailed discussion of the role of heterogeneity and on-board control
in the small robots league, it is useful to have a classi�cation of di�erent types
of teams and players.

Minoru Asada for example proposed in the RoboCup mailing-list to use a
classi�cation of approaches based on the type of vision (local, global or com-
bined) and the number of CPUs (one or multi). He also mentioned that in the
case of multiple CPUs a di�erence between systems with and without explicit
communication between players can be made. Though this scheme is useful, it is
still a �rst, quite rough classi�cation. Therefore, we propose here to make �ner
distinctions, based on a set of crucial components for the players.

In general, a RoboCup team consists of a (possibly empty) set of host-
computers and o�-board sensors, and a non-empty set of players, each of which
consist of a combination of the following components:

1. minimal components
(a) mobile platform
(b) energy supply
(c) communication module

2. optional components
(a) computation power
(b) shooting-mechanism and other e�ectors
(c) basic sensors

197Heterogeneity and On-Board Control in the Small Robots League

(d) vision hardware

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

local vision
global sensor(s)�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

mobile platform

shooting mechanism

communication

energy supply

computation power

basic sensors

����
����
����
����
����
����
����

����
����
����

���
���
���
���

����
����
����
����

pressure

A

against

����
����
����

����
����
����

B

features
on-board

size constraints

unlimited

host-computer(s)

player

Fig. 1. There are several basic components which can be, except the minimal ones,

freely combined to form a player. Situation A shows the most simple type of player,

a radio-controlled toy-car, which can hardly be called a robot. Situation B shows a

much more elaborated player. Unfortunately, the size-constraints of the small robots

league put a strong negative pressure against the important implementation of on-board

features for the players.

Note, that the most simple type of player, consisting of only minimal com-
ponents, is hardly a robot. It is more like a \string-puppet" in form of a radio-
controlled toy-car without even any on-board sensors or computation power
(though it could well be possible that this type of device has an on-board
micro-controller for handling the communication protocol and the pulse-width-
modulation of the drive motors). The actual control of this type of players com-
pletely takes place on the o�-board host(s).

Based on this minimal type of player, the optional components can be freely
combined and added. In doing so, there is a trade-o� between

{ on-board sensor/motor components,

{ on-board computation power, and

{ communication bandwidth.

A player can for example be built without any on-board computation power at
the cost of communication bandwidth by transmitting all sensor/motor-data to
the host and back. So, increasing on-board computation power facilitates the use
of a smaller communication bandwidth and vice versa. Increasing sensor/motor
channels on the other hand increases the need of on-board computation power
and/or communication bandwidth.

198 A. Birk and H. Kenn

On-board features are important for research in robotics as well as AI and
related disciplines for several reasons. Mainly, they allow research on important
aspects which are otherwise impossible to investigate, especially in the �eld of
sensor/motor capabilities. For e�ector-systems for example, it is quite obvious
that they have to be on-board to be within the rules of soccer-playing. Here, the
possibilities of systems with many degrees of freedom, as for example demon-
strated in the SONY pet dog [FK97], should not only be encouraged in special
leagues as e.g. in the one for legged players, but also within the small robots
league. In general, a further splitting of the RoboCup activities into too many
leagues seems not to be bene�cial and it also seems not to be practical. Too
many classi�cations which would justify just another new league would be pos-
sible. In addition, the direct competition and comparison of di�erent approaches
together with the scienti�c dialogue are one of the main features of RoboCup.

In the case of sensors and perception, the situation is similar to the one of
e�ector-systems, i.e., certain important types of research can only be done with
on-board devices. This holds especially for local vision. It might be useful to
clarify here the often confused notions of local/global and on-/o�-board. The
terms on- and o�-board are easy to distinguish, general properties. They refer
to a piece of hardware or software, which is physically or logically present on the
player (on-board) or not (o�-board). The notions of local and global in contrast
only refer to sensors, i.e., particular types of hardware, or to perception, i.e.,
particular types of software dealing with sensor-data. Global sensors and per-
ception tell a player absolute information about the world, typically information
about its position and maybe the positions of other objects on the play�eld. Lo-
cal sensors and perception in contrast tell a player information about the world,
which is relative to its own position in the world. Unlike in the case of on- and
o�-board, the distinction between local and global is fuzzy and often debatable.
Nevertheless, it is quite clear that the important issue of local vision can only
be investigated if the related feature is present on-board of the player.

Hand in hand with an increased use of sensor and motor systems on a player,
the amount of on-board computation power must increase. Otherwise, the scarce
resource of communication bandwidth will be used up very quickly. Note, that
there are many systems using RF-communication at the same time during a
RoboCup tournament. Especially in the small robots league, were only few and
very limited o�-the-shelf products suited for communication exist, transmission
of large amount of data is impossible. It is for example quite infeasible to transmit
high-resolution local camera images from every player to a host for processing.

3 Towards a Robot Construction-Kit

3.1 The Motivation

Existing commercial construction-kits with some computational power like Lego
MindstormsTM [Min] or Fischertechnik ComputingTM [Fis] are still much too
limited to be used for serious robotics education or even research. Therefore, we
decided to develop our own so-to-say robot construction-kit.

199Heterogeneity and On-Board Control in the Small Robots League

3.2 RoboCube V2.0

For RoboCup'98, the VUB AI-lab team focused on the development of a suited
hardware architecture, which allows to implement a wide range of di�erent
robots. The basic features of this so-called RoboCube-system are described in
[BKW98]. For RoboCup'99, the system was further improved and extended. A
more detailed description is given in [BKW00].

The most recent version of the RoboCube boots out of a 1 MByte Flash-
EPROM which holds a basic input/output operating system (BIOS) and o�ers
space for a small �le system. A huge part of the BIOS is dedicated to the e�cient
handling of di�erent actuators and sensors. In the basic con�guration the main
memory consists of a 1 MByte low power SRAM, which can be extended by
additional 12 MByte.

In its basic version, one I/O subsystem board of the RoboCube features

{ 24 analog input

{ 6 analog output
{ 16 binary Input/Output (binI/O)

{ 4 timer channels (TPC)

{ 4 DC-motor controller with quadrature-encoding

The number of ports can simply be doubled by stacking a second I/O subsys-
tem board on top of the �rst one. All sensor-motor-interfaces come with proper
software support allowing an easy high-level usage.

Extension
Busmaster

Vision

Subsystem

I/O
Subsystem

SPI ext

I/O
Bin

TP ext

Motors

UHFtrcv

IR send

IR recv

ADC/DAC

DRAM
CPU
Flash
SRAM

FPU

Data, Adr, /CS, /IRQ, TP, SPI, 2xI2C, 3xRS232

Fig. 2. A picture of the RoboCube (left) and the layout of its internal bus structure
(right).

The RoboCube-system is constantly further improved, on the software as
well as on the hardware side. At the moment for example, several options for
inexpensive high-resolution color-vision are investigated.

200 A. Birk and H. Kenn

visionI/O extension

Ext Busmaster

CPU + MEM

Fig. 3. Physical layout of the complete RoboCube

3.3 Mechanical Components for RoboCup

Fig. 4. The drive unit as a mechanical building-block, which can be mounted on dif-

ferently shaped bottom-plates, forming the mechanical basis for diverse body-forms.

Di�erent ratios for the planetary gears in the motor-units are available, such that

several trade-o�s for speed versus torque are possible.

In some of our education and research activities, the RoboCube-system is
combined with LegoTM or FischertechnikTM components on the mechanical side.
For RoboCup competitions, we developed a solid but still exible solution based
on metal components.

Keeping the basic philosophy of construction-kits, a \universal" building
block is used for the drive (�gure 4) of the robots. The drive can be easily

201Heterogeneity and On-Board Control in the Small Robots League

Fig. 5. A forward- (left) and a defender-type (right) robot. The mechanical set-up of
the robot-players is based on a piled-stack approach such that di�erent components,
such as shooting-mechanisms and the RoboCube, can easily be added.

mounted onto di�erently shaped metal bottom-plates, forming the basis for dif-
ferent body-forms like the ones shown in �gure 5. The motor-units in the drive
exist with di�erent ratios for the planetary gears, such that several trade-o�s for
speed versus torque are possible.

Other components, like e.g. shooting-mechanisms and the RoboCube, are
added to the bottom-plate in a piled-stack-approach, i.e., four threaded rods
allow to attach several layers of supporting plates.

4 Powerful On-Board Control

4.1 Operating System and Programming Languages

For the RoboCube, an embedded operating system has been developed, CubeOS.
It provides the usual features like threads, semaphores, realtime clock, commu-
nication and I/O drivers in a small core of about 30 Kbytes. Additionally, it
provides functionality that set it apart from other OS kernels and make it espe-
cially useful for robotics and autonomous systems in general:

{ Drivers that handle access to the various sensor and actuator devices of the
RoboCube

{ Support for hardware-assisted realtime processing through the MC68332's
onboard TPU

{ A low-latency communication protocol engine for radio communication
{ hardware-independent data encoding as de�ned in the External Data Rep-

resentation Standard [SM]

202 A. Birk and H. Kenn

CubeOS is written in C and makes use of the Free Software Foundation's Gnu
C-Cross-Compiler. The host system for development is a Unix or Linux Worksta-
tion, the code is downloaded into the target via a wireless serial communication
link.

On top of the CubeOS API, a simple software framework has been imple-
mented to provide easy access within normal C-programs. In additional, there is
highlevel language support suited even for novice programmers. This framework,
named NPDL (for New Process Description Language) provides several simple
constructs to create control programs for robots. Within education projects,
NPDL has already been mastered by students studying economics, philosophy
and architecture.

4.2 Using the RoboCube for Highlevel Control

Though the RoboCube has quite some computation power for its size, its capa-
bilities are nevertheless far from those of desktop machines. So, it is not obvious
that interesting behaviors in addition to controlling the drive-motors and shoot-
ing can actually be implemented on the RoboCube, i.e., on board of the robots.
Therefore, we demonstrate in this section that for example path-planning with
obstacle avoidance is feasible.

24 23 22 21 20 19 18 17 16 15 14 15 16 17 18
23 22 21 20 19 18 17 16 15 14 13 14 15 16 17
22 21 20 19 18 17 16 15 14 13 12 13 14 15 16
21 20 19 18 17 16 15 14 13 12 11 12 13 14 15
20 19 18 17 16 15 14 13 12 11 10 11 12 13 14
19 18 17 16 15 14 13 12 11 10 9 10 11 12 13
18 17 16 15 14 13 12 11 10 9 8 9 10 11 12
19 18 17 16 [X] [X] [X] [X] [X] 8 7 8 9 10 11
18 17 16 17 [X] [X] [X] [X] [X] 7 6 7 8 9 10
17 16 15 16 [X] [X] [X] [X] [X] 6 5 6 7 8 9
16 15 14 15 [X] [X] [X] [X] [X] 5 4 5 6 7 8
15 14 13 14 [X] [X] [X] [X] [X] 4 3 4 5 6 7
14 13 12 [X] [X] [X] 6 5 4 3 2 3 4 [X] [X]
13 12 11 [X] [X] [X] 5 4 3 2 1 2 3 [X] [X]
12 11 10 [X] [X] [X] 4 3 2 1 0 1 2 [X] [X]
11 10 9 8 7 6 5 4 3 2 1 2 3 4 5
12 11 10 9 8 7 6 5 4 3 2 3 4 5 6
13 12 11 10 9 8 7 6 5 4 3 4 5 6 7
14 13 12 11 10 9 8 7 6 5 4 5 6 7 8
15 14 13 12 11 10 9 8 7 6 5 6 7 8 9

Fig. 6. A potential �eld for motion-control based on Manhattan distances. Each cell in
the grid shows the shortest distance to a destination (marked with Zero) while avoiding
obstacles, which are marked with `[X]'.

203Heterogeneity and On-Board Control in the Small Robots League

x-pos x-dest

dest

pos

x0

yy

x0

Fig. 7. The potential �eld (grey area) is not computed for the whole soccer-�eld.
Instead, it is limited in the x-direction to save computation time.

Path planning is with most common approaches rather computationally ex-
pensive. Therefore, we developed a fast potential �eld algorithm based onManhattan-
distances. Please note that this algorithm is presented here only to demonstrate
the computing capabilities of the RoboCube. A detailed description and discus-
sion of the algorithm is given in [Bir99].

Given a destination and a set of arbitrary obstacles, the algorithm computes
for each cell of a grid the shortest distance to the destination while avoiding the
obstacles (�gure 6). Thus, the cells can be used as gradients to guide the robot.
The algorithm is very fast, namely linear in the number of cells. The algorithm is
inspired by [Bir96], where shortest Manhattan distances between identical pixels
in two pictures are used to estimate the similarity of images.

The basic principle of the algorithm is region-growing based on a FIFO queue.
At the start, the grid-value of the destination is set to Zero and it is added to
the queue. While the queue is not empty, a position is dequeued and its four
neighbors are handled, i.e., if their grid-value is not known yet, it is updated to
the current distance plus One, and they are added to the queue.

For the experiments done so far, the resolution of the motion-grid is set
to 1cm. As illustrated in �gure 7, the potential-�eld is not computed for the
whole soccer-�eld to save computation time. Given a robot position pos and a

204 A. Birk and H. Kenn

virtual= sensor

2

4

3

5

6

7

8

10 9

1213 11

1415

16

17

18

19

20

21 22

23 10

Fig. 8. Twenty-four so-called virtual sensors read the potential values around the robot

position on the motion grid. The sensor values can be used to compute a gradient for the

shortest path to the destination, which can be easily used in a reactive motion-control.

destination dest, the �eld is restricted in the x-direction to the di�erence of pos
and dest plus two safety-margins which allow to move around obstacles to reach
the destination.

The motion-grid is used as follows for our soccer-robots. The global vision de-
tects all players, including opponents and the ball, and broadcasts this informa-
tion to the robots. Each robot computes a destination depending on its strategies,
which are also running on-board. Then, each robot computes its motion-grid. In
doing so, all other robots are placed on the grid as obstacles.

Robots have so-called virtual sensors to sample a motion-grid as illustrated
in �gure 8. The sensor values are used to calculate a gradient for a shortest path
to the destination, which is ideal for a reactive motion control of the robot. In
doing so, dead-reckoning keeps track of the robot's position on the motion-grid.

Of course, the reactive control-loop can only be used for a limited amount
of time for two main reasons. First, obstacles move, so the motion-grid has to
be updated. Second, dead-reckoning su�ers from cumulative errors. Therefore,
this loop is aborted as soon as new vision information reaches the robot, which
happens several times per second, and a new reactive controller based on a new
motion-grid is started.

Figure 9 shows performs-results of the path-planning algorithm running on
a RoboCube as part of the control-program of the robot-players. The di�erent
tasks of the control-program proceed in cycles. The execution time refers to
a single execution of each task on its own (including the overhead from the
operating system). The frequency refers to the frequency with which each tasks
is executed as part of the player-control, i.e., together with all other tasks.

205Heterogeneity and On-Board Control in the Small Robots League

strategies

path-planning
[obstacle-avoidance, short paths]

[coordination, communication]

motion-control
[vectors, curves, dead-reckoning]

operating system
[drivers, tasks, control-support]

motor-control
[PID-speed controller]

17 - 19 Hz

17 - 68 Hz

100 Hz

100 Hz

continuous

frequency execution time

4 - 13 msec

79 msec

0.2 msec

0.1 msec

Fig. 9. The path-planning is part of a four-level software architecture which controls

the robots players. It runs, together with the CubeOS operating system, completely

on board of the RoboCube.

The control-program consists of four levels which run together with the

CubeOS completely on-board of the RoboCube. The two lowest levels of motor-

and motion-control run at a �xed frequency of 100 Hz. Single iterations of them

are extremely fast as the TPU of the MC68332 can take over substantial parts

of the processing. The strategy and path-planning level run in an \as fast as

possible"-mode, i.e., they proceed in event-driven cycles with varying frequen-

cies.

The execution of the pure strategy-code, i.e., the action-selection itself, takes

up only a few milliseconds. Its frequency is mainly determined by whether the

robot is surrounded by obstacles or not, i.e., whether path-planning is necessary

or not. The computation of the motion-grid takes most of the 79 msec needed

for path-planning. As two grids are used, one still determines the motion of the

robot while the next one is computed, the cycle-frequency is at least 17 Hz. So,

in a worst case scenario where the player is constantly surrounded by obstacles,

the action-selection cycle can still run at 17 Hz.

4.3 Heterogeneity and Team Coordination with On-Board Control

Heterogeneity is an important feature for soccer with human players as much

as with robot players. It is the main basis for adaptability of a team, either to

di�erent opponent teams within a tournament, or to the general progress of a

particular game, or to very momentary situations. Heterogeneity within soccer

can range from high-level roles of players in a team like forward or defender,

down to di�erent body features covering a wide-range of physical trade-o�s like

e.g. speed versus torque.

206 A. Birk and H. Kenn

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

player
coach

global vision

broadcast positions

individual decisions

recommendations

Fig. 10. A \pares inter pares" coach, residing on the same level as the players
in the coordination hierarchy. This coach can be used for facilitating the coor-
dination of heterogeneous team approaches while keeping as much as possible
on-board control. The basic idea is that most of the time, the robot players decide
completely on their own what to do based on their on-board control-program.
Only occasionally the coach interferes as he has additional information about
the capabilities of the players.

Straightforward approaches to team coordination with the expressive power
of �nite state automata are doomed to fail under such wide ranges of hetero-
geneity due to the combinatorial explosion of states. Therefore, we investigate
coordination schemes based on operational semantics, which allow an extremely
compact and modular way of specifying team behaviors. One step in this direc-
tion is the Protocol Operational Semantics (POS), an interaction protocol based
on abstract data-types and pattern matching capabilities. So far, it has only been
tested in simulations, but the results are very promising. A detailed description
can be found in [OBK99].

Here, we focus on the question how this approach can be integrated with a
substantial exploitation of on-board control. The problem is that the expressive
power of operational semantics is bought at the price of computational power.
POS for example is implemented in Pizza [OW97], a super-set of Java.

207Heterogeneity and On-Board Control in the Small Robots League

A solution for this problem is a kind of additional player in form of a \pares
inter pares" coach. This coach resides not above the other players in a coordina-
tion hierarchy, but resides on the same level (�gure 10). The position information
from the global vision is broadcasted to all players and the coach. Most of the
time, all robot players individually decide what to do, based on their on-board
computations. Only on rare occasions, the coach interferes as he has more back-
ground information available than the players.

To illustrate this idea, let us assume there are two heterogeneous robots of
type A and A0, with rather limited di�erences and which can be substituted
against each other in the team. Both can simply run the same on-board control
program, deciding most of the time the actions of the player. Only in situations
when the di�erence plays a role, the coach interferes and provides additional
information, recommending alternative actions to the player.

5 Conclusion

We claim that for serious AI and robotics research, it is necessary to work with
\real" systems, i.e., heterogeneous devices with on-board control. As our contri-
bution towards a suited infrastructure for this type of research, we develop the
CubeSystem, a kind of advanced construction-kit for mobile robots and other
autonomous systems. The CubeSystem consists of a special embedded hardware,
the RoboCube, a set of sensors and actuators, and software support in form of
a special operating system, the CubeOS, and highlevel languages.

The \string-puppet" approach of simple radio-controlled toy-cars also has
its validation. It can for example serve as a rather easy and inexpensive way to
enter RoboCup, it can be useful for educational purposes; shortly, it can be good
for a start and to get acquainted with the basic issues of RoboCup.

But in the long run, we hope that participants in the small robots league of
RoboCup cooperate to improve the options of on-board features. Only through
a joint e�ort, it will be possible to overcome the pitfalls and to mutually bene�t
from the positive potential of the limited size requirements in this league.

Acknowledgments

The VUB AI-Lab team thanks Sanders Birnie BV as supplier and Maxon Motors
as manufacturer for sponsoring our motor-units. Andreas Birk is a research fellow
of the Flemish Institute for Applied Science (IWT); research on RoboCup is
partially �nanced within this framework (OZM980252).

References

[Bir96] Andreas Birk. Learning geometric concepts with an evolutionary algorithm.
In Proc. of The Fifth Annual Conference on Evolutionary Programming.
The MIT Press, Cambridge, 1996.

208 A. Birk and H. Kenn

[Bir99] Andreas Birk. A fast pathplanning algorithm for mobile robots. Technical
report, Vrije Universiteit Brussel, AI-Laboratory, 1999.

[BKW98] Andreas Birk, Holger Kenn, and Thomas Walle. Robocube: an \univer-
sal" \special-purpose" hardware for the robocup small robots league. In
4th International Symposium on Distributed Autonomous Robotic Systems.
Springer, 1998.

[BKW00] Andreas Birk, Holger Kenn, and Thomas Walle. On-board control in the
robocup small robots league. Advanced Robotics Journal, 2000.

[Fis] The �schertechnikTM website. http://www.�schertechnik.de/.
[FK97] Masahiro Fujita and Koji Kageyama. An open architecture for robot enter-

tainment. In Proceedings of Autonomous Agents 97. ACM Press, 1997.
[KAK+97] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi

Osawa. Robocup: The robot world cup initiative. In Proc. of The First
International Conference on Autonomous Agents (Agents-97). The ACM
Press, 1997.

[KTS+97] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Corade-
schi, Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The
robocup synthetic agent challenge 97. In Proceedings of IJCAI-97, 1997.

[Min] The lego mindstormsTM website. http://www.legomindstorms.com/.
[Mir] The micro-robot world cup soccer tournament (mirosot).

http://www.mirosit.org.
[OBK99] Pierre-Yves Oudeyer, Andreas Birk, and Jean-Luc Koning. Interaction pro-

tocols with operational semantics and the coordination of heterogeneous
soccer-robots. Technical report, Vrije Universiteit Brussel, AI-Laboratory,
1999.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proc. 24th ACM Symposium on Principles of Programming
Languages, 1997.

[SM] Inc. Sun Microsystems. Xdr: External data representation standard. Re-
quest for Comments.

This article was processed using the LATEX macro package with LLNCS style

209Heterogeneity and On-Board Control in the Small Robots League

	1 Introduction
	2 Classification of Team-Approaches
	3 Towards a Robot Construction-Kit
	3.1 The Motivation
	3.2 RoboCube V2.0
	3.3 Mechanical Components for RoboCup

	4 Powerful On-Board Control
	4.1 Operating System and Programming Languages
	4.2 Using the RoboCube for Highlevel Control
	4.3 Heterogeneity and Team Coordination with On-Board Control

	5 Conclusion
	References

