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Abstract. In this paper, the autonomous agent architecture used to im-

plement the RoboCup simulator league UFSC-Team is presented. This

architecture consists of three concurrent processes that encapsulate dif-

ferent inference engines. These take decisions in three di�erent levels,

called reactive, instinctive and cognitive. This architecture is an evolu-

tion of the concurrent architecture for cognitive multi-agents, used in

the implementation of the UFSC-Team'98 that has participated in the

RoboCup'98. The present implementation was designed to solve some

agent synchronization and real-time response problems presented by the

old architecture, due mainly to its centralized decision approach.

1 Introduction

In its �rst participation in the simulator league of the RoboCup'98, the UFSC-
Team presented a concurrent cognitive multi-agent architecture [12]. The idea
was to implement perception, action, communication, cooperation, planning and
decision making exploring the concurrent programming approach [1].

The �rst concurrent architecture was based on three processes: interface, co-
ordinator and expert. The interface was designed to handle perception and ac-
tion. The agent/environment interaction supported by the Soccerserver consists
of message exchange using a Inet Domain Socket channel. The perception infor-
mation is received and the action commands are sent through this same channel.
The function of the process interface was just to translate the perception and
communication information into the Parla language [10] (the Agent Communica-
tion Language used by the UFSC-Team agents) and expressions from the Parla
language to Soccerserver commands.

The process coordinator was responsible for the agent communication and
for starting and conducting the cooperation processes. According to the origi-
nal architecture proposed in the Expert-Coop environment [9], this process was
responsible for the inter-process communication management, i.e., it should re-
ceive directly the messages sent by other agents and handle them. But, according
to the RoboCup simulator league rules, all inter-agent communication must be
done only through the Soccerserver. Because of this, the inter-process commu-
nication and the perception information are all received through the same Inet
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Domain socket channel. Therefore, in this implementation, the process interface
also received the inter-agent messages and forwarded them to be handled by the
process coordinator, along with the perception information and referee messages.
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Fig. 1. The Concurrent Architecture

Finally the process expert was responsible by planing and decision making. It
had a knowledge-based system encapsulated where the perception information,
the messages from the referee and from other UFSC-Team agents were stored
and used to infer appropriate decisions, according to the knowledge-based system
rules. These three processes communicated among them by message exchange
using sockets into the Unix domain (see Figure 1).

This �rst concurrent implementation, with a centralized decision approach,
has presented some problems with agent/environment synchronization and the
response time was considered too high. In fact, the best real-time responses pre-
sented by the UFSC-Team'98 agent architecture were between 70 and 80 ms,
even using Case-Based Reasoning [2] to split the knowledge into di�erent pack-
ets. Beside this, the knowledge-based system responsible for the agent decision
making became very complex, because it had to include rules to treat informa-
tion from high level, like what kind of collective play should be chosen in a given
situation or what agents can be joined into a known play, to low level, like which
power dash value or which turn value should be chosen.

To solve these problems, the agent architecture used in UFSC-Team has
migrated from a concurrent approach with centralized decision making, to an
autonomous agents architecture, inspired by the architecture proposed in [4],
with three decision levels { reactive, instinctive and cognitive { implemented in
a concurrent way (see Figure 2). The concurrent model was kept with the same
three processes: interface, coordinator and expert. But now each one of these
processes encapsulates a di�erent inference engine and is responsible for one
of the three decision levels. Both the �rst implementation and the current one
were written in the C++ programming language and they integrate a partial
implementation of the environment to develop cognitive multi-agent systems
under real-time restrictions called Expert-Coop++.
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The reactive level inference engine is implemented in the interface process

and is responsible for the real-time response of the agent, i.e., for receiving

the perception information from the Soccerserver and for sending the adequate

action commands to it. It consists of a set of fuzzy controllers. At any given

moment, only one fuzzy controller is active and it decides which commands

should be sent to the Soccerserver, along with their respective values. This choice

is based on the information received from the Soccerserver and it is determined

by the active fuzzy controller rules. Each one of the fuzzy controllers available

in the agent represents a speci�c behavior and has some associated conditions

that specify the situations in which it is e�ective.

The instinctive level inference engine is implemented in the coordinator pro-

cess and it is responsible for updating the symbolic variables used by the cog-

nitive level and for chosing the adequate behaviors, i.e., the adequate fuzzy

controllers, that should be used in the reactive level in order to achieve a given

goal. A goal can be achieved by a sequence of reactive behaviors that leads the

agent to an intended situation. The choice of this behavior sequence is imple-

mented through a one cycle expert system that chooses, every time the game

state changes, the most adequate reactive behavior. Each state of the game is

de�ned by a set of conditions that are monitored by the instinctive level. These

conditions refer to perception and to the referee messages, and are used in the

condition part of the rules, analogously to the reactive level. But on the instinc-

tive level, the conclusion part of the rules are symbolic and are used either to

update the symbolic information used in the cognitive level, or to select a reac-

tive level behavior. At each moment, the chosen behavior should perform actions

in the direction of the intended goal and should have its associated conditions

satis�ed by the game state. Once a behavior is chosen, the instinctive level keeps

monitoring the conditions associated to this behavior and, if some of them are

no more satis�ed, it uses its rules to infer a new behavior. If this is impossi-

ble, the goal fails and a new goal should be speci�ed. The instinctive level also

handles the messages sent by the referee informing a change in the game status.
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These changes are treated analogously to the game state changes, they cause the
instinctive level to choose a new appropriate behavior.

Finally, the cognitive level inference engine is implemented in the expert
process, and it is responsible for determining the local and global goals of the
agent. The cognitive level does not have a direct e�ect over the reactive level, it
just chooses the present goal and passes it to the instinctive level. This has the
e�ect of changing the rules of the inference engine in the instinctive level, what
indirectly will cause di�erent behaviors to be selected. As long as a goal does not
fail or succeed, the cognitive level does not interfere in the game. This idle time
is used for strategic planning. This planning consists in the determination of
possible future local goals, according to the result of the present one, and in the
speci�cation of cooperation requests to achieve global goals. These requests will
be handled by the coordinator process and will result in other agents adopting
local goals compatible with the intended global goal. The cognitive level is also
implemented through an expert system, but this expert system can be much
more complex than the instinctive level one, because its response time is much
greater.

In the new implementation, the three processes are implemented using the
multi-thread programming approach [3]. This technology allows to split a process
into parts and to run these parts concurrently. In our case, each process consists
of two threads. The �rst one is responsible for handling the Unix interruption
SIGIO, used to inform that a new message has been received by the socket, and
by putting this message into the mail box. The other thread, the main thread, is
responsible by the process activities. The mutual exclusion between the threads
is achieved by using semaphores. This implementation is a concurrent approach
to the classical productor/customer problem. It avoids that the main process
spend some precious time checking if there is a new message in the socket or
not.

The paper is organized as follows. Section 2 describes the reactive level. The
instinctive level and cognitive level are presented in Sections 3 and 4. Section 5
presents an example where this new architecture allows the agent to concurrently
react to an environment stimulus in real-time and perform more sophisticated
tasks like make plan, to establish new goals, open or participate into a cooper-
ation processes, etc. Finally, in Section 6, the conclusions and future works are
presented.

2 The Reactive Level

The reactive level inference engine is implemented in the process interface. This
process consists of one mailbox, a set of fuzzy controllers, an input �lter and
an output �lter (see Figure 3). The mailbox is responsible for the process mes-
sage reception. All messages received by the process, including the perception
information sent by the Soccerserver, will be stored in the mailbox.

The fuzzy controllers are implemented using a C++ library. This library was
designed to aid implementation of fuzzy expert systems or fuzzy controllers im-
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plementation, it is called CNCL [13]. Each fuzzy controller is responsible by one
reactive agent skill, called behaviour. At �rst, the following set of behaviors was
chosen to be implemented into the UFSC-Team agents: Initialize-Player, Kick-
O�-Position, Move-to-Position, Move-to-Ball, Pass-Ball, Kick-to-goal, Dribble-

Opponent, Drive-Ball-Fwd, Get-Ball-Control, Tackle, Follow-Opponent, Rounding-

Opponent, Watch-Ball and Catch-Ball. The fuzzy controller set associated with
each agent depends on which agent group it belongs to: goalie, defensive players,
mid�elders or attack players. Of course, it does not make a lot of sense for an
attack or mid�elder player to have a fuzzy controller responsible by catching the
ball, or for a goalie to have a fuzzy controller responsible for shooting the ball
into the opponent goal.

Output FilterInput Filter

Active
Fuzzy Controler

Fuzzy Controler i

Mailbox

ActionPerception

Fig. 3. The interface process

The input �lter is responsible for extracting the linguistic variable values,
used by the active fuzzy controller, from the perception information sent from
the Soccerserver. The output �lter is responsible for checking the active fuzzy
controller outputs and combining them. The following criteria are observed by
the output �lter:

{ Null Output: if dash power output and/or turn moment output present
one null output, the respective command is not sent to Soccerserver.

{ Simultaneous turn and dash: if the fuzzy controller presents simulta-
neous turn moment output and dash power output, then at �rst the turn
command with turn moment value is sent to Soccerserver. After a 20 ms
delay, the dash command with the respective dash power value is sent to the
Soccerserver.

{ Kick direction and kick power: The Kick Direction output and Kick
Power output are always joined into the kick command.
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Most of the fuzzy controllers have four outputs: kick-direction, kick-power,
turn-moment and dash-power. The Pass-Ball, Kick-to-goal fuzzy controllers just
have the kick-direction and kick-power output and Move-to-Position fuzzy con-
troller just have turn-moment and dash-power outputs. The inputs are a set of
linguistic variables, depending on which behavior is active. Each fuzzy controller
has its own set of linguistic variables and the Input Filter is responsible for ex-
tracting from the perception information, the respective values that will be used
to set the linguistic variables.

Using fuzzy controllers to implement the reactive level has some advantages.
First of all, it is possible to synchronize the agent just adjusting the ratio between
input and output, or in other words, adjusting the controller gain. This gain
adjustment is made on the fuzzy set wich represent the controller input and the
controller output. It is also possible to �ne tune, or to get a smooth response
adjusting these fuzzy sets. Figure 4 shows the fuzzy set used by the turn-moment

output and the respective linguistic variable ball-direction. Note that in this case
the controller gain is 0:56 = 50

90
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Fig. 4. The Turn Moment Fuzzy Sets

The rules used in the fuzzy controllers can be built in an intuitive way,
avoiding the di�cult and time consuming task of building a model of the dynamic
environment (see Figure 5). It is also possible to use genetic algorithms [5] to
improve the fuzzy sets used in the controllers.

Another important advantage of implementing the reactive behavior using
fuzzy controllers is that it is possible to ensure that a given fuzzy controller will
always be able to satisfy the real-time requirements, because the fuzzy controller
is a deterministic system. Beside this, once the active fuzzy controller is the
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rule 200.add lhs(new CNFClause(ball direction, left 2));
rule 200.add rhs(new CNFClause(turn moment, m left 2));

rule 201.add lhs(new CNFClause(ball direction, left 1));
rule 201.add rhs(new CNFClause(turn moment, m left 1));

rule 202.add lhs(new CNFClause(ball direction, center));
rule 202.add rhs(new CNFClause(turn moment, m center));

rule 203.add lhs(new CNFClause(ball direction, right 1));
rule 203.add rhs(new CNFClause(turn moment, m right 1));

rule 204.add rhs(new CNFClause(turn moment, m right 2));
rule 204.add lhs(new CNFClause(ball direction, right 2));

Fig. 5. The Turn Moment Fuzzy Rules Sets

most appropriated behavior in a given situation, it releases the instinctive and
cognitive levels to spend more time into more sophisticated tasks like extracting
interesting symbolic features from the perception, making plans, establish goals
or participating into cooperation processes.

3 The Instinctive Level

The instinctive level inference engine is implemented in the process coordinator
and it is responsible for both the execution of the agent local goals and the
generation of symbolic information to update the cognitive level knowledge base.
It is implemented through a one cycle expert system that chooses, every time
the game state changes, the most adequate reactive behavior given the current
local goal. The current local goal is established by the cognitive level and it
determines the set of rules to be used in the inference engine. Each state of
the game is de�ned by a set of conditions on the perception information. These
conditions usually depend on some threshold values, that must be determined
experimentally.

The inputs to the instinctive level inference engine are the perception infor-
mation, received from the interface process, and the messages from the referee.
The perception information consists of the same synchronous perception infor-
mation received by the interface from the Soccerserver, but, di�erently from the
reactive level, the instinctive level presents a memory. This memory consists of
a bu�er, where perception information is stored, and whose initial size is a pa-
rameter of the implementation. It makes it possible to choose how many visual
information frames can be used in one inference cycle of the inference engine. For
example, assuming that the agent has been receiving visual information every
150 ms and that the bu�er size is 3, in a given time t, the cycle inference process
will take into account the visual information sent at times t, t-150, t-300.

The perception information is stored into the Sync bu�er and the messages
received from referee are stored in the Async bu�er (see Figure 6). Each time
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Fig. 6. The coordinator process

one of these bu�ers is updated or when a new local goal has been received from
the cognitive level the expert system is executed. Given the input, the rules are
able to recognize changes in the game state. The result of executing the rules
can be either the updating of the cognitive level knowledge base or the selection
of the most appropriate reactive level fuzzy controller to drive the agent from
the current state to the local goal.

Suppose, for example, that the opponent team has the ball control, and our
team is performing a defensive play, where the goal is get-ball-control-back the
current behavior is Rounding-Opponent. Also suppose that the opponent player
who has the ball control makes a mistake and kicks the ball out of the �eld.
Then the game state is changed to kick in side and this change will be perceived
by a message received from the referee informing about this new game status.
In this case, a behavior can be directly selected to be performed by the reactive
level, i.e., Move-to-Ball, and it also means that the goal get-ball-control-back
was achieved. The cognitive level will be updated and will generate a new goal.
The point here is that in a situation like that, both the new planning and the
execution of the new behavior can happen concurrently.

The process coordinator is also responsible for the cooperation. A Contract

Frame Bu�er is provided to store the necessary information involved into a coop-
eration process that uses the Dynamic Social Knowledge Cooperation Strategy
[11]. The coordinator process also includes a real-time policy and some man-
agement algorithms for distributed system communication, like System Fault
Tolerance [6].

4 The Cognitive Level

The cognitive level inference engine is implemented in the expert process. It con-
sists of a symbolic object-oriented knowledge-based system that handles both the
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symbolic information received from the instinctive level, and the asynchronous
messages received from others UFSC-Team agents. It generates the local goals
and the global goals. This knowledge-based system has three knowledge bases:
Dynamic KB, Static KB and Export KB.

Rules Base

MI

Mailbox

Dynamic KB Export KB

Static KB

Fig. 7. The expert process

The Dynamic KB is used to store the symbolic information generated by
the instinctive level and the asynchronous messages sent by other UFSC-Team
agents. The Static KB stores the knowledge that has been inferred by the expert
process about the game, the team, the opponent, the agent plans, goals, etc.
Both, the Static KB and the Dynamic KB, are used by the inference engine to
generate the agent goals. The new facts about the game, the plans and goals are
stored into the Static KB. Export KB is used to store the expert process output.
Basically this output consists of local goals to be sent to the instinctive level,
information to be used in cooperation strategies, or messages to be sent to other
UFSC-Team Agents.

Suppose that some symbolic information and/or messages have been received
from the coordinator process, followed by a request. This causes the following
sequence of actions:

1. The information is stored in the Dynamic KB.
2. The inference engine evaluates both the information stored in the Dynamic

KB and the facts stored in the Static KB.
3. The generated new facts, plans and goals are stored into the Static KB.
4. If a new goal is chosen and/or there are some information to be sent to

another agent, it is stored into the Export KB.
5. If the Export KB is not empty, its contents are sent to the coordinator.
6. The Dynamic and Export KB are cleaned.
7. A reply to coordinator is sent.

An important feature of this new architecture is that the cognitive level can
spend more time planning, establishing goals, etc, once the reactive level and, in
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some situations, the instinctive level is responsible for real-time interaction with

the environment. The cognitive level also helps the coordinator in the evaluation

of the cooperation process to achieve global goals.

5 Example
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Fig. 8. An example

An example where the proposed concurrent autonomous agent architecture

can be useful is presented in this section. Let's assume a situation where the

opponent team has the ball control and is performing an o�ensive play and

trying to pass the ball. In this situation the player close to the opponent player,

who has the ball control, will have get-ball-control-back as its local goal and will

be performing the behavior Rounding-Opponent into the reactive level. Suppose

that the opponent has tried to pass the ball, makes a mistake and the mid�elder,

player number 8, gets the ball control back. At this situation, shown in �gure

8, the agent number 8 instinctive level will recognize that the goal has been

achieved and will change the current behavior to Drive-Ball-Fwd and inform the

cognitive level of the new game state. Then the interface will perform the new

behavior and the cognitive level inference engine will choose one of the play-

patterns stored into the cognitive level to be performed involving the attack

player. This means to select a global goal to be achieved, broadcast this goal to

the involved agents and send a local goal, related with the selected global goal

to be performed by the instinctive level. Another possibility in this situation is,

just after the new behavior begins to be performed by the reactive level, to ask

the coordinator to start a cooperation process involving the attack players and

mid�elders to choose which one of the known global goals is more appropriate for

that situation. In the �rst possibility, the choice is done just taking into account

one agent information, i.e., its believes about the environment and about the
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other agents. It is not considered whether another player has stamina enough
to perform the selected play. In the second possibility, the agent will perform a
cooperation process and choose which global goal is more appropriate, taking into
account the perception information of all the agents involved in the cooperation
process.

6 Conclusions and Future Work

A concurrent autonomous agent architecture to a simulated robot soccer team
was presented in this paper. This new architecture explores the concurrent ap-
proach to implement an architecture with three levels of decision. It allows the
agent to react to an environment stimulus, to make plans, to establish goals and
to perform complex agent cooperation strategies concurrently and respecting
real-time constraints. It also provides a memory where the perception informa-
tion can be stored, allowing the agent not just to evaluate the current informa-
tion, but to evaluate the current and some early past information together. This
allows information about the object movement to be handled and the current
and past information to be used to make inferences about the environment.

Some real-time policy is also provided to ensure that the agent is handling
the newest information, like dedicated bu�er to perception information. If it is
assumed that the size of the bu�er is two, it is sure that the two last perceptual
information are stored in that bu�er. Also it is possible to choose what kind of
information will be handled �rst, perceptual or asynchronous message. Beside
this, some implementation e�ort was done to handle the received messages, like
multi-threads programming approach associated with the Unix SIGIO interrupt,
and represented a signi�cant improvement in the real-time response.

One further advantage of the proposed architecture is that the numerical
parameters of the implementation are partitioned into two subsets: the limits
of the fuzzy sets used in the reactive level controllers and the thresholds used
by the instinctive level to calculate the logical values of the symbolic variables
used in the cognitive level. In the future, we intend to use optimization methods,
such as Reinforcement Learning [8] and Genetic Algorithms [5], to independently
improve these two set of parameters. These parameters, because they refer only
to local behaviors, can be improved using simpli�ed situations, whith few players.

This architecture has been used to implement the UFSC-Team and it is al-
ready integrated to the partial implementation of the environment to build cog-
nitive multi-agent system under real-time restriction, called Expert-Coop++.
It will allow the UFSC-Team to employ complex cooperation strategies that
use both perception information and some communication among the agents in-
volved into the cooperation process. In a near future some cooperation strategies
will be implemented and evaluated in the UFSC-Team.
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