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Abstract. This report discusses two major views on BDI deliberation
for autonomous agents. The �rst view is a rather conceptual one, present-
ing general BDI design principles, namely heuristic options, decomposed
reasoning and layered planning, which enable BDI deliberation in real-
time domains. The second view is focused on the practical application of
the design principles in RoboCup Simulation League. This application
not only evaluates the usefulness in deliberation but also the usefulness in
rapid cooperative implementation.We compare this new approach, which
has been used in the Vice World Champion team AT Humboldt 98, to
the old approach of AT Humboldt 97, and we outline our ideas for further
improvements, which are still under work.

Conditions faced by deliberation in multi agent contexts di�er signi�cantly
from the basic assumption of classical AI search and planning. Traditional game
playing methods for example assume a static well-known setting and a �xed
round-based interaction of players by a �nite set of actions. Additionally, play-
ers have a rather long time for deliberation. In contrary to that, many real-world
domains are characterized by a continuous action space and an environment that
is permanently changed not only by the agent itself, but also by parallel events
and actions of other agents. Domains with the need for real-time computing
demand in addition time-bounded deliberation processes. The RoboCup Simu-
lation League [9] is an arti�cal soccer testbed for the international evaluation of
approaches that aim at agent deliberation in such real-time dynamic domains.

The Belief-Desire-Intention (BDI) architecture founded on Cognitive Science
(refer e. g. to [1]) has been applied to deliberation in Arti�cial Intelligence by
several researchers (e. g. [3, 8, 14]). It claims to be highly suitable for domains
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that are characterized by a non-deterministic environment, competing desider-
ata, local information and bounded rationality. We have recently proven this
to be true in RoboCup [2, 11]. We have also reported that structuring agents
according to BDI is advantageous in the implementation process of RoboCup
teams [7].

This report discusses two major views on BDI deliberation for autonomous
agents. The �rst view given in section 1 is a rather conceptual one, presenting
design principles, that can help to structure deliberation in real-time domains.
In section 2, these design principles are directly evaluated by applying them
to RoboCup. The development of RoboCup agents does not only impose con-
straints and diÆculties on the deliberation design, but also on the implementa-
tion process. Usually, RoboCup development teams consist of several people with
heterogeneous skills. Hence, section 2 also gives a glimpse on time- and resource-
bounded software engineering, which is supported by the BDI design principles.
In the conclusions we brie
y evaluate and compare the BDI approach of AT
Humboldt 97 to the presented approach, which has been used for RoboCup 98.
Moreover, we outline our ideas for further improvements, which are still under
work.

1 BDI Design Principles

The presented principles examine the following design tasks: What options of
acting may an agent have in a given situation and what is their heuristic utility?
Which of these options shall a rational agent choose as desired and intended?
How can the intended options be pursued eÆciently? These tasks directly cor-
respond to consecutive phases in the deliberation design process.

1.1 Heuristic Options

As well as classical AI search is not suÆcient for real-time dynamic domains,
its set of terms, including \state" for the given situation and \operand" for
an atomic action, is not suÆcient to describe the agent's environment and its
abilities to act. We therefore have been inspired by the notions world and option

as introduced by Rao and George� in [13] to substitute these terms.

A world is a timed snapshot of all environmental information which may be of
use for the agent. Since we assume a situated agent's view on the environment,
a world represents always local and incomplete (and even partially incorrect)
knowledge about the real environment. Hence, our understanding of world is
equivalent to that of believed world. Since the agent has usually more than one
option to act, there are di�erent following worlds. Some of these worlds ful�ll
certain conditions to be desirable for an agent. This subset of possible worlds
is called desired worlds in classical BDI theory. Only a subset of these desired
worlds may be achievable and consistent with respect to the given circumstances,
and a rational agent may choose some of them to become intended worlds.
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The other important notion is \option". In terms of possible future worlds,
each option corresponds to a set of future worlds, where some conditions (e. g. ball
control by the player) are ful�lled. Some of these worlds may be reachable by a
related plan of the agent. But such a plan might also fail according to the non-
determinism mentioned above, e. g. it might end in a world, where the desired
condition does not hold.

The development of the world depends on the actions of others players, and
of the uncertainty of the environment, too. The actions of cooperating agents
are predictable to some extend. But the behavior of opponents is nearly unpre-
dictable: We might assume that they behave in their best way, but then again
we need to know about best plans (from opponents' view in this case). Thus,
the outcome of a plan is non-deterministic from an agent's point of view. In
[11] a theoretical model using Utility Theory (e. g. [12]) is used to describe this
situation. In any case, it is impossible to compare all available plans by related
calculations in a reasonable time.

This forces an approach according to the principles of \bounded rationality"
[1] in the spirit of BDI. Our approach is based on heuristic options, which are the
domain for desires and intentions (corresponding to a class option in object-
oriented programming). Heuristic options are chosen from typical short-term
goals, e. g. ball interception in soccer. It is important, that such goals consider
a planning horizon which is restricted, but not in a uniform manner (a ball
interception might e. g. last 3 or 30 steps). It is possible to enlarge this horizon
by medium-term goals.

Options are realized by skills, which are con�gurable plans | or parameteriz-
able procedures from the programming viewpoint, respectively. They implement
typical basic capabilities of the agent, e. g. running, kicking, dribbling of RoboCup
agents. As their names imply, they are in close relation to the options.

The task of deliberation is now the choice of a promising skill with appro-
priate parameters. This is basically the same problem as the above choice of a
best plan, but our BDI-setting allows for useful heuristics. At �rst, we choose
desires from the set of all available options: The options are ordered by approx-
imations of their utilities, and the best scoring are considered as desires. Then
it is proven, whether there really exists a plan for the achievement of such a
desire. If it does, then the desire is chosen as an intention, which is successively
re�ned by determining useful parameters for a related skill. According to BDI
theory, the intention sets a screen of admissibility for the re�nement of the plan,
and in some cases for the consideration of con
icting future desires, too. Our
utility approximation tries to determine a useful option, for which suÆciently
reliable plans hopefully exist. When choosing such an option as a desire, we
can dramatically restrict our search in the space of plans resp. possible future
worlds. Further heuristics (including learning approaches) can be used for the
determination of the concrete plan.

In principle, we can deal with multiple concurrent intentions { and we will
use it in the future. Up to now additional intentions occur only in the special
form of constraints: Several options may have certain properties in common. This
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holds especially in the case of resource consumption, which could be interpreted
as costs for the execution of an option. Resource control is done by constraints,
which can be applied to the heuristic utility calculation of an option. Constraints
have also utilities. They can increase the overall expected utility of the option,
which considers to ful�ll them.

Concerning software technology, we state, that up to now agent oriented
programming | and especially the implementation of BDI | has been mostly
considered in the tradition of logic and rule based programming (e. g. [17, 6,
18]). Our approach uses agent oriented techniques as a structuring method in
an object-oriented environment. Traditional programs are related to well under-
stood control 
ows: The programmer knows in advance, which procedures with

which parameters are to be called under which concrete conditions. This is im-
plemented using the control structures of procedural languages. The situation
changes in the case of autonomous agents in highly dynamic and complex worlds:
The programmer does not know in advance all the conditions to call a procedure
with appropriate parameters. Only the criteria of such calls can be described to
some extend (as in a chess program: the programmer does not know about all
concrete moves, only some decision criteria can be implemented). Instead of a
�xed procedure control 
ow, an agent program has to implement a reasoning
process for the choice of procedures. We will discuss some more details on this

exibility of control in the following subsection.

1.2 Decomposed Reasoning

BDI reasoning means to us the rational choice of promising options to become
desires and intentions. This process should show the following properties, which
are related to bounded rationality inside the agent as well as to software tech-
nological requirements:

Time-boundedness | In a real-time environment the reasoning process is
bounded by time restrictions. Either the environment may enforce a timely
decision (e. g. in applications with security demands) or late decisions may
lead to suboptimal behavior (i.e. missing an opportunity to act).

Distinction of Control and Knowledge | The control of the reasoning
process itself should be generic, such that it is independent from the domain-
speci�c options and remains 
exible.

Independence of Options | Alternating, deleting or adding an option
should in
uence the reasoning process and other options only marginally
or even not at all. This property could be called scalability.

The main idea that guarantees the ful�llment of the above mentioned de-
mands is the decomposition of the reasoning process into modular heuristic op-
tions. In our model, every option implements a standardized interface, which de-
�nes an eÆcient utility estimation, an attainability predicate, a layered planner
and a continuation enforcement predicate. This interface is used by the detached
reasoning process as shown by �gure 1. The concepts of decision points, continu-
ation enforcement and layered planning will be described in the next subsection.

534 J. Wendler et al.



Determine Constraints

Determine Desires

Desire -> Intention

Desire
Remove

Choose best Desire

Is Desire
realizable?

Yes

No

Determine Intention

Decision Point:
Force Continuation

of Intention?

Plan Intention

No

Yes

WorldModel Data

Partial Plan

Fig. 1. BDI Reasoning Process

An initial reasoning process starts with the determination of applicable con-
straints. Given a domain-speci�c set of possible constraints PC and a utility
threshold MIN CONSTRAINT UTILITY, the set of currently applicable constraints
C can be determined by

C = fc 2 PC j c:utility > MIN CONSTRAINT UTILITYg:

Given a domain-speci�c set of possible options PO and a utility threshold
MIN DESIRE UTILITY, the set of current desires D can be determined by

D = fo 2 PO j o:utility (C) > MIN DESIRE UTILITYg:

When choosing only one intention from the desires, the current intention i can
be determined under consideration of the recent intention ri by

i = ( arg max
d2D

fd:utility (C) j d:isPossibleg)
| {z }

possible desire with maximal utility

:adapt (ri) :
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Usually there is only one desire with a maximal utility, which is then chosen
as intention. If there are two or more desires with the same maximal utility no
further destinction between the desires can be done, so the intention is chosen
arbitrary among these desires.

Let's look at the demanded properties of a BDI reasoning process in dynamic
environments. The time-boundedness of the presented reasoning process depends
on the eÆciency of the constraints' and options' utility estimations. The best
solution for utility estimations are approximation algorithms, which deliver the
better estimations, the more computing time is available. The control process
itself is highly eÆcient, since it follows a simple greedy approach and calculates
the costly isPossible method only in case of promising desires. Control and
knowledge is fully detached, because all utility and planning heuristics are encap-
sulated in options. This also supports the demanded scalability of the reasoning
process, since options estimate their utility independently from other options.

1.3 Layered Planning

In making a rational choice of a single intention from the given desires, the agent
has decided, what to do. The planning task is then to determine, how to do it.
In dynamic environments there is always a trade-o� between short-term reactive
control and long-term deliberative planning [4]. Reactive control has the advan-
tage of being always well-informed about the environment and the disadvantage
of a highly restricted horizon. Just the opposite holds for long-term planning.
To adjust the agent's planning horizon properly, we are experimenting with lay-

ered planning, which tries to incorporate the advantages of both reactivity and
planning (related to abstractions [10, 16] and Hierarchical Task Network (HTN)
planning [5, 15]). Figure 2 shows the di�erent layers of planning, which include
coarse-grained planning on the intention layer, �ne-grained planning on the skill
layer and execution on the atomic actions layer. Following the principle of de-
composed reasoning, all the functionality described here lies within the intention,
chosen by the reasoning process.

The topmost layer shows exactly one (abstract) intention that describes the
intended transition from the current world to a new world satisfying the in-
tended conditions. The coarse-grained planning horizon directly corresponds to
the estimated length of the intention. Thus, an intention corresponds to a single
compound task in HTN planning. There is always a special problem in choos-
ing the time points for monitoring the progress of intention execution and for
reconsidering the intention. Too few monitoring and reconsideration might lead
to a behavior, which is not appropriate to the current situation, too much of it
could overload the deliberation process. Our concept of monitoring and recon-
sideration involves the use of so-called decision points. They are time points, at
which the agent monitors the environment and reconsiders its choices.

Decision points usually enclose several steps for atomic actions. At this point,
�ne-grained planning is needed. Fine-grained planning is done by the agent's skill
that is associated to the chosen intention. Compared to HTN planning, a skill
is similar to a method leading to primitive tasks. Since the distance between
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Fig. 2. Layered Planning

decision points might be dynamic and non-deterministic, �ne-grained planning
must have an anytime-property. That means, that these short-term plans should
need no or only short initialization sequences. Otherwise, there would be much
initialization overhead in case of near decision points. The approach of �ne-
grained planning is domain-dependent and can vary from intention to intention.
For example it could use classical planning approaches, reactive planning or pre-
compiled plan skeletons. Additionally, it should regard the constraints put onto
the given intention. The action sequences planned by the �ne-grained planner
can directly be executed by atomic actions.

To guarantee stability of committed intentions we propose two di�erent
strategies, which in
uence the whole layered planning approach. The �rst is
implicit persistence. Following this strategy, the agent considers all time points,
at which the environment's behavior (e. g. an input of sensory data) implies
reconsideration, as (heteronomous) decision points. In case of an environment,
that has changed as expected, the intention chosen at one of these decision points
will be most likely the same as the recent un�nished intention. In contrary to
that, explicit persistence means, that the agent chooses on its own, on what
time point to reconsider its intention. This is implemented by the intention's
continuation enforcement predicate, which is illustrated in �gure 1. In general,
all planning layers could be subject to protections against unwanted changes:
We might forbid a change of the intention while allowing a modi�cation of the
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related plan, and we might even forbid changes of the plan itself (which we call
\fanatism"), respectively.

2 Cooperative Implementation in RoboCup

Giving a brief example of a typical option in arti�cial soccer, in this section we
will apply the presented generic BDI principles to the development of RoboCup
agents. We will show, that these principles can not only be successfully used
for agent deliberation, but also for rapid cooperative implementation. A more
detailed report on this issue can be found in [7].

2.1 Constraints on Time and Sta�

Arti�cial soccer is very useful for practical exercises in the area of Distributed
Arti�cial Intelligence. Soccer is well-known and interesting for students. Results
of work can directly be seen. In a practical exercise attached to the course 'mod-
ern methods of AI' in summer semester 1998 several students had to be included
in the development process of AT Humboldt 98. In opposite to the year before,
there was only few time between the start of the practical exercise (April) and
the World Championship 98 (in the beginning of July).

Because of these hard time constraints, the project management was a critical
task in this project. The development team of AT Humboldt 98 consisted of one
core team including four persons and four feature teams with altogether eleven
developers. Additionally, one of the major aims was to establish a code base,
which is understandable, reusable and which can be extended and improved by
additional work of students.

Due to the short time amount, much work had to be done in parallel: The
students of the practical exercise had to be introduced into the new domain. Then
the students had to pick up one component of the agent to specify, implement
and test. After that, these components had to be integrated in the �nal agent and
to be tested again to stabilize the behavior of the agents. The design principles of
modular heuristic options and decomposed reasoning helped a lot in structuring
the implementation work and breaking up the deliberation into small and to
some degree independent pieces.

With AT Humboldt 99 we started to extend AT Humboldt 98 by improved
skills, new options and partly by a larger planning horizon. These extensions are
also subject to further improvements in the next versions of AT Humboldt.

2.2 Application of the BDI Design Principles: An Example

Our RoboCup agents know several active options, which may be only desired, if
the agent has possession of the ball. They include such options like GoalKick,
DirectPass, ForwardPass, Dribbling and so on. If the agent does not control
the ball, passive options will be desirable. They include CollectInformation,
InterceptBall, GoToHomePosition, DefendGoal and others. All these options
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have their own utility estimations, continuation enforcement predicates and plan-

ners. There are also two constraints, that have impact on the reasoning on option

as described above. They are ConserveStamina and AvoidOffside.

One of the passive options used for our agent team is the option Intercept-

Ball. If useful, it will represent the desire of intercepting the ball to gain ball

control. The utility of intercepting the ball directly depends on the expected

success in gaining ball control. The ball may be intercepted in di�erent ways.

Directly running into the way of the ball and waiting for it is secure but subop-

timal, since an opponent may reach the ball �rst. Otherwise, if the agent tries to

intercept the ball as fast as possible, it may miss the ball because of unforseen

delays in its run. For a complete analysis of such a problem all possible plans

have to be taken into account. As mentioned before, this seems impossible or

at least not manageable. Therefore, we use a heuristic to calculate the utility of

this option.

To estimate the utility of InterceptBall the agent calculates for itself and

every team mate, how many time steps it will need to gain ball control if it moves

optimally. For this calculation the agent uses the position of the team mate

and the position and the speed of the ball. Furthermore this utility estimation

can be in
uenced by the constraint ConserveStamina, which may be put onto

InterceptBall. After having estimated the utility of this option, it may be

chosen as a desire or even as an intention by the decomposed reasoning process.

In the latter case, the rough area for intercepting the ball is already known

by the utility estimation. Hence, when �xing InterceptBall as intention, we

determine the precise destination region at which the ball can be intercepted

early but also relatively secure. The horizon of this coarse-grained plan corre-

sponds to the time needed to gain ball control. After that, the coarse-grained

plan has to be re�ned by a �ne-grained plan reaching to the next decision point,

which is done by a corresponding skill. While planning the �rst atomic actions

towards the destination region according to the �ne-grained planning horizon,

the skill also considers the ConserveStamina constraint and avoids obstacles in

the agent's path.

If an agent has chosen the option InterceptBall as intention and has de-

termined a corresponding region, it may loose sight of the ball, while running to

the destination region1. If the player reconsidered its intention every time a new

sensor information arrives, it might try to look for the ball again and as a con-

sequence loose time. To avoid this, the agent uses the continuation enforcement

predicate of InterceptBall. During the calculation of the destination region,

the agent also determines a \don't care" interval, in which no reconsideration

is allowed. This interval is given by the minimal time, the fastest player needs

to intercept the ball. Nevertheless, if the agent gets new information about the

ball without additional actions, it is able to successfully reconsider its intention.

In this case, the intention is not enforced to be continued. This behavior im-

1 Players can use necks in Soccer Server Version 5, thus they can now turn his neck

to observe the ball while running. Nevertheless, the example explains the idea of

intention stability.
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plements the mentioned explicit persistence and guarantees the stability of the

InterceptBall intention.

3 Conclusion

To give a brief conclusion and overall evaluation of the presented BDI principles

and their implementation, we compare them to the deliberation approach of the

former soccer team AT Humboldt 97.

The development of the deliberation process in AT Humboldt 97 was rather

intuitive. The team's knowledge of BDI design and implementation was just

evolving and did not directly guide the development. Due to this, the resulting

code did not precisely re
ect the use of mental categories like belief, desires or

intentions. For example, the choice of desires and intentions was done by a �xed

hard-coded decision tree, which mixed up control and domain-speci�c knowledge.

Hence, its development lay within the hands of only one person and it was hard to

maintain. Writing the papers published later, helped the team to theoretically

reconsider the techniques, which had been used informally. Ideas, which were

already present in 1997, like layered planning, implicit and explicit persistence

and others, underwent a strict review by a widened group of developers. This

reconsideration lead to a full re-implementation of AT Humboldt.

The presented BDI principles have supported this re-implementation. The

decomposition of control and knowledge has shown to be highly valuable for

transparency and for rapid cooperative implementation. The notion of a modu-

lar heuristic option has played a central role in this context. By encapsulating

the domain-speci�c knowledge, an option could be designed and realized almost

independently from other options. Though, this modularity has certain draw-

backs. The heuristic utility of a given option can not be found trivially. Another

serious problem is the global normation, such that the utilities of di�erent op-

tions remain comparable. We consider this to be a great challenge for learning

techniques in our future work.

Since the reasoner always chooses only one intention to be pursued, the team

had to introduce constraints to allow parallel in
uences. This concept has not

fully paid o�, since only a few of them could be identi�ed in the real applica-

tion. A better approach for future work would be the introduction of parallel

intentions. In contrary to that, the principle of layered planning and persistence

showed encouraging results. It allowed to balance the trade-o� between adaption

and stability very well, especially in case of passive options.

The BDI deliberation process of AT Humboldt 98 has proven to be 
exible,

scalable and maintainable. It provides a useful base for further improvements,

which are still under work. The main goal is the introduction of longer planning

intervals. A \cascade of intentions" will be used to establish raw sequences of

subsequent future steps, which can be re�ned according to the development of the

environment. \Emergent cooperation" in AT Humboldt 98 and 99 resulted from

the programmer's knowledge about the implementation. Now we want to extend
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this behavior by explicitly plannable cooperation. On the lower level, additional
and improved skills are to be developed (e. g. using learning techniques).
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