Skip to main content

Skewness of Gabor Wavelets and Source Signal Separation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2251))

Abstract

Responses of Gabor wavelets in the mid-frequency space build a local spectral representation scheme with optimal properties regarding the time-frequency uncertainty principle. However, when using Gabor wavelets we observe a skewness in the mid-frequency space caused by the spreading effect of Gabor wavelets. Though in most current applications the skewness does not obstruct the sampling of the spectral domain, it affects the identification and separation of source signals from the filter response in the mid-frequency space. In this paper, we present a modification of the original Gabor filter, the skew Gabor filter, which corrects skewness so that the filter response can be described with a sum-of-Gaussians model in the mid-frequency space. The correction further enables us to use higher-order moment information to separate different source signal components. This provides us with an elegant framework to deblur the filter response which is not characterized by the limited spectral resolution of other local spectral representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabor, D.: Theory of communication. Journal of the IEE 93 (1946) 429–457

    Google Scholar 

  2. Lee, T. S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Analysis and Machine Intelligence 18(10) (1996) 959–971

    Article  Google Scholar 

  3. Adelson, E. H., Bergen, J. R.: Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America 1(2) (1985) 284–299

    Google Scholar 

  4. Heeger, D. J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4) (1987) 279–302

    Article  Google Scholar 

  5. Daugman, J. G.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America 2(7) (1985) 1160–1169

    Article  Google Scholar 

  6. Koenderink, J., Doorn, A. V.: Representation of local geometry in the vision system. Biological Cybernetics 55 (1987) 367–375

    Article  MATH  MathSciNet  Google Scholar 

  7. Heitger, F., Rosenthaler, L., der Heydt, R. V., Peterhans, E., Kuebler, O.: Simulation of neural contour mechanisms: from simple to end-stopped cells. Vision Research 32(5) (1992) 963–981

    Article  Google Scholar 

  8. Beauchemin, S., Barron, J.: The frequency structure of 1d occluding image signals. IEEE Trans. Pattern Analysis and Machine Intelligence 22 (2000) 200–206

    Article  Google Scholar 

  9. Grzywacz, N., Yuille, A.: A model for the estimate of local image velocity by cells in the visual cortex. Proc. Royal Society of London. B 239 (1990) 129–161

    Google Scholar 

  10. Bovik, A. C., Clark, M., Geisler, W. S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Analysis and Machine Intelligence 12(1) (1990) 55–73

    Article  Google Scholar 

  11. Bracewell, R. N.: The Fourier Transform and Its Applications. McGraw-Hill Book Company (1986)

    Google Scholar 

  12. Jain, A., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12) (1991) 1167–1186

    Article  Google Scholar 

  13. Manjunath, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Analysis and Machine Intelligence 18(8) (1996) 837–842

    Article  Google Scholar 

  14. Poggio, T., Girosi, F.: Networks for approximatation and learning. Proceedings of the IEEE 78 (1990) 1481–1497

    Google Scholar 

  15. Daugman, J.: Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech, and Signal Processing 36(7) (1988)

    Google Scholar 

  16. Simoncelli, E. P., Farid, H.: Steerable wedge filters for local orientation analysis. IEEE Trans. Image Processing 5(9) (1996) 1377–1382

    Article  Google Scholar 

  17. Yu, W., Daniilidis, K., Sommer, G.: Approximate orientation steerability based on angular Gaussians. IEEE Trans. Image Processing 10(2) (2001) 193–205

    Article  MATH  Google Scholar 

  18. Fleet, D. J.: Measurement of Image Velocity. Kluwer Academic Publishers (1992)

    Google Scholar 

  19. Fleet, D., Langley, K.: Computational analysis of non-Fourier motion. Vision Research 34 (1994) 3057–3079

    Article  Google Scholar 

  20. Shizawa, M., Mase, K.: A unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis. In: IEEE Conf. Computer Vision and Pattern Recognition, Maui, Hawaii, June 3–6 (1991) 289–295

    Google Scholar 

  21. Jähne, B.: Spatio-Temporal Image Processing. Springer-Verlag (1993)

    Google Scholar 

  22. Yu, W., Sommer, G., Daniilidis, K.: Skewness of Gabor wavelets and source signal separation. submitted to IEEE Trans. Signal Processing (2001)

    Google Scholar 

  23. Radon, J., translated by P. C. Parks: On the determination of functions from their integral values along certain manifolds. IEEE Trans. Medical Imaging 5(4) (1986) 170–176

    Article  Google Scholar 

  24. Cardoso, J.: Source separation using higher order moments. In: IEEE International Conf. on Acoustics, Speech and Signal Processing. (1989) 2109–2112

    Google Scholar 

  25. Farid, H., Adelson, E. H.: Separating reflections from images using independent components analysis. Journal of the Optical Society of America 16(9) (1999) 2136–2145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, W., Sommer, G., Daniilidis, K. (2001). Skewness of Gabor Wavelets and Source Signal Separation. In: Tang, Y.Y., Yuen, P.C., Li, Ch., Wickerhauser, V. (eds) Wavelet Analysis and Its Applications. WAA 2001. Lecture Notes in Computer Science, vol 2251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45333-4_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-45333-4_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43034-6

  • Online ISBN: 978-3-540-45333-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics