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Abstract - The wavelet transform has become the most interesting new algorithm for still
image compression. Yet there are many parameters within a wavelet analysis and synthesis
which govern the quality of a decoded image. In this paper, we discuss different image bound-
ary policies and their implications for the decoded image. A pool of gray—scale images has
been wavelet—-transformed with different settings of the wavelet filter bank and quantization
threshold and with three possible boundary policies.

Our empirical evaluation is based on three benchmarks: a first judgement regards the
perceived quality of the decoded image. The compression rate is a second crucial factor.
Finally, the best parameter settings with regard to these two factors is weighted with the cost
of implementation.

Contrary to the new standard JPEG-2000, where mirror padding is implemented, our
investigation proposes circular convolution as the boundary treatment.
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1. INTRODUCTION

Due to its outstanding performance in compression, new image coding techniques such as the
new standard JPEG-2000 [SCEQ0] [ITUO00], focus on the wavelet transform (WT). As we were
interested in the influence of the filter length on image coding quality — and contrary to the JPEG-
2000 standard, where a reversible (Daubechies 5/3-tap) and an irreversible (Daubechies 9/7-tap)
wavelet filter bank are proposed — we have investigated the orthogonal and separable wavelet filters
developed by Daubechies [Dau92] which belong to the group of wavelets used most often in image
coding applications. They specify a number ng of vanishing moments: if a wavelet has ny vanishing
moments, then the approximation order of the wavelet transform is also ng.

However, implementations of the WT on still images entail other aspects as well: speed, decom-
position depth, and boundary treatment policies. Long filters require more computing time than
short ones. Furthermore, the (dyadic) WT incorporates the aspect of iteration: the low—pass filter
defines an approximation of the original signal which contains only half as many coefficients. This
approximation successively builds the input for the next approximation. For compression purposes,
coefficients in the time—scale domain are discarded and the synthesis quality improves with the
number of iterations on the approximation. Finally, the WT is mathematically defined only within
a signal; image applications thus need to solve the boundary problem. Depending on the selected
boundary policy, the number of iterations in a WT might vary with the filter length. Moreover, the
longer the filter length, the more important the boundary policy becomes.

In this work, we investigate the effects of three different boundary policies in combination with
different wavelet filter banks on a number of gray—scale images. A first determining factor is the
visual perception of a decoded image. As we will see, although the quality varies strongly with the
selected image, for a given image it remains relatively unconcerned about the parameter settings. A
second crucial factor is therefore the expected compression rate. Finally, the cost of implementation



weights these two benchmarks. Our empirical evaluation leads us to recommend circular convolution
as boundary treatment, contrary to JPEG—2000.

The article is organized as follows. In Section 2, we cite related work in wavelet filter evaluation.
Section 3 reviews the wavelet transform and details the aspects that are important for our survey.
In Section 4, we present the technical evaluation of the wavelet transform and detail our results.
The article ends in Section 5 with an outlook on future work.

2. RELATED WORK

Villasenor’s group researches wavelet filters for image compression. In [VBL95], the focus is
on biorthogonal filters, and the evaluation is based on the information preserved in the reference
signal, while [GFBV97] focuses on a mathematically optimal quantizer step size. In [AK99], the
evaluation is based on lossless as well as on subjective lossy compression performance, complexity
and memory usage. Interpretation of why the observations are made is nevertheless lacking. Strutz
has thoroughly researched the dyadic WT in [Str97]: the design and construction of different wavelet
filters is investigated, as are good Huffman and arithmetic encoding strategies. An investigation of
boundary policies, however, is lacking. The new standard JPEG—-2000 proposes mirror padding (or:
periodic symmetric extension) as the image boundary treatment [SCE00] [ITUOO].

3. THE WAVELET TRANSFORM

A wavelet is an (ideally) compact function, i.e., outside a certain interval it vanishes. Imple-
mentations are based on the fast wavelet transform, where a given wavelet (i.e., mother wavelet) is
shifted and dilated so as to provide a base in the function space. In other words, a one-dimensional
function is transformed into a two—dimensional space, where it is approximated by coefficients that
depend on time (determined by the translation parameter) and on scale, i.e., frequency (determined
by the dilation parameter). — By convention, the notion of time is used even for signals that depend
on location rather than on time. Thus, a wavelet-transformed image is also said to be located in
the time—scale domain. — The localization of a wavelet in time spread (o;) and frequency spread
(0w) has the property o:0,, = const. However, the resolution in time and frequency depends on the
frequency. This is the so—called zoom phenomenon of the WT: it offers high temporal localization for
high frequencies while offering good frequency resolution for low frequencies. Consequently, the WT
is especially well suited to analyze local variations such as those in still images: a high—frequency
part of an image (e.g., a transition from bright foreground to black background) will be analyzed
by short, high-amplitude wavelets. Low variations (e.g., gray value within the same object) will be
analyzed by long, low—-amplitude wavelets.

3.1 Wavelet Transform and Filter Banks

By introducing multiresolution, Mallat [Mal98] [Mal87] made an important contribution to the
application of wavelet theory to multimedia: the transition from mathematical theory to filters.
Multiresolution analysis is implemented via high—pass filters, resp. band—pass filters (i.e., wavelets)
and low—pass filters (i.e., scaling functions). In this context, the wavelet transform of a signal can
be realized with a filter bank via successive application of a 2—channel filter bank consisting of high—
pass and low—pass filters: the detail coefficients (resulting from the application of the high—pass,
resp. band—pass filter) of every iteration step are kept apart, and the iteration starts again with the
remaining approximation coefficients (from application of the low—pass filter) of the transform. This
multiresolution theory is ‘per se’ defined only for one-dimensional wavelets on one—dimensional sig-
nals. As still images are two—dimensional discrete signals and two—dimensional wavelet filter design
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(a) Mirror Padding. (b) Circular Convolution.

Figure 1: Mirror padding versus circular convolution for a signal of length of 8 and a filter with 6
taps. Here, the filter is a low—pass filter, thus the coefficients resulting from the convolution form the
approximation entries. In (a), the padding results in inflated storage space in the wavelet domain.
In (b), the approximation contains half as many entries as the original signal. Together with the
details, the entries of the wavelet domain require the same storage space as the original signal.

remains an active field of research [KS00] [KV95] [TK93], current implementations are restricted to
separable filters. The successive convolution of filter and signal in both dimensions opens two poten-
tial iterations: standard decomposition (i.e., all approximations, even in mixed terms, are iterated)
and non-standard decomposition (i.e., only the purely low—pass filtered parts of every approximation
enter the iteration). In this work, we concentrate on the non—standard decomposition.

3.2 Image Boundary

A digital filter is applied to a signal by convolution. Convolution, however, is defined only within
a signal. In order to result in a reversible wavelet transform, each signal coeflicient must enter into
filter_length/2 calculations of convolution (here, the subsampling process by factor 2 is already
incorporated). Consequently, every filter longer than two entries, i.e., every filter except Haar,
requires a solution for the boundary. Furthermore, images are signals of a relatively short length (in
rows and columns), thus the boundary treatment is even more important than e.g. in audio coding.
Two common boundary policies are padding and circular convolution.

Padding Policies. With padding, the coefficients of the signal on either border are padded
with filter length-2 coefficients (see Figure 1 (a)). Consequently, each signal coefficient enters
into filter_length/2 calculations of convolution, and the transform is reversible. Many padding
policies exist: constant padding, where the signal’s boundary coefficient is padded; mirror padding,
where the signal is mirrored at the boundary; spline padding, where the border coefficients are
extended by spline interpolation, etc. All padding policies have in common that each iteration step
physically increases the storage space in the wavelet domain. In [Wic98], a theoretical solution
for the required storage space (depending on the signal, the filter bank and the iteration level) is
presented. Nevertheless, its implementation remains sophisticated.

Circular Convolution.  The idea of circular convolution is to ‘wrap’ the end of a signal to its
beginning or vice versa (see Figure 1 (b)). In so doing, circular convolution is the only boundary
treatment to maintain the number of coefficients for a WT, thus simplifying storage management?.
A minor drawback is that the time information contained in the time-scale domain of the wavelet—

IStorage space, however, expands indirectly: an image can be stored with integers, while the coefficients in the
time—scale domain require floats.



transformed coefficients ‘blurs’: the coefficients in the time-scale domain that are next to the right
border (resp. left border) also affect signal coefficients that are located on the left (resp. right).

The selected boundary policy has an important impact on the iteration behavior of the wavelet
transform: convolving the signal with a filter is only reasonable for a signal length greater than the
filter length, and each iteration step reduces the size of the approximating signal by a factor of 2.
This does not affect the iteration behavior of padding policies. With circular convolution, however,
the decomposition depth varies with the filter length: the longer the filter, the fewer decomposition
iterations are possible. For example, for an image of 256 x 256 pixels, the Daubechies—2 filter bank
with 4 taps allows a decomposition depth of 7, while the Daubechies—20 filter bank with 40 taps has
reached signal length after only 3 decomposition levels, see the table below.

Filter Bank | Taps | It. levels ||

Daub—2 4 7
Daub-3 6 6
Daub—4 8 6
Daub-5 10 5
Daub-10 20 4
Daub-15 30 4
Daub—20 40 3

Thus, the evaluation presented in Tables 1 to 4 is based on a decomposition depth of level 8 for
the two padding policies, while the decomposition depth for circular convolution varies from 7 to 3,
according to the selected filter length.

4. EMPIRICAL EVALUATION

4.1 Setup

The goal of our empirical evaluation was to find the best parameter settings for the choice of the
wayvelet filter bank and for the image boundary policy to implement. The performance was evaluated
according to the criteria:

1. visual quality,
2. compression rate,
3. complexity of implementation.

The quality was rated based on the peak signal-to—noise ratio (PSNR)2. The compression rate
was simulated by a simple quantization threshold: the higher the threshold, the more coefficients
in the time-scale domain are discarded, the higher is the compression rate. More precisely, the
threshold was carried out only on the parts of the image that have been high—pass filtered (resp.
band-pass filtered) at least once. In other words, the approximation of the image was excluded from
the thresholding due to its importance for the image synthesis.

Our evaluation was set up on the six gray—scale images of size 256 x 256 pixels demonstrated in
Figure 2. These test images have been chosen in order to comply with different features:

2When org(z,y) depicts the pixel value of the original image at position (z,y), and dec(z,y) denotes the pixel
value of the decoded image at position (z,y), then
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e contain many small details: Mandrill, Goldhill,

e contain large uniform areas: Brain, Lena, Camera, House,

e be relatively symmetric at the left-right and top—bottom boundaries: Mandrill, Brain,
e be very asymmetric with regard to these boundaries: Lena, Goldhill, House,

e have sharp transitions between regions: Brain, Lena, Camera, House,

e contain large areas of texture: Mandrill, Lena, Goldhill, House.

4.2 Results

Image—Dependent Analysis.
The detailed evaluation results for the six test images are presented in Tables 1 and 2. Some
interesting observations made from these two tables and their explanations are as follows:

o For a given image and a given quantization threshold, the PSNR remains astonishingly constant
for different filter banks and different boundary policies.

e At high thresholds, ‘Mandrill’ and ‘Goldhill’ yield the worst quality. This is due to the large
amount of details in both images.

e ‘House’ produces the overall best quality at a given threshold. This is due to its large uniform
areas.

e Due to their symmetry, ‘Mandrill’ and ‘Brain’ show good quality results with padding policies.

e The percentage of discarded information at a given threshold is far higher for ‘Brain’ than
for ‘Mandrill’. This is due to the black uniform background of ‘Brain’, which produces small
coefficients in the time—scale domain compared to the many small details in ‘Mandrill’ which
produce large coefficients and thus do not fall below the threshold.

e With regard to the heuristic for compression, and for a given image and boundary policy,
Table 2 reveals that
— the compression ratio for zero padding increases with increasing filter length,
— the compression ratio for mirror padding decreases with increasing filter length,

— the compression ratio for circular convolution varies, but most often stays almost con-
stant.

The explanation is as follows. Padding an image with zeros, i.e., black pixel values, is most
often a sharp contrast to the original image, thus the sharp transition between the signal and
the padding coefficients results in large coefficients in the fine scales, while the coarse scales
remain unaffected. This observation, however, is put into a different perspective for longer
filters: with longer filters, the constant run of zeros at the boundary does not show strong
variations, and the detail coefficients in the time—scale domain thus remain small. Hence,
a given threshold cuts off fewer coeflicients when the filter is longer. With mirror padding,
the padded coefficients for shorter filters represent a good heuristic for the signal near the
boundary. Increasing filter length and accordingly longer padded areas, however, introduces
too much ‘false’ detail information into the signal, resulting in many large detail coefficients
that ‘survive’ the threshold.

Image—Independent Analysis

The above examples reveal that most phenomena are signal-dependent. As a signal-dependent
determination of best—suited parameters remains academic, our further reflections are made on the
average image quality and the average amount of discarded information as presented in Tables 3 and
4 and the corresponding Figures 3 and 4.



Figure 3 visualizes the coding quality of the images, averaged over the six test images. The four
plots represent the quantization thresholds 10, 20, 45 and 85. In each graphic, the visual quality
(quantified via PSNR) is plotted against the filter length of the Daubechies wavelet filters. The three
boundary policies: zero padding, mirror padding and circular convolution are regarded separately.
The plots obviously reveal that the quality decreases with an increasing threshold. More important
are the following statements:

o Within a given threshold, and for a given boundary policy, the PSNR remains almost constant.
This means that the quality of the coding process does not or hardly depends on the selected
wavelet filter bank.

e Within a given threshold, mirror padding produces the best results, followed by circular con-
volution. Zero padding performs worst.

e The gap between the performance of the boundary policies increases with an increasing thres-
hold.

Nevertheless, the differences observed above with 0.28 dB maximum gap (at threshold = 85 and
filter length = 40) are so marginal that they do not actually influence the visual perception.

As the visual perception is neither influenced by the choice of filter nor by the boundary policy,
the coding performance has been studied as a second benchmark. The following observations are
made from Figure 4. With a short filter length (4 to 10 taps), the compression ratio is almost
identical for the different boundary policies. This is not astonishing, as short filters involve only
little boundary treatment, and the relative importance of the boundary coefficients with regard to
the signal coefficients is negligible. More important for our investigation are:

e The compression heuristic for each of the three boundary policies is inversely proportional
to their quality performance. In other words, mirror padding discards the least number of
coefficients at a given quantization threshold, while zero padding discards the most.

e With an increasing threshold, the gap between the compression ratios of the three policies
Narrows.

In the overall evaluation, we have seen that mirror padding performs best with regard to quality,
while it performs worst with regard to compression. Inversely, zero padding performs best with
regard to compression and worst with regard to quality. Circular convolution holds the midway
in both aspects. On the other hand, the gap in compression is by far superior to the differences
in quality. If we now call to mind the coding complexity of the padding approaches, compared
to the ease of implementation of circular convolution (cf. Section 3.2), we strongly recommend to
implement circular convolution as the boundary policy in image coding.

5. CONCLUSION

We have discussed and evaluated the strengths and weaknesses of different boundary policies
in relation to different orthogonal wavelet filter banks. In opposition to the JPEG-2000 coding
standard, where mirror padding is suggested for boundary treatment, we have proven that circular
convolution performance is superior in the overall combination of quality performance, compression
performance and ease of implementation.

In future work, we will improve our heuristic on the compression rate and rely on the calculation
of a signal’s entropy as it is presented in [WMO1] and [Str97].



(a) Mandrill. (b) Brain. (c) Lena.

(d) Camera. (e) Goldhill. (f) House.

Figure 2: Test images. The test images (a) and (b) are relatively symmetric at their left-right and
at their top—bottom boundary, while the images (c) — (f) are not.



Quality of visual perception — PSNR [dB]

I
H ‘| Image
|

Mandrill i Brain Il Lena H
Z€ero mirror circular Z€ero mirror circular Z€ero mirror circular
H Wavelet H padding ‘ padding convol. padding ‘ padding convol. padding ‘ padding convol. ‘
Threshold: 10 — Excellent overall quality
Daub-2 18.012 17.996 18.238 18.141 18.151 18.197 16.392 16.288 16.380
Daub-3 18.157 18.187 18.221 18.429 18.434 18.433 16.391 16.402 16.350
Daub—4 18.169 18.208 17.963 18.353 18.340 18.248 16.294 16.355 16.260
Daub-5 18.173 18.167 18.186 18.279 18.280 18.259 16.543 16.561 16.527
Daub-10 17.977 17.959 18.009 18.291 18.300 18.479 16.249 16.278 16.214
Daub-15 17.938 17.934 18.022 18.553 18.543 18.523 16.267 16.304 16.288
Daub-20 17.721 17.831 18.026 18.375 18.357 18.466 16.252 16.470 16.238
Threshold: 20 — Good overall quality
Daub-2 14.298 14.350 14.403 16.610 16.611 16.577 14.775 14.765 14.730
Daub-3 14.414 14.469 14.424 16.743 16.755 16.721 14.758 14.817 14.687
Daub—4 14.231 14.239 14.276 16.637 16.628 16.734 14.862 14.918 14.735
Daub-5 14.257 14.216 14.269 16.747 16.751 16.854 14.739 14.946 14.815
Daub-10 14.268 14.274 14.360 16.801 16.803 16.878 14.624 14.840 14.699
Daub-15 14.246 14.258 14.300 16.822 16.810 16.852 14.395 14.631 14.477
Daub-20 14.046 14.065 14.227 16.953 16.980 16.769 14.252 14.597 14.353
Threshold: 45 — Medium overall quality
Daub-2 10.905 10.885 10.910 14.815 14.816 14.747 13.010 13.052 12.832
Daub-3 10.988 10.970 10.948 15.187 15.150 15.052 12.766 13.138 12.903
Daub—4 10.845 10.839 10.885 15.014 15.029 15.056 12.820 13.132 12.818
Daub-5 10.918 10.969 10.949 15.036 15.031 14.999 12.913 13.301 12.983
Daub-10 10.907 10.929 10.913 14.989 15.013 15.212 12.447 13.066 12.795
Daub-15 10.845 10.819 10.815 15.093 15.133 15.064 12.577 12.954 12.686
Daub—20 10.784 10.872 10.843 14.975 14.934 14.882 12.299 12.877 12.640
Threshold: 85 — Bad overall quality
Daub—2 9.095 9.121 9.135 13.615 13.621 13.783 11.587 11.902 11.577
Daub-3 9.206 9.184 9.124 13.787 13.784 13.759 11.437 11.793 11.516
Daub—4 9.160 9.152 9.168 13.792 13.815 13.808 11.539 11.806 11.636
Daub-5 9.171 9.208 9.203 13.837 13.850 13.705 11.692 11.790 11.872
Daub-10 9.207 9.193 9.206 13.870 13.922 14.042 11.128 11.430 11.555
Daub-15 9.083 9.161 9.126 13.731 13.795 13.917 11.128 11.610 11.475
Daub—20 9.071 9.142 9.204 13.852 13.800 13.974 11.142 11.694 11.597
| Tmage i
H ‘| Camera i Goldhill Il House 1l
Z€ero mirror circular Z€ero mirror circular Z€ero mirror circular
H Wavelet H padding ‘ padding ‘ convol. padding ‘ padding convol. padding ‘ padding ‘ convol. ‘
Threshold: 10 — Excellent overall quality
Daub—2 17.334 17.346 17.371 16.324 16.266 16.412 19.575 19.563 19.608
Daub-3 17.532 17.560 17.625 16.322 16.296 16.358 19.640 19.630 19.621
Daub—4 17.529 17.591 17.577 16.241 16.212 16.342 19.560 19.558 19.584
Daub-5 17.489 17.448 17.389 16.214 16.193 16.154 19.613 19.555 19.566
Daub-10 17.539 17.541 17.383 16.307 16.223 16.317 19.482 19.388 19.732
Daub-15 17.747 17.530 17.523 16.012 16.067 16.033 19.653 19.671 19.726
Daub—20 17.474 17.527 17.484 16.322 16.245 16.319 19.550 19.495 19.524
Threshold: 20 — Good overall quality
Daub—2 14.387 14.365 14.396 13.937 13.940 13.898 17.446 17.480 17.471
Daub-3 14.473 14.452 14.426 13.872 13.892 13.858 17.525 17.594 17.612
Daub—4 14.438 14.438 14.430 13.828 13.836 13.753 17.468 17.647 17.351
Daub-5 14.460 14.505 14.427 13.743 13.743 13.711 17.454 17.458 17.465
Daub-10 14.468 14.400 14.409 13.762 13.785 13.798 17.592 17.635 17.689
Daub-15 14.408 14.406 14.414 13.687 13.730 13.697 17.260 17.276 17.266
Daub-20 14.384 14.370 14.362 13.700 13.782 13.731 17.476 17.449 17.240
Threshold: 45 — Medium overall quality
Daub-2 12.213 12.242 12.131 12.033 12.034 11.876 15.365 15.437 15.155
Daub-3 12.032 12.122 12.188 11.961 12.006 11.889 14.957 15.476 15.118
Daub—4 12.150 12.178 12.145 11.855 11.891 11.925 14.906 15.080 15.180
Daub-5 12.077 12.133 12.120 11.848 11.844 11.801 15.159 15.382 15.244
Daub-10 12.061 12.197 12.093 11.760 11.917 11.726 14.776 15.246 14.872
Daub-15 12.074 12.059 12.176 11.725 11.855 11.753 14.810 15.090 14.969
Daub—20 11.798 11.975 12.048 11.763 11.803 11.703 14.420 15.033 14.609
Threshold: 85 — Bad overall quality
Daub-2 11.035 11.161 11.041 10.791 10.805 10.844 13.530 13.804 13.703
Daub-3 11.092 11.176 11.080 10.943 10.916 10.754 13.488 13.726 13.627
Daub—4 10.943 11.152 11.046 10.861 10.904 10.740 13.524 13.613 13.510
Daub-5 11.018 11.148 11.129 10.826 10.935 10.738 13.114 13.903 13.111
Daub-10 10.815 11.064 10.987 10.824 10.972 10.771 13.158 13.695 13.434
Daub-15 10.779 11.005 10.982 10.737 10.838 10.607 13.073 13.357 13.123
Daub—20 10.688 11.031 11.090 10.709 10.819 10.766 13.173 13.257 13.678

Table 1: Detailed results of the quality evaluation with the PSNR on the six test images. The mean values

over the images for a fixed wavelet filter bank and a fixed boundary policy are given in Table 3.



Discarded information in the time-scale domain due to the threshold — Percentage [%] I

I
H ‘| Image I
|

Mandrill i Brain Il Lena 1l
Z€ero mirror circular Z€ero mirror circular Z€ero mirror circular
H Wavelet H padding ‘ padding | convol. padding ‘ padding | convol. padding ‘ padding | convol. ‘
Threshold: 10 — Excellent overall quality
Daub-2 42 41 41 83 83 83 78 79 79
Daub-3 43 42 42 84 84 84 78 80 80
Daub—4 44 42 41 85 84 84 78 79 79
Daub-5 45 41 41 85 84 84 79 79 80
Daub-10 53 38 41 87 82 84 79 74 78
Daub-15 59 35 40 88 78 82 82 69 e
Daub-20 65 32 40 89 74 83 83 64 7
Threshold: 20 — Good overall quality
Daub—-2 63 63 63 91 91 91 87 89 88
Daub-3 64 63 64 92 91 91 87 89 89
Daub—4 65 63 63 92 91 91 87 88 89
Daub-5 66 62 63 92 91 91 87 90 89
Daub-10 70 58 63 93 89 91 88 83 88
Daub-15 74 56 62 93 86 91 89 79 88
Daub-20 78 51 63 94 82 91 90 74 88
Threshold: 45 — Medium overall quality
Daub-2 86 86 87 96 96 96 94 95 95
Daub-3 86 86 87 96 96 96 94 95 95
Daub—4 87 86 87 96 96 96 94 95 96
Daub-5 87 85 87 96 96 96 95 94 96
Daub-10 88 82 87 97 94 96 94 91 96
Daub-15 90 79 87 97 91 96 95 88 96
Daub—20 92 74 87 97 89 96 96 83 96
Threshold: 85 — Bad overall quality
Daub-2 96 96 97 98 98 98 97 98 98
Daub-3 96 96 97 98 98 98 97 98 98
Daub—4 96 96 97 98 98 98 97 97 98
Daub-5 96 95 97 98 98 98 98 97 98
Daub-10 97 93 97 98 97 98 97 94 98
Daub-15 97 91 97 98 95 98 98 92 98
Daub-20 97 86 98 98 93 99 98 88 99
| Image ”
| Camera i Goldhill Il House 1l
Z€ero mirror circular Z€ero mirror circular Z€ero mirror circular
H Wavelet H padding ‘ padding | convol. padding ‘ padding | convol. padding ‘ padding | convol. ‘
Threshold: 10 — Excellent overall quality
Daub-2 78 80 79 70 71 70 79 80 80
Daub-3 7 79 78 70 71 71 79 80 80
Daub—4 s 79 78 71 71 70 79 80 79
Daub-5 7 78 78 71 71 70 79 79 79
Daub-10 7 74 76 73 67 69 80 72 78
Daub-15 80 71 75 7 63 68 82 66 7
Daub—20 81 66 74 79 58 68 83 59 76
Threshold: 20 — Good overall quality
Daub-2 86 88 88 85 87 86 87 88 88
Daub-3 86 88 88 85 87 86 87 88 88
Daub—4 86 88 88 86 86 86 87 88 87
Daub-5 86 87 88 86 86 86 87 87 88
Daub-10 86 85 87 86 83 86 87 81 87
Daub-15 88 82 86 89 79 86 89 75 87
Daub—20 88 78 86 89 73 86 89 69 87
Threshold: 45 — Medium overall quality
Daub-2 93 95 95 94 96 95 93 95 94
Daub-3 93 95 95 95 96 95 94 95 95
Daub—4 94 95 95 95 95 95 94 94 95
Daub-5 94 94 95 95 95 96 94 94 95
Daub-10 93 93 95 95 92 96 94 89 95
Daub-15 94 91 95 95 89 96 95 84 94
Daub-20 95 88 95 96 85 96 95 78 95
Threshold: 85 — Bad overall quality
Daub-2 97 98 98 97 98 98 97 98 98
Daub-3 97 98 98 98 98 98 97 97 97
Daub—4 97 98 98 98 98 98 97 97 98
Daub-5 97 97 98 98 98 99 97 97 98
Daub-10 97 96 98 98 96 99 97 93 98
Daub-15 97 95 98 98 93 99 97 89 98
Daub-20 98 93 98 98 90 99 98 84 99

Table 2: Heuristic for the compression rate of the coding parameters of Table 1: the higher the percentage
of discarded information in the time-scale domain is, the higher is the compression ratio. The mean values
over the images for a fixed wavelet filter bank and a fixed boundary policy are given in Table 4.



Average image quality — PSNR [dB]

z€ero mirror circular Z€ero mirror circular
H Wavelet H padding ‘ padding convol. padding ‘ padding convol. H
Threshold 10 Threshold 20
Daub—2 17.630 17.602 17.701 15.242 15.252 15.246
Daub-3 17.745 17.752 17.768 15.298 15.330 15.288
Daub—4 17.691 17.711 17.662 15.244 15.284 15.213
Daub-5 17.719 17.701 17.680 15.233 15.270 15.257
Daub-10 17.641 17.615 17.689 15.253 15.290 15.306
Daub-15 17.695 17.675 17.686 15.136 15.185 15.168
Daub-20 17.616 17.654 17.676 15.135 15.207 15.114
Threshold 45 Threshold 85
Daub-2 13.057 13.078 12.942 11.609 11.736 11.681
Daub-3 12.982 13.144 13.016 11.659 11.763 11.643
Daub—4 12.932 13.025 13.002 11.637 11.740 11.651
Daub-5 12.992 13.110 13.016 11.610 11.806 11.626
Daub-10 12.823 13.061 12.935 11.500 11.713 11.666
Daub-15 12.854 12.985 12.911 11.422 11.628 11.538
Daub-20 12.673 12.916 12.788 11.439 11.624 11.718

Table 3:
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zero-padding ——
mirror-padding ---%---

L
10 20

40

Length of Wavelet Filter

Quality - Threshold 45

zero-padding —+—
mirror-padding ---x---
circular convolution ------

PSNR

L
20
Length of Wavelet Filter

40

Figure 3: Visual quality of the test images at the quantization thresholds 10, 20, 45 and 85.

PSNR

PSNR

Quality - Threshold 20

Average quality of the six test images. Figure 3 gives a more ‘readable’ plot of these digits.

zero-padding ——
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L
20

40

Length of Wavelet Filter

Quality - Threshold 85

zero-padding —+—
mirror-padding ---x---
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10 20
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40

The

values are averaged over the six test images and correspond to Table 3.



Average discarded information — Percentage [%] I

zero mirror circular zero mirror circular
Wavelet padding | padding convol. padding | padding convol.
Threshold 10 Threshold 20
Daub-2 72.0 72.3 72.0 83.2 84.3 84.0
Daub-3 71.8 72.7 72.5 83.5 84.3 84.3
Daub—4 72.3 72.5 71.8 83.8 84.0 84.0
Daub-5 72.7 72.0 72.0 84.0 83.8 84.2
Daub-10 74.8 67.8 71.0 85.0 79.8 83.7
Daub-15 78.0 63.7 69.8 87.0 76.2 83.3
Daub—-20 80.0 58.8 69.7 88.0 71.2 83.5
Threshold 45 Threshold 85
Daub-2 92.7 93.8 93.7 97.0 97.7 97.8
Daub-3 93.0 93.8 93.8 97.2 97.5 97.7
Daub—4 93.3 93.5 94.0 97.2 97.3 97.8
Daub-5 93.5 93.0 94.2 97.3 97.0 98.0
Daub-10 93.5 90.2 94.2 97.3 94.8 98.0
Daub-15 94.3 87.0 94.0 97.5 92.5 98.0
Daub-20 95.2 82.8 94.2 97.8 89.0 98.7

Table 4: Average bitrate heuristic of the six test images. Figure 4 gives a more ‘readable’ plot of

these digits.

Discarded Information - Threshold 10

Percentage (%)

T
zero-padding ——
mirror-padding ---%---

circular convolution -~

20
Length of Wavelet Filter

Discarded Information - Threshold 45

greula P —

zero-padding ——
mirror-padding ---%---
o

Percentage (%)

20
Length of Wavelet Filter

40

Percentage (%)

Percentage (%)

Discarded Information - Threshold 20

zero-padding ——
mirror-padding ------
circular convolution -~

L . .

4 6 8 10 20 30 40
Length of Wavelet Filter
Discarded Information - Threshold 85

T T T

,,,,,,,,,, -y x -~ zero-padding: ="'
mirror-padding

L S circular convolution 4

o X

L . .
4 6 8 10 20 30 40

Length of Wavelet Filter

Figure 4: Average bitrate heuristic of the test images at the quantization thresholds 10, 20, 45 and
85. The values are averaged over the six test images and correspond to Table 4.
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